УДК 532.546

ОЦЕНКА ЭФФЕКТИВНОСТИ КИСЛОТНОЙ ОБРАБОТКИ ПРИСКВАЖИННОЙ ЗОНЫ С УЧЕТОМ КАПИЛЛЯРНОГО ЗАПИРАНИЯ ПЛАСТОВОЙ ВОДЫ

Н. Т. Данаев, А. А. Кашеваров*, В. И. Пеньковский*

Институт механики и математики Казахского национального университета им. аль Фараби, 480012 Алматы

* Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

Сопоставляются результаты расчетов притока несмешивающихся флюидов к эксплуатационной скважине при различных параметрах пласта и состояниях прискважинной зоны. Рассмотрены установившийся и неустановившийся режимы фильтрации. Расчеты показывают, что кислотная обработка прискважинной зоны приводит к увеличению дебита скважины.

Ключевые слова: двухфазная фильтрация, кислотная обработка, численное моделирование.

При закачке в пласт смеси кислот HCl/HF последняя реагирует с песчаной фракцией пород SiO₂. Вследствие этого радиусы пор увеличиваются, что приводит к увеличению пористости m и проницаемости (коэффициента фильтрации) пласта k (k_f).

Как показано в работе [1], линеаризованная модельная задача об увеличении радиуса отдельно взятого капилляра, внутри которого движется агрессивная жидкость, реагирующая с его внутренней поверхностью, сводится к решению системы дифференциальных уравнений вида

$$\frac{\partial c_1}{\partial x_1} = -c_1 + r_1 + 1, \qquad \frac{\partial r_1}{\partial x_2} = a_1(1 - c_1) \tag{1}$$

с граничными данными

$$x_1 = 0, \ x_2 \ge 0: \quad c_1 = 0; \qquad x_2 = 0, \ x_1 \ge 0: \quad r_1 = 0.$$
 (2)

Здесь $x_1 = ax/R_0$; $x_2 = 2At/r_0 - ax/R_0$ — безразмерные характеристические переменные; x — физическая координата; t — время; A — константа скорости химической реакции второго порядка; $a_1 = C_0/(2\rho_1)$; C_0 — начальная концентрация реагирующей жидкости; R_0 — начальный радиус капилляра; ρ_1 — плотность реагирующего компонента в составе поверхности капилляра; r_1 , c_1 — малые относительные изменения радиуса и концентрации жидкости соответственно; $a_1 = 2A/(\pi v_0)$; v_0 — скорость течения жидкости.

Решение задачи Гурса (1), (2) легко получить методом преобразования Лапласа. Оно имеет вид

$$c_1(x_1, x_2) = 1 - e^{-x_1} J_0(2\sqrt{a_1 x_1 x_2}), \qquad r_1(x_1, x_2) = e^{-x_1} \sqrt{a_1 x_2 / x_1} J_1(2\sqrt{a_1 x_1 x_2}),$$

где J_0 , J_1 — функции Бесселя нулевого и первого порядка соответственно. Поскольку безразмерный параметр a_1 мал (порядка $10^{-3} \div 10^{-2}$), то, например, для вычисления относительной величины радиуса капилляра достаточно воспользоваться асимптотическим разложением приведенного выше соотношения для функции r_1 . В результате получим

$$R/R_0 = 1 + a_0(l-x) e^{-\lambda x}$$

где $\lambda = 2A/(R_0v_0); l = v_0t$ — глубина проникновения раствора; $a_0 = 2Aa_1/(R_0v_0)$ — малый параметр.

Пусть справедлив логнормальный закон распределения условных (гидравлических) радиусов пор ρ по их размерам с плотностью $F(\rho)$ в пористой среде:

$$F(\rho) = n_0 \exp\left[-\ln^2(\rho/\rho_0)/(2\sigma^2)\right],$$

где ρ_0 — мода распределения радиусов капиляров; n_0 — параметр, связанный с дисперсией и числом капилляров. Тогда в предположении неизменности дисперсии и общего числа капилляров в единичном сечении образца породы применительно к осесимметричному проникновению кислотного раствора в пласт для измененных фильтрационных характеристик можно выписать следующие соотношения:

для пористости

$$m(r) = m_0 [1 + 2a_0 (R_* - r) e^{-\lambda r}];$$
(3)

для проницаемости

$$k(r) = k_0 [1 + 4a_0 (R_* - r) e^{-\lambda r}];$$
(4)

для капиллярного давления

$$p_c(s) = p_c^0 \varphi(s) [1 - a_0 (R_* - r) e^{-\lambda r}].$$
(5)

Здесь r — текущая радиальная координата; R_* — радиус обработанной зоны. Формулы (3)–(5) получены разложениями соответствующих моментов функции распределения по малому параметру a_0 с сохранением первых двух членов. Указанный параметр и константа λ связаны с параметрами уравнений кинетики реакций и технологией обработки: временем закачки реагента T, объемом реагента Q_* и его концентрацией C_0 , мощностью пласта M. Очевидно, для радиуса R_* обработанной кислотой зоны имеет место соотношение $R_* = \sqrt{Q_*/(\pi M m_0)}$. Упомянутые выше константы таковы: $\lambda \sim (1-5)m^{-1}$, $a_0 \sim (10^{-2} \div 10^{-1})m^{-1}$.

Исходные параметры пласта — пористость m_0 , проницаемость k_0 и характерное капиллярное давление p_c^0 — сохраняются неизменными при $r \ge R_*$. Входящая в уравнение (3) безразмерная функция $\varphi(s)$ (аналог функции Леверетта) может быть задана в виде $\varphi(s) = \sqrt{s(x-1)/(x-s)}$ или $\varphi(s) = \sqrt{s/(1-s)}$, где s — нефтенасыщенность, а параметр x обычно находится в пределах $1,1 \div 1,3$ в зависимости от физико-химических свойств пласта.

Общепринятая в исследованиях процессов фильтрации несмешивающихся жидкостей система уравнений классифицируется как вырождающаяся эллиптико-параболическая система [2]. Представляется целесообразным в теоретическом плане и в плане практических приложений при выводе основных уравнений, описывающих процесс несмешивающегося вытеснения, учитывать сжимаемости скелета и движущихся фаз. При этом, как будет видно из дальнейшего, система уравнений становится просто параболической.

Выпишем законы сохранения масс нефти и воды

$$\frac{\partial}{\partial t}(m\rho s) = \frac{1}{r}\frac{\partial}{\partial r}\Big(r\rho f(s)k_f\frac{\partial p}{\partial r}\Big), \qquad \frac{\partial}{\partial t}(m\rho_w s_w) = \frac{1}{r}\frac{\partial}{\partial r}\Big(r\rho_w f_w(s_w)k_{fw}\frac{\partial p_w}{\partial r}\Big). \tag{6}$$

Здесь s, s_w — насыщенности; m — пористость пласта; ρ, ρ_w — плотности; p, p_w — давления; k_f, k_{fw} — коэффициенты фильтрации; f, f_w — фазовые проницаемости; индекс wотносится к водной фазе. В соответствии с линейной теорией упругого режима фильтрации [3] имеем при s = 1: $m \simeq m_0(1 + \epsilon_m p), \rho \simeq \rho_0(1 + \epsilon_\rho p)$; аналогично при $s_v = 1$: $m \simeq m_0(1 + \epsilon_{mv}p_v), \rho_v \simeq \rho_{0v}(1 + \epsilon_{\rho v}p_v)$, где величины ϵ с индексами — малые, экспериментально определяемые константы. В общем случае $s \neq 0$ и $s \neq 1$ коэффициенты сжимаемости будут функциями насыщенности s. В первом приближении их можно считать некоторыми средневзвешенными величинами. С точностью до величин второго порядка малости имеем аппроксимации:

$$m\rho \simeq m_0\rho_0(1+\beta p), \qquad m\rho_w \simeq m_0\rho_w(1+\beta_w p_w),$$

где $\beta = \epsilon_m + \epsilon_\rho$; $\beta_w = \epsilon_{mw} + \epsilon_{\rho w}$. Подставляя эти соотношения в уравнение (6) и пренебрегая в правой части членами $\epsilon_{\rho p}$ и $\epsilon_{\rho w} p_w$, малыми по сравнению с единицей, уравнения двухфазной фильтрации с учетом пьезопроводности пласта и изменения его фильтрационных свойств в прискважинной зоне запишем так:

$$m(r)\frac{\partial s}{\partial t} + \beta \frac{\partial}{\partial t}(ps) = \frac{1}{r}\frac{\partial}{\partial r}\left(rf(s)\frac{k}{\mu}\frac{\partial p}{\partial r}\right),$$

$$m(r)\frac{\partial s_w}{\partial t} + \beta_w\frac{\partial}{\partial t}(p_w s_w) = \frac{1}{r}\frac{\partial}{\partial r}\left(rf(s_w)\frac{k}{\mu_w}\frac{\partial p_w}{\partial r}\right),$$

$$p = p_w + p_c^0\psi(r)\varphi(s).$$

(7)

Приведем оценку эффективности кислотной обработки приствольной зоны скважины для установившегося режима фильтрации с учетом капиллярного запирания водной фазы.

Это случай, когда существенную роль в процессе фильтрации играют капиллярные силы $(p_c^0 \neq 0)$, а водная фаза неподвижна, поскольку в ней сохраняется постоянное давление $p_w = p_c = \text{const}, p_c = p_0 - \Delta p \ (p_0 - \text{пластовое давление}, \Delta p - \text{заданная депрессия}).$ Негативную роль капиллярных сил иллюстрирует простой пример. Пусть R — контур питания скважины, на котором сохраняются пластовое давление $p = p_0$ и нефтенасыщенность $s = s_0$, а водонасыщенность $s_w = 1 - s_0$ остается неизменной, равной первоначальной насыщенности месторождения материнской водой. Если капиллярные силы отсутствуют и, следовательно, отсутствует эффект капиллярного запирания, то фильтрационное течение в пласте будет однородным, скорость притока нефти $q_0 = k_f f(s_0) \Delta p / \ln (R/r_b) \ (r_b - p_{aduyc} скважины)$ и скорость притока воды $q_w \neq 0$. Напротив, если принимаются во внимание капиллярные силы, то из равенства давлений на скважине в водной и нефтяной фазах следует, что s(0) = 0, и, интегрируя выражение для относительной скорости притока нефти

$$q_c = rf(s)k_f p_c^0 \frac{d(\varphi(s))}{dr}$$

по r от r_b до R и по s от 0 до s_0 , найдем

$$q_c = I(s_0)k_f p_c^0 / \ln{(R/r_b)}.$$

Приток воды в этом случае будет отсутствовать. Таким образом, степень уменьшения притока нефти выразит отношение

$$\eta = q_c/q_0 = I(s_0)/[\varphi(s_0)f(s_0)].$$

Здесь и выше

$$I(s_0) = \int_0^{s_0} f(s) \, d\varphi(s),$$

и если фазовую проницаемость принять в виде $f(s) = s^{3,5}$, то этот интеграл может быть выражен через элементарные функции.

В условиях месторождений Казахстана нефтенасыщенность s_0 лежит в пределах 0,60 ÷ 0,65. Простой подсчет показывает, что $\eta(0,6) = 0,446$, $\eta(0,7) = 0,522$. Таким образом, вследствие эффекта капиллярного запирания приток нефтяной фазы к скважине

сокращается вдвое. Заметим, что в выражение для относительной величины притоков η при $p_0 - p_c = p_c^0 \varphi(s_0)$ вообще не входит радиус влияния R и все определяется начальной нефтенасыщенностью месторождения s_0 .

Естественно, при кислотной обработке с изменением химико-физических свойств пласта в прискважинной зоне на расстоянии $R_* < R$ показатель η будет зависеть от отношения этих величин и оценка эффективности кислотной обработки производится численно.

Для осесимметричной модели двухфазной фильтрации, основанной на уравнениях (6), разработан вычислительный алгоритм расчета нестационарных задач массопереноса в прискважинной зоне. В модели учитываются упругоемкость пласта, капиллярные силы и пространственная неоднородность распределения гидрофизических характеристик вмещающего пласта.

Систему уравнений (6) с учетом условия $s_w + s = 1$ и капиллярного скачка $p_w = p + p_c(s_v)$ можно преобразовать к эквивалентной, состоящей согласно [2] из параболического уравнения относительно давления p_w в водной фазе

$$r\frac{\partial}{\partial t}m = \frac{\partial}{\partial r}\Big(r(k_w(s_w) + k(s))\frac{\partial p_w}{\partial r} + rk\frac{\partial p_c}{\partial r}\Big), \qquad r_b < r < L$$
(8)

и гиперболического уравнения переноса для водонасыщенности (s_w)

$$r\frac{\partial}{\partial t}(ms_w) = \frac{\partial}{\partial r} \left(rk_w \frac{\partial p_w}{\partial r} \right), \qquad m = m_0(r) + \delta p_w, \quad r_b < r < L.$$
(9)

Дополнительно задаются граничные и начальные условия

$$p_w|_{r=r_b} = p_w^0, \qquad p_w|_{r=L} = p_w^1, \qquad s_w|_{r=r_b} = s_w^0, \qquad s_w|_{r=L} = s_w^1,$$

$$p_v|_{t=0} = p_0, \qquad s_v|_{t=0} = s_0.$$
(10)

Для решения этой задачи использовался итерационный процесс, который на дифференциальном уровне может быть записан следующим образом:

$$\frac{\partial}{\partial t} (rm^n) = \frac{\partial}{\partial r} \left(r(k_w(s_w^{n-1}) + k(1 - s_w^{n-1})) \frac{\partial p_w^n}{\partial r} \right) + F^{n-1},$$
$$\frac{\partial}{\partial t} (rm^n s_w^n) = \frac{\partial}{\partial r} \left(rk_w(s_w^n) \frac{\partial p_w^n}{\partial r} \right), \qquad m^n = m_0(r) + \delta p_w^n.$$

Здесь n — номер итерационного шага; $F^{n-1} = \frac{\partial}{\partial r} \Big(rk(1 - s_w^{n-1}) \frac{\partial p_c(s_w^{n-1})}{\partial r} \Big).$

На *n*-м итерационном шаге из первого уравнения находится давление в водной фазе, а затем из второго уравнения определяется водонасыщенность. Если выполнены условия $\max_{r_b < r < L} |s_w^n - s_w^{n-1}| < \varepsilon_1, \max_{r_b < r < L} |p_w^n - p_w^{n-1}| < \varepsilon_2,$ то итерационный процесс прекращается.

При численных расчетах конечно-разностным методом использовались неявные консервативные разностные схемы, которые решались методом прогонки [4]. На каждом временном слое разностное решение находилось с помощью описанного итерационного алгоритма. Этот алгоритм при выборе достаточно малых значений шагов по времени сходится и позволяет решать задачу в общей постановке.

В случае жесткого режима фильтраци
и $\delta=0$ из уравнения (8) следует, что суммарная скорость

$$V = -\left(rk_w(s_w)\frac{\partial p_w}{\partial r} + rk(1-s_w)\frac{\partial p}{\partial r}\right)$$

является только функцией времени V = V(t), и в этом случае вычислительный алгоритм может быть упрощен [2]. Приближенное значение суммарной скорости V^n на *n*-м итерационном шаге определяется по формуле

$$V^{n} = -\int_{r_{b}}^{L} r^{-1} (k_{w}(s_{w}^{n-1}) + k(1 - s_{w}^{n-1}))^{-1} dr [p_{w}^{1} - p_{w}^{0} + \Phi(s_{w}^{1}) - \Phi(s_{w}^{0})].$$

Здесь функция Ф определяется равенством

$$\Phi = \int_{0}^{s_w} \frac{k(1-s)}{k_w(s) + k(1-s)} \frac{\partial p_c(s)}{\partial s} \, ds.$$

В случае зависимости коэффициентов уравнений от насыщенности вида

$$k_w(s_w) = k_0 s_w^2, \quad k(1 - s_w) = k_0 (1 - s_w)^2, \quad p_c(s_w) = p_c^0 \sqrt{(1 - s_w)/s_w}$$
(11)

значение Ф может быть вычислено явно.

Используя представление

$$rk_w(s_w)\frac{\partial p_w}{\partial r} = -\frac{k_w(s_w)}{k_w(s_w) + k(1-s_w)}V - \frac{rk_w(s_w)k(1-s_w)}{k_w(s_w) + k(1-s_w)}\frac{\partial p_c}{\partial r}$$

численно решаем нелинейное параболическое уравнение

$$\frac{\partial}{\partial t}\left(rm^{n}s_{w}^{n}\right) = -\frac{\partial}{\partial r}\Big(\frac{k_{w}(s_{w}^{n})}{k_{w}(s_{w}^{n}) + k(1-s_{w}^{n})}V^{n} + \frac{rk_{w}(s_{w}^{n})k(1-s_{w}^{n})}{k_{w}(s_{w}^{n}) + k(1-s_{w}^{n})}\frac{\partial p_{c}(s_{w}^{n})}{\partial r}\Big),$$

и определяем следующее итерационное приближение для водонасыщенности.

Численная реализация модели выполнена на основе языка C++. В программе организован диалоговый режим ввода исходной информации и предусмотрена возможность графической интерпретации расчетов. Программа позволяет решать задачу в осесимметричной и одномерной постановках с условиями первого и второго рода на правой границе (r = L). Гидрофизические характеристики пласта могут меняться в зависимости от расстояния до скважины и задаются в виде кусочно-постоянных функций. Локальное изменение свойств пласта вблизи скважины в результате кислотной обработки задается согласно формулам (3)–(5). Результаты расчетов выводятся в виде таблиц или графиков. После анализа и модификации данных расчеты могут быть продолжены с использованием полученных результатов, интерпретируемых как новые начальные данные.

Как известно [3], в задачах несмешивающейся фильтрации с учетом капиллярных сил теоретически допускается безграничный рост нормальной производной от насыщенности при приближении координаты к радиусу эксплуатационной скважины. Поэтому при численной реализации задачи использовалась неравномерная сетка со сгущением в окрестности скважины. Консервативность схемы позволяет снизить влияние ошибки аппроксимации насыщенности в прискважинной зоне.

На основе разработанной программы выполнены расчеты, оценивающие расход поступления нефти в откачную скважину в зависимости от вида модели и с учетом кислотной обработки прискважинной зоны. Коэффициенты уравнений задавались в виде (11). Расчеты проводились при следующих данных осесимметричной задачи.

Постоянные параметры задачи: радиус скважины $r_b = 0,1$ м; пористость m = 0,15; коэффициент фильтрации $k_0 = 0,2$ м/сут; длина области L = 30 м; начальная водонасыщенность $s_w = 0,4$; отношение вязкостей воды и нефти $\mu_0 = 0,2$; понижение напора на

Т	\mathbf{a}	б	Л	и	ц	a	1

<i>t</i> , сут	q/q_w ($\delta = 0,0001, p_c^0 = 0$)	$q/q_w \\ (\delta = 0,0001, p_c^0 = 0.8)$
0,5 10	0,335/0,734 0.321/0.708	0,159/0,798 0.147/0.778
100	0,321/0,708	0,147/0,781

Таблица 2

<i>t</i> , сут	$\begin{array}{c} q/q_w\\ (p_c^0=0) \end{array}$	$\begin{array}{c} q/q_w\\ (p_c^0=0.8) \end{array}$	$\begin{array}{c} q^0/q^0_w \\ (p^0_c=0) \end{array}$	q^0/q^0_w $(p^0_c = 0.8)$
0,5	0,417/0,914	0,234/0,974	1,245/1,245	1,472/1,221
10	0,399/0,881	0,218/0,946	1,243/1,244	1,483/1,216
100	0,398/0,883	0,218/0,950	1,243/1,244	1,483/1,216

скважине по сравнению с пластовым $\Delta p = p_w^1 - p_w^0 = 20$ м ($p_w^0 = 0$). В расчетах варьировались характерные значения капиллярного скачка (p_c^0) и коэффициент сжимаемости пласта (δ).

Результаты расчетов дебита необработанной скважины приведены в табл. 1, где числитель соответствует расходу притока нефти, знаменатель — расходу воды.

Численное моделирование двухфазного течения при кислотной обработке скважины проводилось при значениях гидрофизических параметров пласта $\delta = 0,0001$, $p_c^0 = 0$ и $p_c^0 = 0,8$ и значениях параметров обработанной прискважинной зоны $a_0 = 0,05$, $\lambda = 1$, $R_* = 2$ (табл. 2). Возрастание дебита обработанной скважины наблюдается как для модели, учитывающей капиллярные силы ($p_c^0 = 0,8$), так и без их учета ($p_c^0 = 0$). В последних двух столбцах табл. 2 приведены значения отношения расходов при кислотной обработке и без нее (q^0 — для нефти, q_w^0 — для воды).

На рис. 1 приведены распределения давления и нефтенасыщенности без кислотной обработки для слабосжимаемого пласта. Для моментов времени больше 10 сут значения нефтенасыщенности практически не изменяются.

Следует особо отметить влияние сжимаемости пласта. В отличие от жесткого режима фильтрации решения задач упругого режима существенно зависят от динамики изменения давления в пласте. Это наглядно видно в случае отсутствия капиллярного скачка. Система уравнений Баклея — Леверетта ($\delta = 0$) при однородной водонасыщенности пласта в начальный момент времени ($s|_{t=0} = s_0 = \text{const}$) и граничном условии $s|_{r=L} = s_0$ имеет решение в виде константы $s_w(r,t) = s_0$. Однако при упругом режиме фильтрации решение имеет совершенно другой вид: водонасыщенность и нефтенасыщенность не являются монотонными функциями, зависящими от времени. Влияние сжимаемости сказывается также и при наличии капиллярного скачка, особенно сильно — для больших значений коэффициента сжимаемости ($\delta = 0,005$), которые могут быть обусловлены наличием газовой фазы в пласте. В этом случае при прохождении волны сброса напора вблизи скважины резко изменяются распределения нефтенасыщенности и, кроме того, в начальные моменты времени градиенты давления вблизи нее становятся достаточно большими (рис. 2). Эти особенности процесса позволяют объяснить более высокие значения притока нефти в скважину в начальный момент времени (табл. 3) по сравнению с результатами, полученными для слабосжимаемых пластов ($\delta = 0,0001$) (см. табл. 1).

Из серии проведенных расчетов можно сделать общий вывод. Кислотная обработка приствольной зоны эксплуатационной скважины при прочих равных условиях может быть

Рис. 1. Графики распределения давления (a)и нефтенасыщенности (b) при $\delta=0,0001,~p_c^0=0,8:$ 1-t=10сут; 2-t=100сут

Рис. 2. Графики распределения давления при $\delta = 0,005$: 1 — t = 0,5 сут; 2 — t = 10 сут; 3 — t = 100 сут

T	$^{\mathrm{a}}$	6	Л	И	ц	а	3

t, сут	$q/q_w \\ (\delta = 0,005, p_c^0 = 0)$	$q/q_w \\ (\delta = 0,005, p_c^0 = 0,8)$
0,5	0,566/0,993	0,317/1,096
10	0,389/0,730	0,186/0,808
100	0,389/0,730	0,186/0,808

эффективным методом повышения притока нефти. Естественно, степень эффективности этого метода зависит от технологии обработки и физико-химических параметров пластов. Например, из результатов, представленных в табл. 2, видно, что большую роль в увеличении притока нефти (примерно в 1,5 раза) играет уменьшение отрицательного воздействия капиллярных сил.

ЛИТЕРАТУРА

- 1. Пеньковский В. И. Две модельные задачи о движении агрессивной жидкости в пористой среде // ПМТФ. 1968. № 6. С. 155–158.
- 2. Антонцев С. Н., Доманский А. В., Пеньковский В. И. Фильтрация в прискважинной зоне пласта и проблемы интенсификации притока. Новосибирск: Ин-т гидродинамики СО АН СССР, 1989.
- 3. Коллинз Р. Течение жидкостей через пористые материалы. М.: Мир, 1964.
- 4. Чарный И. А. Подземная гидрогазодинамика. М.: Гостоптехиздат, 1963.
- 5. Самарский А. А. Теория разностных схем. М.: Наука, 1977.

Поступила в редакцию 12/II 2003 г., в окончательном варианте — 1/IX 2003 г.