OPTICAL DIAGNOSIS OF THE GEOMETRY OF AN AXISYMMETRIC CONTROLLED NOZZLE OF A GAS-TURBINE ENGINE
M. P. Tokarev1,2, A. V. Seredkin1,2, M. Yu. Khrebtov1,2, N. P. Petkoglo3, M. Yu. Vovk3, L. M. Chikishev1,2, V. M. Dulin1,2, D. M. Markovich1,2, E. Yu. Marchukov3
1Kutateladze Institute of Thermophysics, Novosibirsk, Russia 2Novosibirsk State University, Novosibirsk, Russia 3A. Lyul'ka Experimental Design Bureau, Moscow, Russia
Keywords: геометрия выходного устройства ГТД, наземные испытания, оптическая диагностика, 3D-сканирование, стереозрение, стереореконструкция, GTE exhaust unit geometry, ground tests, optical diagnostics, 3D scan, stereo vision, stereo reconstruction
Abstract
Modern aviation industry solves the problem of developing multifunction engines capable of flying both at subsonic and supersonic speeds. An important part in engines is a nozzle of variable cross-section, which allows varying the geometry of the engine exhaust unit and, accordingly, its technical characteristics. This study touches upon an computer vision based optical noncontact method for reconstructing a nozzle shape. The reconstruction requires data recorded by two optical three-dimensional recorders directed toward the inner part of the nozzle when the engine is subjected to ground tests. The diagnosis is complicated by the presence of a hot jet being in the way of the sensor vision, the regime-dependent variation of the nozzle glow brightness, and intense mechanical vibrations. The performed bench tests confirm the efficiency of the proposed method. According to their results, in a low-gas regime, the standard deviation of the diagnosed diameters of the exhaust unit and critical sections for each frame does not exceed 0.3 % of the corresponding sizes. The data obtained as a result of this diagnosis can be taken into account when upgrading the exhaust unit of the engine and the traction control system of a gas turbine engine
|