Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Atmospheric and Oceanic Optics

2013 year, number 9

Adsorption and photoadsorption of gases on the surface of particles of precipitated aerosol, produced from MgCO3 mineral crystal in surrounding air

V.S. Zakharenko1, E.B. Daybova2
1Boreskov Institute of Catalysis SB RAS, pr. Lavrentieva 5, Novosibirsk, Russia, 630090
2National Research Tomsk State University, 36 Lenin Prospekt, Tomsk, 634050, Russia
Keywords: magnesite mineral crystal, dispersion under ambient air, photoadsorption, quantum efficiency, tropospheric conditions

Abstract

The adsorption and photosorption properties of precipitated aerosol produced by dispersing mineral magnesite crystal, MgCO3, under ambient air were investigated. Analysis are carried out of the texture of precipitated aerosols sample, the crystal structure and the adsorption layer composition of micro particles formed by grinding of crystal under ambient air. The kinetics of desorption and photodesorption of CO2 from micro particle surfaces and the interaction of Freon 22 (CHF2Cl), CO, O2, and N2O with its surfaces under darkness and illumination were studied. The quantum yields and their spectral dependencies for CO2 photodesorption and O2 photoadsorption were determined. It is shown that magnesite mineral aerosol is active under illumination for removal of oxygen containing electron-acceptor gases from Earth’s atmosphere.