Analysis of supersonic flow around two bodies of revolution near a surface
E.K. Derunov1, V.F. Volkov2, A.A. Zheltovodov3, A.I. Maksimov4
1 Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Novosibirsk, Russia 2 Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Novosibirsk, Russia 3 Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Novosibirsk, Russia, zhelt@itam.nsc.ru 4 Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Novosibirsk, Russia
Keywords: shock waves, turbulent boundary layer, viscous-inviscid interaction, separated zones, flow topology, aerodynamic interference, Euler equations
Pages: 13-36
Abstract
The results of experimental and numerical investigations of the peculiarities of flow around two identical cylindrical bodies of revolution of diameter D = 50 mm and the body aspect ratio λ = 5 with conical forebodies whose apex angles are θ = 40° and 60°, which are located above a horizontal surface in parallel with one another and with the flow, are presented for the Mach numbers М∞ = 4.03, Reynolds numbers Re1 ≈ 55⋅106 m−1, fixed distance from the surface Y = Δy/D = 0.96, and the gaps between their axes Z = Δz/D = 1.06−2.4. The peculiarities of three-dimensional turbulent separated flows realizing on the bodies and on the plate as well as the possibilities of predicting the aerodynamic forces and moments acting on the bodies on the basis of numerical computations within the framework of the Euler equations are considered.
|