Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Russian Geology and Geophysics

2016 year, number 7

PALEOZOIC COLLISIONAL AND INTRAPLATE GRANITOIDS OF THE BAIKAL AREA: COMPARATIVE GEOCHEMISTRY AND PETROGENESIS

N.V. Sheptyakova1,2, V.S. Antipin1,2, L.V. Kushch1
1A.P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, ul. Favorskogo 1a, Irkutsk, 664033, Russia
2Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
Keywords: Granitoids, collision, geodynamics, geochemical types, Paleozoic

Abstract

Early Paleozoic granitoids of autochthonous and allochthonous facies in the Baikal area (Ol’khon Island, Khamar-Daban Ridge) are in close spatial association with gneisses, migmatites, and plagiogranites and are usually confined to granite-gneiss domes. They are virtually not subjected to magmatic differentiation. Formation of granitoids of the Solzan massif and Sharanur complex lasted 26-28 Myr, which might be considered an indicator of collisional granitoid magmatism. Collisional granitoids of different provinces have a series of indicative features: They are peraluminous and highly potassic and are enriched in crustal elements (Rb, Pb, and Th) but sometimes have low contents of volatiles. In contrast to collisional magmatism, petrogenesis of intraplate granitoids does not depend on the composition and age of the enclosing rocks. The geochemical evolution of intraplate granitoid magmatism in the Baikal area is expressed as an increase in contents of F, Li, Rb, Cs, Sn, Be, Ta, Zr, and Pb and a decrease in contents of Ba, Sr, Zn, Th, and U during the differentiation of multiphase intrusions. The geochemical diversity of these granitoids, formed both from crustal and from mantle sources and as a result of the mantle-crust interaction, might be due to the effect of plume on the geologic evolution of intraplate magmatism. The wide range of compositions and geochemical types of igneous rocks (from alkali and subalkalic to rare-metal granitoids) within the Late Paleozoic Baikal magmatism area suggests its high ore potential.