SIMULATION OF GAS DIFFUSION IN POROUS LAYERS OF VARYING STRUCTURE
A. V. Anikeenko, N. N. Medvedev, M. K. Kovalev, M. S. Melgunov
Keywords: computer simulation, random wanderings, gas diffusion, mesoporous mesophase materials, porous layers, residence time in a layer, gas chromatography
Pages: 425-432
Abstract
Gas diffusion in porous layers of varying structure was simulated numerically. Mesoporous mesophase material (MMM) and silica gel layers were studied. The former were a set of ordered cylinders; the latter were disordered packings of spheres. The average residence time of a molecule in a layer (return time) and dispersion of this time in relation to the layer depth were calculated. For the same porosity and specific surface of layers, the average return time is independent of the pore structure and increases with the layer depth as a linear function. This is the consequence of the general theoretical result, according to which the duration of molecule wandering in a pore depends only on the ratio of the pore volume to the section area of its windows. Dispersion of the wandering time is sensitive to the pore structure; it is slightly smaller for regular pores than for a complex pore system. The functional dependence of return time dispersion on the layer depth is the same for different layers (the cubic root of dispersion changes with the layer depth as a linear function). This work helps us to understand recent experimental data, which showed that using MMM for gas chromatographic columns increased the efficiency of the latter compared with other columns based on silicon oxide.
|