Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Atmospheric and Oceanic Optics

2024 year, number 8

Statistical simulation of space lidar pulse propagation in cirrus clouds taking into account multiple scattering

T.V. Russkova, V.A. Shishko
V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Science, Tomsk, Russia
Keywords: space-borne lidar, remote sensing, multiple scattering, cirrus cloud, numerical simulation, Monte Carlo method

Abstract

Laser remote sensing of cirrus clouds is accompanied by the problem of taking into account the multiple scattering of radiation, which influences the reliability of measurement interpretation. The contribution of multiple scattering of radiation to echo signals of a space-borne lidar is estimated. The non-stationary problem of laser pulse propagation in continuous cirrus clouds with separation by scattering multiplicities is solved by the Monte Carlo method at different values of the optical-microstructural characteristics of clouds (optical thickness and shape and size of ice particles) and lidar parameters (distance from the sensing object, radiation divergence, and field of view angle of the receiver). Numerical experiments were carried out taking into account the permissible range of the parameter for operational or promising space-borne lidar systems. The features of the formation of the return signal when aerosol and Rayleigh particles, as well as the underlying cloud layer, are introduced into an atmospheric model are discussed. The simulation results indicate the high sensitivity of the part of an echo signal caused by multiply scattered radiation to the parameters under study, which should be taken into account when formulating and solving inverse problems.