Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Russian Geology and Geophysics

2011 year, number 12

THE LATE PALEOZOIC FOLD-THRUST STRUCTURE OF THE TUNKA BALD MOUNTAINS, EAST SAYAN ( southern framing of the Siberian Platform )

A.B. Ryabinin†, M.M. Buslov, F.I. Zhimulev, and A.V. Travin
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia
Keywords: Late Paleozoic folding, thrusting, and shearing, microtextural analysis, dynamic analysis, Main Sayan Fault, East Sayan, Siberian Platform
Pages: 1643-1661

Abstract

According to the new geological, geochronological, and structural data, the Tunka bald mountains (East Sayan) have a nappe structure, which formed in the Late Carboniferous-Early Permian. The deformations have been dated by the 40Ar-39Ar method on the basis of syntectonic micas and amphiboles, whose structural and spatial positions have been determined in oriented thin sections. The geometric analysis of macro- and microtextures has revealed three development stages of the deformation structures, which followed one another in progressive deformation. The first (thrust-fault) stage (316-310 Ma) comprised a group of north-verging thrust sheets. At the second (fold deformation) stage (305-303 Ma), they were folded. The third (strike-slip fault) stage (286 Ma) comprised high-angle shears, along which V-shaped blocks were squeezed westward from the most compressed areas. All the structures developed under N-S-trending compression. The thrusting in the Tunka bald mountains was coeval with the major shear structures in the eastern Central Asian Fold Belt (Main Sayan Fault, Kurai, Northeastern, and Irtysh crumpled zones, etc.). Also, it was simultaneous with the formation of continent-marginal calc-alkalic and shoshonite series (305-278 Ma) as well as that of the alkali and alkali-feldspar syenites and granites (281-278 Ma) of the Tarim mantle plume in the Angara-Vitim pluton located near and east of the studied region. Thus, the simultaneous development of the Late Paleozoic structures, active-margin structures, and plume magmatism in southern Siberia might have resulted from the global geodynamic events caused by the interaction between the tectonic plates which formed the Central Asian Fold Belt.