Monte Carlo simulation of solar radiative transfer in the cloudy atmosphere using graphics processor and NVIDIA CUDA technology
T.V. Russkova
V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Science, 1, Academician Zuev square, Tomsk, 634021, Russia
Keywords: метод Монте-Карло, потоки солнечной радиации, параллельные вычисления, GPU, технология CUDA, ускорение вычислений, Monte Carlo method, solar radiation fluxes, parallel computing, GPU, CUDA technology, computation speedup
Abstract
Issues about improving the performance of Monte Carlo numerical simulation of light transport in the Earth’s atmosphere by moving from consecutive calculations to parallel ones are discussed. A new parallel algorithm oriented to a computing system with a graphics processor that supports the NVIDIA CUDA technology is suggested. The efficiency of parallelization is analyzed on the basis of calculating the fluxes of downward and upward solar radiation in both vertically homogeneous and heterogeneous models of the atmosphere. The results of approbation of the new code under various atmospheric conditions including continuous single-layered and multilayered clouds and selective molecular absorption are presented. The results of testing the code using video cards with different compute capability are analyzed. It is shown that the changeover of computing from conventional PCs to the architecture of graphics processors gives more than a hundredfold gain in performance and fully reveals the capabilities of the technology used.
|