Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Numerical Analysis and Applications

2014 year, number 3

Convergence of H 1-Galerkin mixed finite element method for parabolic problems with reduced regularity of initial datas

M. Tripathy, Rajen Kumar Sinha
Indian Institute of Technology Guwahati, Guwahati, 781039, India
Keywords: параболические задачи, H -смешанный метод конечных элементов Галеркина, полудискретная схема, обратный метод Эйлера, оценки ошибки, parabolic problems, H -Galerkin mixed finite element method, semi-discrete scheme, backward Euler method, error estimates

Abstract

We study the convergence of an H 1-Galerkin mixed finite element method for parabolic problems in one space dimension. Both semi-discrete and fully discrete schemes are analyzed assuming reduced regularity of the initial data. More precisely, for a spatially discrete scheme error estimates of order \mathcal{O}( h 2 t -1/2) for positive time are established assuming the initial function p 0 ϶ H 2(Ω) ∩ H 0 1(Ω). Further, we use an energy technique together with a parabolic duality argument to derive error estimates of order \mathcal{O}( h 2 t -1) when p 0 is only in H 0 1(Ω). A discrete-in-time backward Euler method is analyzed and almost optimal order error bounds are established.