Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Thermophysics and Aeromechanics

2007 year, number 4

Handling of temperature dependence of viscosity in problems of incompressible medium flow around a cylinder

M.N. Zakharenkov
Zhukovsky TsAGI, Zhukovsky, Moscow Region, Russia
Bryansk Petrovsky State University, Bryansk, Russia
Pages: 533–559

Abstract

The viscous incompressible medium (water, air) flow past a circular cylinder is considered with regard for the temperature Т dependent viscosity n . The influence of different boundary conditions for temperature on flow structure, the drag coefficient and its components due to the pressure and viscosity is investigated in the problem of the flow past a cylinder at rest for the (diameter-based) Reynolds number ReD = 40. A relation between the viscosity gradient along a normal to the body surface and the integral vorticity flux from the body surface into the boundary layer is discussed. Unlike the constant viscosity case the vorticity flux may be different from zero, which must lead because of the integral conservation law for the vorticity to an alteration of the far-field boundary conditions for the velocity. In the same connection, the problem is analysed on the heat spot entry into the computational region under consideration for the flow past a circular cylinder. The examples of the symmetrization of separated flow past a cylinder performing rotation oscillations in a uniform free stream (the Taneda problem) are considered. A comparison with flow computations for low Mach numbers М < < 1 for the flow of a medium past a cylinder at rest is carried out. At the computation of the equation for heat transfer under the assumption of incompressibility of such media as air, it is proposed to retain the pressure derivative, which is typical of gases. In this case, a better agreement with the computations of compressible flows (for М < < 1) is achieved, for example, at the determination of the sizes of a symmetric zone of flow separation past a circular cylinder. An unsteady flow in the neighborhood of the point of joining the zero streamline bounding a closed region of separated flow (the cavity) in a wake of the cylinder at rest is obtained by a numerical simulation at the Reynolds number equal to 40.