2008. Том 49, № 1

Январь – февраль

C. 19 – *26*

УДК 543.424.2:548.75:544.18:546.824

ИССЛЕДОВАНИЕ ОКСОФТОРОТИТАНАТОВ (NH₄)₃TiOF₅ И Rb₂KTiOF₅ МЕТОДАМИ КОЛЕБАТЕЛЬНОЙ СПЕКТРОСКОПИИ И КВАНТОВОЙ ХИМИИ

© 2008 Е.И. Войт*, В.А. Давыдов, А.А. Машковский, А.В. Войт

Институт химии ДВО РАН, Владивосток

Статья поступила 27 марта 2007 г.

С доработки — 5 июля 2007 г.

Методами колебательной спектроскопии в широком интервале температур изучены эффекты фазового перехода в соединениях (NH_4)₃TiOF₅ и Rb₂KTiOF₅. Обнаружены изменения в спектрах этих кристаллов при ФП в области внутренних колебаний иона [TiOF₅]³⁻. Проведено квантовохимическое моделирование колебательных спектров (NH_4)₃TiOF₅ и сделаны соотнесения полос в спектре. Высказаны предположения о строении этого соединения и механизме структурного фазового перехода. Показано, что характер колебательных спектров исследуемых соединений при комнатной температуре определяется динамической неупорядоченностью комплексного аниона.

Ключевые слова: оксофторотитанат аммония, колебательные спектры, квантовая химия.

введение

Оксофторотитанат аммония (NH₄)₃TiOF₅ — один из основных продуктов гидролиза (NH₄)₂TiF₆, образующегося в результате фторирования титансодержащего сырья, впервые описан в [1]. Структура соединения определена в [2]. $(NH_4)_3$ TiOF₅ кристаллизуется в структурном типе эльпасолита (кубическая сингония, Fm3m, Z = 4) и характеризуется наличием фторкислородного беспорядка, при котором атомы лигандов (F, O) статистически распределены по смешанной 24*e*+96*j* позиции ячейки *Fm*3*m*. Как и во многих других оксифторидах, кристаллографический фтор-кислородный беспорядок скрывает истинную геометрию комплексного аниона [TiOF₅]³⁻. Для уточнения структуры таких соединений можно использовать данные колебательной спектроскопии в сочетании с квантовохимическими расчетами. В частности, в [3] такой подход был применен для исследования оксофторотитанатов вольфрама. В [4] приведены ИК спектры с соотнесением частот для оксофторотитанатов со смешанными катионами A_2 BTiOF₅ (A, B = Na, K, Rb, Cs, A > B), также кристаллизующихся в структурном типе эльпасолита. Подобные комплексы с однородными катионами A₃TiOF₅ (A = K, Rb, Cs), согласно данным [5], не являются кубическими при комнатной температуре и сочетают сегнетоэластические и сегнетоэлектрические свойства. Данные колебательной спектроскопии для этих комплексов отсутствуют.

В настоящей работе приведены колебательные спектры $(NH_4)_3 TiOF_5$ в сравнении с Rb_2KTiOF_5 в широком температурном интервале (300—80 K), на основе квантовохимических расчетов проведена их интерпретация. Сделаны выводы о возможных механизмах динамических процессов в решетке для соединения $(NH_4)_3 TiOF_5$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы оксофторотитанатов (NH₄)₃TiOF₅ и Rb₂KTiOF₅ были синтезированы в лаборатории оптических материалов Института химии ДВО РАН и любезно предоставлены для иссле-

^{*} E-mail: evoit@ich.dvo.ru

дования авторам статьи сотрудницей этой лаборатории к.х.н. Н.М. Лапташ. ИК спектры образцов в области 250—4000 см⁻¹ регистрировали с использованием Фурье-спектрометра Shimadzu FTIR Prestige-21 с разрешением 2 см⁻¹. Спектры КР были получены в диапазоне 70—3600 см⁻¹ с разрешением 2 см⁻¹ в обратном рассеянии на Раман — Фурье-спектрометре RFS100/S. В качестве источника возбуждения использовали излучение Nd:YAG лазера с длиной волны 1064 нм и мощностью 100 мВт для соединения Rb₂KTiOF₅ и 350 мВт для (NH₄)₃TiOF₅.

Квантовохимическое моделирование соединения $(NH_4)_3 TiOF_5$ было проведено в кластерном приближении с использованием комплекса GAMESS [6] на уровне теории функционала плотности с использованием обменно-корреляционного потенциала B3LYP. В качестве базиса для всех атомов использовали валентный базис SBKJC [7] в сочетании с псевдорелятивистским остовным потенциалом, дополненный двумя диффузными *d*-функциями для атомов F и O. Все расчеты были выполнены на 16-процессорном Linux-кластере Института химии ДВО РАН с эффективным быстродействием 56 ГФлоп. В некоторых расчетах в качестве внешнесферных катионов вместо ионов аммония использовали ионы калия. Этот выбор был обусловлен тем, что ионные радиусы калия и аммония практически совпадают, в то же время выбор шарообразного иона калия вместо тетраэдрического иона аммония, с одной стороны, моделирует быстрое вращение ионов аммония, наблюдаемое при температурах выше 80 K, как будет показано ниже, а с другой — значительно упрощает процедуру оптимизации исследуемых кластеров.

Расчет энергетических параметров и колебательных спектров для модельных кластеров осуществляли с оптимизацией всех геометрических параметров для группировки $[TiOF_5]^{3-}$ с фиксированными внешнесферными катионами в позициях, определенных по рентгеноструктурным данным. Точность оптимизации во всех расчетах была не хуже 0,1 кДж/моль. На рис. 1 приведены колебательные спектры соединений (NH₄)₃TiOF₅ и Rb₂KTiOF₅, измеренные при различных температурах, а также спектры, рассчитанные для кластера $[K_{14}TiOF_5]^{11+}$. Результаты соотнесения полос приведены в таблице. На рис. 2 приведены кластеры, использованные в квантовохимических расчетах.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Оптимизация геометрических параметров кластера $[\text{TiOF}_5]^{3-}$ с локальной симметрией $C_{4\nu}$ приводит к трем различным расстояниям R(Ti-O) = 1,714 Å, R(Ti-F) = 2,015 Å, R(Ti-F') = 2,151 Å (здесь F' — аксиальный атом фтора). При учете взаимодействия с внешнесферным окружением оптимальные расстояния укорачиваются — 1,696, 1,980, 2,090 Å для кластера $[\text{K}_{14}\text{TiOF}_5]^{11+}$ ($C_{4\nu}$) (см. рис. 2, *a*) и 1,680, 1,972, 1,970, 2,087 Å для кластера $[(\text{NH}_4)_{14}\text{TiOF}_5]^{11+}$ ($C_{2\nu}$) (см. рис. 2, *b*). Рентгеноструктурный анализ показывает в структуре соединения (NH)₃TiOF₅ расстояния Ti-(O, F) 2×1,845 и 4×1,892 Å [2].

При сопоставлении колебательных спектров изоструктурных при комнатной температуре соединений $(NH_4)_3 TiOF_5$ и $Rb_2 KTiOF_5$ видно, что замещение тетраэдрических катионов сферическими приводит к большей степени упорядочения кубической структуры *Fm3m* и, соответственно, к лучшему разрешению полос в колебательных спектрах (см. рис. 1). Спектры соединения $(NH_4)_3 TiOF_5$ имеют более широкие размытые полосы вследствие дополнительного беспорядка, вносимого катионами аммония.

В экспериментальных колебательных спектрах (см. рис. 1, a—e) присутствует интенсивная широкая полоса поглощения с максимумом в области ~870—900 см⁻¹, которую следует отнести к валентному колебанию Ti—O, что подтверждается квантовохимическими расчетами (см. рис. 1, d, e). Высокочастотное положение полосы отвечает кратной связи Ti=O в оксофторотитановой группировке и соответствует более короткому расстоянию Ti—O по сравнению с расстояниями Ti—F и Ti—F'.

Следует отметить, что положение полос, отвечающих за валентные колебания v(TiF') и v(TiO) симметрии A1, наиболее чувствительно к влиянию внешнесферного окружения (см. таблицу). Введение в расчет катионов значительно влияет на положение этих полос в спектре. Полосу в экспериментальном ИК спектре (см. рис. 1, *a*, *б*) соединения Rb₂KTiOF₅ в области

Рис. 1. Колебательные спектры кристаллов Rb₂KTiOF₅ (a - UK, $\delta - KP$), (NH₄)₃TiOF₅ (e - UK, z - KP) и рассчитанные спектры кластера [K₁₄TiOF₅]¹¹⁺ ($\partial - UK$, e - KP)

353 см⁻¹ мы относим к колебанию v(TiF'). В спектре соединения $(NH_4)_3 TiOF_5$ эта полоса плохо разрешена (см. рис. 1, *в*, *г*).

Интенсивная в ИК спектре широкая полоса из нескольких составляющих в области 430— 550 см⁻¹ соответствует колебаниям центральный атом — экваториальные атомы фтора и, по результатам расчета, включает в себя три колебательные моды: $v_s(TiF_4)$ симметрии A1, $v_{as}(TiF_2)$ симметрии E, $v(TiF_4)$ симметрии B2 (см. рис. 1, a—e, таблицу). Колебание $v(TiF_4)$ симметрии B2в спектрах при комнатной температуре не проявляется. Находящиеся ниже 320 см⁻¹ полосы следует отнести к деформационным колебаниям в анионе $[TiOF_5]^{3-}$. Теоретически для симметричного (C_{4v}) кластера $[TiOF_5]^{3-}$ в этой области должны быть хорошо видны три основные полосы $\delta(TiO)$ и $\delta(TiF')$ симметрии E и $\gamma(TiF_4)$ симметрии A1. В экспериментальных ИК и КР спектрах в этом диапазоне проявляются две широкие основные полосы ~320 и 279 см⁻¹, причем последняя имеет большую интенсивность в КР спектре. Их мы отнесли к деформационным

ν, см ⁻¹	Интенсивность		$v_{_{3KC\Pi}}, cm^{-1}$						
	ИК	КР	ИК	КР	ИК	КР	Соотнесение		
$\begin{bmatrix} K_{14} \text{TiOF}_5 \end{bmatrix}^{11+} (C_{4\nu}) \\ \text{DFT/B3LYP/SBKJC+}2d \end{bmatrix}$		(NH ₄) ₃ TiOF ₅		Rb ₂ KTiOF ₅					
903	9,5	53,6	874	873	897	897	<i>A</i> 1		v(TiO)
499	2,1	4,8	516	505—494	516—490	497	<i>A</i> 1	••••• v ₂	v _s (TiF ₄)
482	9,2	0,3		_	_		Ε	v ₈	$\nu_{as}(TiF_2)$
401	0,0	1,1				430	<i>B</i> 2	v ₅	v(TiF ₄)
366	2,3	1,2	352		355		<i>A</i> 1	- o-c v ₃	v(TiF')
280	0,6	1,6	335 320	320	322	325	Ε	vg	δ(TiOF')
299	0,0	0,9	291 280	280	279 273	279	<i>A</i> 1	v ₄	γ(TiF ₄)
254	0,1	1,8		256		256	Ε	v ₁₀	δ(TiF'O)
234	0,0	1,7					<i>B</i> 1	v ₆	δ(TiF ₄)
161	0,0	0,01		168		162	<i>B</i> 2		δ(TiF ₄)
108	1,0	0,2		145			Ε		δ(TiOF'+TiF ₂)

Экспериментальные и рассчитанные частоты в колебательных спектрах кристаллов (NH₄)₃TiOF₅ и Rb₂KTiOF₅ вместе с соотнесением линий

колебаниям $\delta(\text{TiO})$ симметрии *E* и $\gamma(\text{TiF}_4)$ симметрии *A*1. Полоса, лежащая в области 256 см⁻¹, видимая в КР спектре, отнесена к колебанию $\delta(\text{TiF}')$ симметрии *E*.

Ниже 200 см⁻¹ лежат оставшиеся три внутримолекулярные моды $\delta(\text{TiF}_4)$ симметрии *B*1, $\delta(\text{TiF}_4)$ симметрии *B*2 и $\delta(\text{TiOF}'+\text{TiF}_2)$ симметрии *E* (см. таблицу). В экспериментальных КР спектрах две последние скрыты под одной широкой полосой.

Значительное уширение линий внутренних колебаний комплексного аниона, слабо зависящее от температуры вдали от точек фазовых переходов (ФП), и отсутствие позиционного расщепления всех мод говорит о структурной неупорядоченности исследуемых соединений, что согласуется с данными рентгеноструктурного анализа.

Рис. 2. Рассчитанные кластеры: $a - [K_{14}\text{TiOF}_5]^{11+}(C_{4\nu}), \delta - [(\text{NH}_4)_{14}\text{TiOF}_5]^{11+}(C_{2\nu}),$ $s - [K_{14}\text{TiOF}_5]^{11+}(C_s)$ (локальный минимум), $z - [(\text{NH}_4)_{16}(\text{TiOF}_5)_3]^{7+}$

В литературе [8] отмечено, что фтороэльпасолиты при уменьшении температуры претерпевают структурный ФП с понижением симметрии из кубической в тетрагональную и далее в моноклинную фазу. Для исследования структурных изменений изучаемых соединений при ФП были измерены колебательные спектры в интервале температур от 300 до 80 К (см. рис. 1, a—c). Для Rb₂KTiOF₅ обнаружено, что температура перехода в тетрагональную фазу составляет 163±2 К. Для (NH₄)₃TiOF₅ температура ФП 264 К была определенна ранее калориметрическими методами [9] и полностью согласуется с наблюдаемыми изменениями в колебательных спектрах. Возникновение в измеренных колебательных спектрах дополнительных линий и появление позиционного расщепления полос свидетельствует о структурных перестройках исследуемых соединений ниже точки ФП. Также наблюдается затормаживание динамических процессов, что выражается в уменьшении полуширины линий. Наличие сложных динамических процессов в исследуемом температурном диапазоне подтверждено ранее проведенными ЯМР ¹⁹F и ¹H исследованиями в [10].

В [11] представлен возможный механизм перестройки структуры соединений со структурой эльпасолита Rb_2KCrF_6 , Rb_2KGaF_6 при ФП из кубической в тетрагональную фазу. Предложенный механизм перехода состоит в развороте одного из каждых пяти октаэдрических анионов в кубической структуре на 45°, что приводит к изменению координации катионов калия.

Для исследования подобного механизма ФП были рассчитаны полные энергии кластеров $[K_{14}TiOF_5]^{11+}$, $[(NH_4)_{14}TiOF_5]^{11+}$ при развороте центрального аниона $[TiOF_5]^{3-}$ вокруг оси F—Ti—F. В этих расчетах положение внешнесферных катионов закреплялось в кристаллографических положениях, а геометрию комплексного аниона оптимизировали в каждой точке с наложением ограничения на угол поворота связи Ti—O. Пример такого кластера приведен на рис. 2, *в*. На рис. 3 представлена зависимость полученной энергии от угла разворота комплекс-

Рис. 3. Изменение энергии кластера [K₁₄TiOF₅]¹¹⁺ при развороте оксофтортитанатной группировки

Рис. 4. Спектры соединения (NH₄)₃TiOF₅ в области внутренних колебаний аммонийных групп: *а* — ИК, *б* — КР

ного аниона для кластера [K₁₄TiOF₅]¹¹⁺. Видно, что в области 13° существует минимум полной энергии. Барьер подобного врашения не превосходит 20 кДж/моль и допускает возможность реализации в структуре соединения $(NH_4)_3 TiOF_5$ динамических процессов, связанных с вращением оксофторотитанатных группировок при комнатной температуре. Наличие такого минимума связано с образованием максимального перекрывания атомных орбиталей кислорода с внешнесферными катионами. Рассчитанные по Малликену эффективные заряды лигандов указывают на то, что атом кислорода обладает наибольшим отрицательным зарядом ($Q_0 =$ = -0,70е в $C_{4\nu}$ и -0,72е в C_s , $Q_{F'}$ = -0,63е в $C_{4\nu}$ и -0,64е в C_s , $Q_{F_{3KB}}$ = -0,61е в обеих конфигурациях), и поворот комплексного аниона приводит к координации кислородного лиганда к наиболее положительно заряженным участкам катионного окружения. Действительно, анализ малликеновских заселенностей связей лиганд-калий показывает, что суммарная заселенность связей О-К при повороте увеличивается с 0,106 до 0,145е. В то же время суммарная заселенность связей F'—К и F—К (на один атом фтора) практически не изменяется (с 0,085 до 0,087e и с 0,081 до 0,079е соответственно). Результаты расчетов позволяют предположить, что наиболее вероятный механизм ФП с понижением симметрии в исследуемых соединениях связан с поворотом комплексного аниона до обнаруженного минимума полной энергии. При комнатной температуре, по-видимому, осуществляется прецессия оксофтортитанатного иона с углом отклонения 10—15°, что косвенно подтверждается видом карты электронной плотности кристалла (NH₄)₃TiOF₅ [2].

Расчет колебательного спектра для кластера [(NH₄)₁₄TiOF₅]¹¹⁺ ($C_{2\nu}$) в наиболее симметричном положении показал наличие мнимых частот, что также свидетельствует о неустойчивости наиболее симметричной конфигурации. Найденные мнимые частоты соответствуют колебанию оксофтортитанатной группировки, совпадающему по направлению с моделируемым вращени-ем (см. рис. 2, β).

Предложенная динамическая модель позволяет объяснить некоторые особенности изменения колебательных спектров исследуемых соединений при понижении температуры. Так, для соединения (NH₄)₃TiOF₅ отдельно стоящая полоса валентного колебания v(TiO) симметрии A1 871 см⁻¹ (см. рис. 1, *в*, *г*) в непосредственной близости от ФП линейно изменяет свое спектральное положение в низкочастотную область, что можно связать с восстановлением связей атома кислорода с катионами. В точке ФП 264 К линия расщепляется на две компоненты. При дальнейшем охлаждении каждая из компонент образовавшегося дублета продолжает сдвигаться по частоте и сужаться. Такие изменения спектра при ФП можно связать с процессами замедления динамических процессов и постепенным увеличением времени жизни конфигураций с различным катионным окружением, как, например, кластеры, показанные на рис. 2, *а* и *в*. Возникновение дополнительной линии в спектре симметрии *A*1 при охлаждении было замечено ранее для соединения Rb₂KFeF₆ в [12], но ее происхождение было приписано резонансу Ферми.

Область, ответственная за колебания атомов фтора в экваториальной плоскости, также обнаруживает подобные изменения (см. рис. 1). После ФП форма полосы в ИК спектре значительно усложняется, разделение пиков на составляющие показывает, что в этой области находится не менее четырех линий, что также можно связать с изменением положения оксофтортитанатного иона в катионном окружении. В области деформационных колебаний для изучаемых соединений при понижении температуры также наблюдается усложнение контуров полос.

На рис. 4 приведены колебательные спектры $(NH_4)_3 TiOF_5$ в области внутренних колебаний ионов аммония. Видно, что при понижении температуры серьезных изменений в форме и ширине полос в этих спектрах не происходит. Вероятно, до 80 К катионы аммония остаются динамически подвижны и ориентационно неупорядочены в структуре, о чем свидетельствует большая ширина линий их внутренних колебаний. Ионы аммония при комнатной температуре совершают неупорядоченные "перескоки" с изменением положения центра масс по равновероятным положениям, что соответствует данным рентгеноструктурного анализа [2] и ЯМР ¹Н [10]. В результате таких "перескоков" ионы аммония приобретают форму почти правильного тетраэдра с мгновенной симметрией, близкой к T_d [13]. Ниже точки ФП можно заметить появление дополнительной слабой полосы в области 3330 см⁻¹, связанной, предположительно, с влиянием решетки в результате частичного упорядочивания ионов аммония [13].

Необходимо отметить, что в КР спектре соединения $(NH_4)_3 TiOF_5$ после ФП появляется пирокая полоса в области 190—200 см⁻¹. С понижением температуры ее полуширина уменьшается, а интенсивность возрастает (см. рис. 1, *г*). Исходя из того, что в спектре Rb₂KTiOF₅ подобной полосы не обнаружено, можно предположить, что она соответствует решеточным колебаниям ионов аммония. Для проверки этого предположения был произведен расчет колебательного спектра тройного кластера $[(NH_4)_{16}(TiOF_5)_3]^{7-}$ (см. рис. 2, *г*). В этом расчете, помимо оптимизации геометрии комплексных анионов $[TiOF_5]^{3-}$, проведена оптимизация геометрии и положения катионов $[NH_4]^+$, находящихся между комплексными анионами. В рассчитанных для этого кластера колебательных спектрах присутствует интенсивная линия при 201 см⁻¹, соответствующая решеточным симметричным колебаниям катионов аммония, а также мнимая частота, связанная с вращением $[NH_4]^+$. При 80 К полосы, ответственные за колебания аммония, хорошо очерчены, но имеют значительную полуширину, что позволяет сделать вывод о сохранении реориентаций катионов. Полное упорядочивание протонной подсистемы происходит при значительно более низких температурах [14]. При температуре 80 К начинается раздваивание линий, что большинство исследователей связывают с удвоением элементарной ячейки [14].

Таким образом, выполненное исследование, а также литературные данные [2, 10, 11] позволяют сделать следующие выводы.

При комнатной температуре в результате динамических процессов в решетке (быстрая прецессия анионов $[\text{TiOF}_5]^{3-}$ и реориентации аммонийных групп) колебательный спектр соединения (NH₄)₃TiOF₅ может быть описан, исходя из симметрии элементарной ячейки $C_{4\nu}$. При этом отдельные полосы имеют значительную ширину. Позиционного расщепления полос не наблюдается.

При понижении температуры в оксофтороэльпасолитах происходит ФП с понижением симметрии из кубической в тетрагональную и далее в моноклинную фазу. Механизм ФП может быть связан с поворотом комплексного аниона. Показано, что барьер такого вращения в оксофторотитанате аммония не превышает 20 кДж/моль, а на поверхности потенциальной энергии присутствует локальный минимум, соответствующий конфигурации с пониженной симметрией. Затормаживание динамических процессов при ФП приводит к увеличению времени жизни оксофторотитанатных группировок в состояниях рассчитанных локальных минимумов, что, в свою очередь, приводит к усложнению контуров полос внутренних колебаний группировки [TiOF₅]³⁻, появлению позиционного расщепления и уменьшению их ширины в экспериментальных спектрах. В области 190—200 см⁻¹ появляется широкая полоса, соответствующая симметричым решеточным колебаниям ионов аммония.

При 80 К в решетке исследуемых соединений еще продолжаются динамические процессы, связанные с реориентацией аммонийных группировок. Линии, ответственные за внутренние колебания ионов аммония, остаются широкими без тонкой структуры и отвечают тетраэдрической группировке, что свидетельствует о сохранении реориентаций катионов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Laptash N.M., Maslennikova I.G., Kaidalova T.A. // J. Fluor. Chem. 1999. 99. P. 133 137.
- 2. Udovenko A.A., Laptash N.M., Maslennikova I.G. // Ibid. 2003. 124. P. 5 15.
- 3. Войт Е.И., Войт А.В., Машковский А.А. и др. // Журн. структур. химии. 2006. **47**, № 4. С. 661 669.
- 4. Dehnicke K., Pausewang G., Rüdorf W. // Z. Anorg. Allg. Chem. 1969. 366B. S. 64 72.
- 5. Fouad M., Chaminade J.P., Ravez J., Hagenmuller P. // Rev. Chim. Miner. 1987. 24. P. 1 9.
- 6. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. 14. P. 1347 1363.
- 7. Stevens W.J., Basch H., Krauss M., Jasien P. // Canad. J. Chem. 1992. 70. P. 612 630.
- 8. Флеров И.Н., Горев М.В. // Физика тверд. тела. 2001. 43, № 1. С. 124 131.
- 9. Флеров И.Н., Горев М.В., Фокина В.Д. и др. // Там же. 2004. 46, № 5. С. 888 894.
- Tkachenko I.A., Kavun V.Ya, Laptash N.M. // Internat. Symp. Summer School in S.-Petersburg "Nuclear Magnetic Resonance in Condensed Matter" 9–13 July, 2006. – P. 113.
- 11. Zuniga F.J., Tressaud A., Darriet J. // J. Solid State Chem. 2006. 179. P. 3682 3689.
- 12. Couzi M., Khairoun S., Tressaud A. // Phys. Stat. Solidi. 1986. 98A. P. 423 429.
- Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. N. Y.: John Wiley & Sons, 1977.
- 14. *Ванькевич А.В., Попков Ю.А., Таранова И.А. //* Физика низких температур. 2001 **27**, № 1. С. 80 89.