Direct Monte Carlo simulation of high-temperature chemical reactions in air
Ye.A. Bondar1, A.A. Shevyrin1, Y.S. Chen2, A.N. Shumakova3, A.V. Kashkovsky1, and M.S. Ivanov1
1 Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Novosibirsk, Russia 2 National Space Organization, Hsinchu, Taiwan 3 Novosibirsk State University, Novosibirsk, Russia bond@itam.nsc.ru
Keywords: high-altitude aerothermodynamics, DSMC simulation, rarefaction effects, dissociation, shock waves
Pages: 553–564
Abstract
A novel approach to modeling high-temperature nonequilibrium dissociation in air at a level of molecular collisions is proposed. Information on the energy dependence of the specific reaction cross sections, which is necessary for such modeling, is determined numerically from available macroscopic information on the dependence of the reaction rate constant on translational and vibrational temperatures. The results of Direct Simulation Monte Carlo (DSMC) computations show that the proposed model yields a correct reaction rate in vibrational-translational nonequilibrium. The use of the new model in DSMC computations of high-altitude aerothermodynamics results in obtaining a noticeably different flow structure and a higher heat flux, as compared to that predicted by standard DSMC models (such as the total collision energy model).
|