WAVELET-ODD WAVE PROLATE SPHEROIDAL FUNCTIONS IN THE PROBLEM OF TWO-DIMENSIONAL IMAGE SEGMENTATION
A. N. Katulev1, M. F. Malevinskii2
1Research Center of the Central Research Institute of Aerospace Defense Forces of the Ministry of Defense of the Russian Federation, Naberezhnaya Afanasiya Nikitina 32, Tver 170026 2Tver State University, ul. Zhelyabova 33, Tver, 170100
Keywords: вейвлет, волновая вытянутая сфероидальная функция, неоднородное изображение, алгоритм, кластер вейвлет-коэффициентов, динамический объект, wavelet, prolate spheroidal wave function, non-uniform image, algorithm, cluster of wavelet coefficients, dynamic object
Abstract
A wavelet in the form of the first odd wave prolate spheroidal function is proposed for the wavelet transform of a non-uniform 2 D image and the formation of clusters of wavelet coefficients on it. Methods for calculating the wavelet function, clustering the field of wavelet coefficients, and constructing their corresponding optimal rectangular windows in the image are described. The high efficiency of the methods and the algorithm implementing them under various real operating conditions of the optoelectronic device has been shown by modeling studies
|