EFFECT OF THE DEPOSITIONAL ENVIRONMENT ON THE COMPOSITIONAL VARIATIONS AMONG THE PHOSPHORITE DEPOSITS IN EGYPT
H.M. Baioumy
Keywords: Phosphorites, lithology, composition, depositional environment, Egypt
Abstract
Late Cretaceous economic phosphorites from the Red Sea, Nile Valley, and Abu Tartur areas, Egypt, show distinct variations in the lithology of associated sediments, mineralogy of nonphosphatic constituents, and distributions of major and trace elements. In the Red Sea area, the phosphorite beds are intercalated with laminated black shales, and the nonphosphatic constituents are detrital quartz and calcite, ankerite, and pyrite cements. In the Nile Valley, the phosphorite beds are intercalated with chert, marl, and sandstone, and the nonphosphatic constituents are detrital quartz and calcite and chalcedony cements. In the Abu Tartur Plateau, the phosphorite beds are intercalated with laminated black shales, and the nonphosphatic constituents are detrital quartz and ankerite and pyrite cements. The phosphorites studied also show distinct variations in major- and trace-element concentrations. The Abu Tartur phosphorites have higher contents of TiO2, Al2O3, Fe2O3, K2O, Co, Nb, Pb, Sr, Th, Y, and Zr and lower contents of SiO2, Ba, and U as compared to those in the Red Sea and Nile Valley areas. The positive correlations between Al2O3 and TiO2, K2O, Nb, Y, and Zr suggest the detrital origin of these constituents. Similarity in the phosphatic constituents, which were derived from outside the depositional sites, and variations in the lithology of associated sediments and the mineralogy and geochemistry of the nonphosphatic constituents, which reflect the conditions at the depositional sites, suggest that the variations in the depositional environment of the phosphorites are the potential controlling factor of the compositional variations among these phosphorites. The abundance of black shales in the Red Sea and Abu Tartur areas, as well as the occurrence of ankerite and pyrite as cementing materials for the phosphatic constituents, might reflect reducing conditions in these areas, while the abundance of siliciclastic sediments and calcite and chalcedony cements suggests oxidizing conditions in the Nile Valley. The reducing conditions in the Red Sea and Abu Tartur areas were probably developed within the pre-existing depressions in a shelf environment. These depressions might have formed as a result of a change in the movements of the North Atlantic, Eurasian, and African Plates during the late Santonian, which led to transgressive inversion of rifts along northern Egypt and consequent folding in the continental interior. The higher contents of detrital components in the Abu Tartur phosphorites, as compared to the Red Sea and Nile Valley areas, suggest more detrital inputs during the deposition of the phosphorites in Abu Tartur. The products of the diagenesis and weathering of these deposits also reflect the variations in the depositional conditions.
|