УДК 536.71

ДИНАМИЧЕСКОЕ ДЕФОРМИРОВАНИЕ АЛЮМИНИЕВОГО СПЛАВА АМг-6 ПРИ НОРМАЛЬНОЙ И ПОВЫШЕННОЙ ТЕМПЕРАТУРАХ

Б. Л. Глушак, О. Н. Игнатова, В. А. Пушков, С. А. Новиков, А. С. Гирин, В. А. Синицын

Всероссийский научно-исследовательский институт экспериментальной физики, 607190 Саров

Представлены результаты экспериментальных исследований динамического деформирования в условиях одноосного сжатия и растяжения сплава АМг-6 при скорости деформации $\dot{\varepsilon} = 190 \div 1450 \text{ c}^{-1}$ и температуре испытаний $25 \div 250$ °C. В рамках упругопластической модели деформируемого твердого тела построено феноменологическое определяющее уравнение, согласующееся с экспериментальными данными.

Алюминиевый сплав АМг-6 находит широкое применение в различных областях современной техники. Однако его механические свойства исследованы, главным образом, при статическом нагружении [1–3]. Экспериментальные данные о поведении этого сплава при динамических нагрузках неполные и получены лишь при нормальной температуре [4, 5].

1. Методика и результаты испытаний. С целью получения динамических диаграмм одноосного сжатия и растяжения использован известный метод составного стержня Гопкинсона (ССГ) [6]. Динамическое нагружение образцов осуществлялось с помощью горизонтального копра. Ударник массой около 4 кг разгонялся копром и при торможении о специальный демпфер создавал в нагружающем стержне импульсную нагрузку, проходящую далее в образец. В опытах при повышенной температуре образцы нагревались в рабочем положении между торцами двух стержней с одновременным нагревом последних. Для нагрева использовался специальный портативный электронагреватель мощностью около 1 кВт. В этом случае нагрев торцов стержней до 300–400 °С не вносит значительных изменений в упругие свойства материала стержней (сталь) и соответственно практически не уменьшает точности метода ССГ [7]. Для создания однородного температурного поля по объему образцов последние выдерживались при заданной температуре, измеряемой хромель-копелевыми термопарами, в течение 4–6 мин.

В опытах на динамическое сжатие использовались нагружающий стержень (диаметр 12 мм, длина 1500 мм) и опорный стержень (диаметр 12 мм, длина 600 мм) из закаленной стали 30ХГСА. Образцы выполнялись в виде сплошных цилиндров (диаметр 8 мм, высота 8 мм).

В опытах на динамическое растяжение нагружающий стержень не менялся, а опорный представлял собой полый цилиндр (наружный диаметр 20 мм, внутренний — 16 мм, высота 500 мм) из той же стали. Исследуемые образцы имели вид наперстка [4] со следующими габаритными размерами: диаметр 20 мм, высота 24 мм (толщина рабочей части 2 мм). Образцы на сжатие и растяжение изготавливались из прутков АМг-6 в состоянии поставки.

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (код проекта 001-01-0052).

Полученные в каждом опыте первичные диаграммы деформирования пересчитывались далее по известной процедуре в координаты интенсивность напряжений — интенсивность деформаций ($\sigma_i - \varepsilon_i$) [8].

Эксперименты на динамическое сжатие проводились при T = 25, 150, 250 °C и скорости деформации $\dot{\varepsilon} = 190 \div 1400$ с⁻¹.

Эксперименты на динамическое растяжение проводились при T = 25 °C и скорости деформации $\dot{\varepsilon} = 640 \div 1450 \text{ c}^{-1}$. Опыты на динамическое растяжение при повышенной температуре из-за сложности контроля температуры рабочей части образца, зажатой коаксиально между нагружающим и опорным стержнями, не проводились.

Эксперименты по динамическому сжатию АМг-6 показали, что при температуре 25, 150, 250 °C увеличение скорости деформации $\dot{\varepsilon}$ от 190 ÷ 620 до 1020 ÷ 1400 с⁻¹ приводит к увеличению предела текучести $\sigma_{-0,2}$ на 10–12% (см. таблицу) ($\hat{\sigma}_{\pm 0,2}$ — среднее значение предела текучести). Кроме того, для отмеченных диапазонов $\dot{\varepsilon}$ с ростом температуры от 25 до 250 °C величина $\sigma_{-0,2}$ уменьшается на 18–20%.

Эксперименты по динамическому растяжению АМг-6 показали, что при нормальной температуре увеличение скорости деформации $\dot{\varepsilon}$ от 640 ÷ 800 до 1200 ÷ 1450 с⁻¹ также приводит к увеличению предела текучести $\sigma_{+0,2}$ примерно на 11% (см. таблицу). При этом в диапазоне $\dot{\varepsilon}$ 640 ÷ 800 с⁻¹ лишь один образец разрушился, а в диапазоне 1200 ÷ 1450 с⁻¹ разрушению подверглись все образцы. Для первого диапазона $\dot{\varepsilon}$ предел прочности $\sigma_{+B} = 310$ МПа, остаточное удлинение при разрыве $\delta = 14\%$, а для второго диапазона $\dot{\varepsilon}$ предел прочности $\sigma_{+B} = (338,3 \pm 16,4)$ МПа, $\delta = (22,0 \pm 1,8)\%$ (p = 0,95). Из приведенных данных следует, что для T = 25 °C и одних и тех же $\dot{\varepsilon}$ предел текучести при сжатии выше, чем при растяжении: $\sigma_{-0,2} > \sigma_{+0,2}$. Такое различие в пределах текучести при сжатии и растяжении характерно для многих материалов. Результаты настоящей работы и работ [4, 5] удовлетворительно согласуются.

2. Определяющее уравнение АМг-6. Будем считать алюминиевый сплав АМг-6 упругопластической средой, для которой интенсивность напряжений σ_i (предел текучести при одноосном напряженном состоянии) зависит от четырех основных переменных, характеризующих ее напряженно-деформированное состояние: интенсивности пластических деформаций ε_i^p , интенсивности скорости пластических деформаций $\dot{\varepsilon}_i^p$, давления P и текущей температуры T [9, 10]: $\sigma_i = \sigma_i(\varepsilon_i^p, \dot{\varepsilon}_i^p, P, T)$.

В простейшем случае σ_i представляется в виде произведения четырех простых функций, каждая из которых зависит только от одного параметра [10]:

$$\sigma_i = A f_1(\varepsilon_i^p) f_2(\dot{\varepsilon}_i^p) f_3(P) f_4(T). \tag{1}$$

Здесь функция f_1 описывает деформационное упрочнение, f_2 и f_3 — влияние интенсивности скорости пластической деформации и давления соответственно, f_4 — термическое разупрочнение. Аналитический вид функций f_i и численные значения входящих в них параметров определяются из экспериментальных данных.

Выражение (1) запишем в виде

$$\sigma_i = A[1 + a(\varepsilon_i^p)^n] \Big[1 + b \Big(\ln \frac{\dot{\varepsilon}_i^p}{\dot{\varepsilon}_{i0}^p} \Big)^m \Big] \Big[1 + c \Big(\frac{T}{T_{\pi\pi}} \Big)^k \Big] (1 + \alpha P), \tag{2}$$

где A, a, b, c, n, m, k, α — постоянные коэффициенты; $\dot{\varepsilon}_{i0}^p = 1 \text{ c}^{-1}$ — нормировочная величина; T [K] — текущая температура; $T_{\text{пл}} = 933 \text{ K}$ — температура плавления. Константы, определенные из экспериментальных данных при сжатии образцов, имеют следующие значения: A = 200 MIa; a = 22,85; n = 1,2; $b = 5 \cdot 10^{-4}$; m = 2,9; c = -0,8; k = 2; $\alpha = 3,5 \cdot 10^{-5} \text{ MIa}^{-1}$. Для растяжения A = 145 MIa.

Вид испытания	$T, ^{\circ}\mathrm{C}$ (T, K)	$\dot{\varepsilon}_i^p,\mathrm{c}^{-1}$	$\sigma_{\pm 0,2}, {\rm M}\Pi{\rm a}$ (эксперимент)	$\hat{\sigma}_{\pm 0,2}, $ МПа (эксперимент)	$\sigma_{\pm 0,2}, M\Pi a$ (расчет)
Сжатие	25 (298)	420 520 250 550	190 175 200 190	$188,8 \pm 16,5$	197
Сжатие	25 (298)	1210 1100 1290 1300 1130	210 215 200 215 210	$210 \pm 7,7$	207
Сжатие	150 (423)	$ \begin{array}{r} 620 \\ 360 \\ 590 \\ 590 \\ 430 \\ \end{array} $	$ 180 \\ 170 \\ 170 \\ 160 \\ 168 $	$169,6\pm8,9$	177
Сжатие	150 (423)	1170 1080 1300 1020 1120	175 190 195 185 205	190 ± 14	184
Сжатие	250 (523)	240 190 530 200	$153 \\ 155 \\ 170 \\ 160$	$159,5\pm12,2$	154
Сжатие	250 (523)	$\begin{array}{c} 1200 \\ 1400 \end{array}$	170 180	175	165
Растяжение	25 (298)	800 800 770 640	142 138 145 140	$141,3 \pm 4,8$	146
Растяжение	25 (298)	$ \begin{array}{r} 1450 \\ 1350 \\ 1200 \\ 1420 \end{array} $	$160 \\ 155 \\ 150 \\ 160$	$156,3\pm7,7$	151

Экспериментальные и расчетные по зависимости (2) данные представлены в таблице и на рис. 1. Различие между расчетными и экспериментальными данными составляет не более 10%, что находится в пределах погрешности эксперимента.

Из (2) можно получить зависимости безразмерной интенсивности напряжений $\bar{\sigma}_{i1} = \sigma_i/\sigma_{i1}$ от интенсивности скорости пластической деформации $\dot{\varepsilon}_i^p$ (рис. 2,*a*) и $\bar{\sigma}_{i2} = \sigma_i/\sigma_{i2}$ от интенсивности пластической деформации ε_i^p (рис. 2,*b*) ($\sigma_{i1} = \sigma_i$ при $\varepsilon_i^p = \varepsilon_{i0}^p$, T = const, P = const, $\varepsilon_i^p = \text{const}$; $\sigma_{i2} = \sigma_i$ при $\varepsilon_i^p = 1 \text{ c}^{-1}$, T = const, P = const, $\dot{\varepsilon}_i^p = \text{const}$).

Из рис. 2 следует, что влияние интенсивности скорости пластического деформирования $\dot{\varepsilon}_i^p$ на упрочнение алюминиевого сплава АМг-6 невелико, а влияние деформационного упрочнения ε_i^p значительно.

Рис. 1. Типичные диаграммы сжатия и растяжения АМг-6 при T = 298, 423, 523 К (кривые 1–3) и растяжения при T = 298 К (кривые 4):

сплошные кривые — расчет, штриховые — эксперимент; $a - 1 - \dot{\varepsilon} = 250 \div 550 \text{ c}^{-1}, 2 - \dot{\varepsilon} = 360 \div 620 \text{ c}^{-1}, 3 - \dot{\varepsilon} = 190 \div 530 \text{ c}^{-1}, 4 - \dot{\varepsilon} = 640 \div 800 \text{ c}^{-1}; \delta - 1 - \dot{\varepsilon} = 1100 \div 1300 \text{ c}^{-1}, 2 - \dot{\varepsilon} = 1020 \div 1300 \text{ c}^{-1}, 3 - \dot{\varepsilon} = 1200 \div 1450 \text{ c}^{-1}, 4 - \dot{\varepsilon} = 1200 \div 1450 \text{ c}^{-1}$

Рис. 2. Зависимости интенсивности напряжений $\bar{\sigma}_{i1}$ от интенсивности скорости пластической деформации $\dot{\varepsilon}_i^p(a)$ и $\bar{\sigma}_{i2}$ от интенсивности пластической деформации $\varepsilon_i^p(\delta)$

Известно, что при статическом нагружении повышение температуры алюминиевых сплавов приводит к уменьшению сопротивления твердого тела пластическому деформированию [11]. Эта тенденция сохраняется и при динамических нагрузках (см. таблицу).

ЛИТЕРАТУРА

- 1. Авиационные материалы: Справ. / Под ред. Р. Е. Шалина. М.: ОНТИ-ВИАМ, 1982. Т. 4, ч. 1.
- 2. Арзамасов Б. Н., Сидорин И. И., Косолапов Г. Ф. и др. Материаловедение. М.: Машиностроение, 1986.
- Золоторевский А. П. Структура и прочность литых алюминиевых сплавов. М.: Металлургия, 1981.
- 4. Большаков А. П., Новиков С. А., Синицын В. А. Исследование динамических диаграмм одноосного растяжения и сжатия меди и сплава АМг-6 // Пробл. прочности. 1979. № 10. С. 87, 88.
- 5. Gloushenkov V., Novobratsky R., Bourmistrov A. Influence of the spread in values of aluminium alloy dynamic properties upon the results of magnetic-pulse strain // Proc. of the conf. DYMAT-91, Strasbourg, France, Oct. 14–18, 1991. P. c3/331–c3/334.
- Музыченко В. П., Кащенко С. И., Гуськов В. А. Применение составного стержня Гопкинсона при исследовании динамических свойств материалов: Обзор // Завод. лаб. 1986. № 1. С. 58–66.

- 7. Лошманов Л. П., Нечаева О. А., Руднев В. Д. Высокоскоростные испытания при повышенных температурах // Завод. лаб. 1996. № 5. С. 40–42.
- 8. **Малинин Н. Н.** Прикладная теория пластичности и ползучести. М.: Машиностроение, 1975.
- Глушак Б. Л., Игнатова О. Н. Упругопластическая модель динамического деформирования U-238 и его сплава с Мо // Вопр. атом. науки и техники. Сер. Мат. моделирование физ. процессов. 1998. Вып. 2. С. 45–49.
- Meyer L. M. Constitutive equation at high strain rates // Shock-wave and high-strain-rate phenomena in materials / Ed. by M. Meyers, L. Murr, K. Standhammer. N.Y.; Basel; Hong Kong: Marcel Dekker, Inc., 1992. P. 49–68.
- 11. Физические величины: Справ. / Под ред. И. С. Григорьева, Е. З. Мейлихова. М.: Энергоатомиздат, 1991.

Поступила в редакцию 20/I 1999 г., в окончательном варианте — 20/XII 1999 г.