УДК 546.05; 54-31; 544.016.2

Влияние механической активации на синтез феррониобата свинца

А. А. ГУСЕВ¹, И. П. РАЕВСКИЙ², Е. Г. АВВАКУМОВ¹, В. П. ИСУПОВ¹

¹Институт химии твердого тела и механохимии Сибирского отделения РАН, ул. Кутателадзе, 18, Новосибирск 630128 (Россия)

E-mail: gusev@solid.nsc.ru

²Научно-исследовательский институт физики Южного федерального университета, проспект Стачки, 194, Ростов-на-Дону 344090 (Россия)

E-mail: igorraevsky@gmail.com

Аннотация

С целью выбора оптимальных составов, условий механической активации и последующей термической обработки исследован синтез феррониобата свинца из оксидов свинца, железа и ниобия, взятых в стехиометрическом соотношении. Процесс осуществлен в присутствии избытка оксида свинца для предотвращения отклонения от стехиометрии керамики, полученной после спекания. Прослежено изменение фазового состава смесей в ходе механической активации и последующей термической обработки. Показано, что по структуре и свойствам наиболее привлекателен феррониобат свинца, полученный при некотором избытке оксида свинца по отношению к стехиометрическому составу. Установлено, что с помощью механоактивации можно в широких пределах изменять температуру магнитного фазового перехода для порошков и керамики феррониобата свинца.

Ключевые слова: феррониобат свинца, термический синтез из оксидов железа, ниобия и свинца с применением механической активации

введение

 Φ еррониобат свинца PbFe_{0.5}Nb_{0.5}O₃ (PFN) имет кристаллическую структуру перовскита кислородно-октаэдрического типа, которая сложена из октаэдров NbO₆. Он относится к семейству сегнетомагнетиков или мультиферроиков, поскольку обладает как сегнетоэлектрическими, так и магнитными свойствами [1-3]. Такие материалы могут применяться, например, для изготовления многослойных керамических конденсаторов, пьезоэлектрических и пироэлектрических датчиков, многослойных микроволновых резонаторов и фильтров, сенсоров, актюаторов, индукторов, а также элементов памяти, запись на которые осуществляется электрическим полем, а считывание магнитным полем [2-6]. Феррониобат свинца получают в виде монокристаллов

© Гусев А. А., Раевский И. П., Аввакумов Е. Г., Исупов В. П.

[7], тонких пленок [8], в аморфном состоянии [9], однако наибольший практический интерес представляют поликристаллические керамические материалы, полученные спеканием исходных оксидов [4-7, 10, 11].

По классической технологии синтез образцов осуществляется методом твердофазных реакций из оксидов PbO, Fe_2O_3 и Nb_2O_5 отжигом в две стадии, с промежуточным помолом, при температурах 800–900 °C и времени выдержки 4 ч [10, 11]. Спекание керамических заготовок обычно проводят при 1080–1120 °C в течение 2–4 ч [10, 11].

Длительность процесса синтеза и его трудоемкость обусловили поиск и разработку новых методов синтеза материалов на основе PFN, в том числе механохимического метода [12–14], основанного на использовании высокоэнергетического измельчения. В данной работе нами исследован механизм механохимического метода синтеза феррониобата свинца с использованием высокоэнергонапряженной планетарно-центробежной мельницы АГО-2 [15], последующего прессования и отжига синтезированных порошков.

Известно, что при спекании свинецсодержащей керамики из-за большого давления паров свинца и его оксидов часть свинца улетучивается. С целью компенсировать эти потери на стадии механической активации вводили избыток свинца и исследовали влияние его содержания на формирование структуры феррониобата свинца Pb(Fe_{0.5}Nb_{0.5})O₃ в ходе синтеза.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных реагентов для синтеза указанного материала использованы следующие реактивы: оксид ниобия Nb_2O_5 (номера карточек 16-53, 37-1468, даны в соответствии с картотекой the American Society for Testing Materials, ASTM) моноклинной модификации, с пр. гр. *P2*, квалификации "ос. ч."; гематит Fe₂O₃ (85-599) ромбоэдрической модификации, пр. гр. *R3C*, квалификации "ч. д. а."; массикот PbO (72-93) орторомбической модификации, пр. гр. *Pbcm*, квалификации "ч. д. а." с примесью Pb₃O₄ (41-1493) тетрагональной модификации, пр. гр. *P42/mbc*.

Исходные смеси порошков активировали с использованием планетарно-центробежной мельницы-активатора АГО-2 с ускорением шаров 40g в течение 3-25 мин. В качестве мелющих тел использованы стальные шары диаметром 8 мм; масса шаров составляла 200 г, масса образца – 10 г. Через каждые 5 мин активации барабаны открывали, порошок высыпали, перемешивали, затем возвращали его в барабаны для продолжения механической активации. Из механически активированных порошков прессовались образцы в виде таблеток диаметром 10 мм и толщиной примерно 2 мм. Образцы прессовались на гидравлическом прессе с усилием 10 т/см².

Рентгенофазовый анализ исходных реагентов, образующихся продуктов активации смеси до и после термической обработки проводили методом порошковой дифракции с использованием дифрактометра ДРОН-3, (Си K_{α} -излучение, схема фокусировки по Брэгту – Брентано). Массу образцов определяли с помощью весов UW 220H (фирма Shimadzu, Япония), точность определения 0.001 г; геометрические размеры – с помощью микрометра, точность 0.001 мм. После прессования образцы помещали в тигель с засыпкой из оксида алюминия и отжигали в интервале температур 400–1100 °С. Скорость нагрева образцов до 600 °С составляла 20 °С/ мин, а от 600 °С и выше – 10 °С/мин. При всех заданных температурах образцы отжигались в течение 2 ч. Охлаждение образцов проходило вместе с печью после ее выключения.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Синтез из смеси оксидов свинца, железа и ниобия

В данной серии опытов (серия А) использована смесь трех оксидов – свинца, железа и ниобия – на стехиометрический состав феррониобата свинца Pb(Fe_{0.5}Nb_{0.5})O₃. На дифрактограмме образца после 15 мин его активации наряду с рефлексами, соответствующими образованию структуры феррониобата свинца, также имеются рефлексы непрореагировавшего оксида железа. Далее полученный порошок спрессовали в таблетки и подвергли отжигу. Видно (рис. 1, кривая 1), что уже после отжига при 500 °С начинает пре-

Рис. 1. Дифрактограммы образцов после отжига при температурах 500 (1) и 1000 °С (2, 3) и дальнейшей шлифовки (3).

обладать фаза Pb₂Fe₄Nb₄O₂₁ (50-445, Fd3m, рентгеновская плотность $D_{\rm X} = 7.567$ г/см³) со структурой пирохлора. Эта фаза изоструктурна пирониобату свинца со структурой дефицитного пирохлора Pb₃Nb₄O₁₃ (23-322, Fd3m, $D_{\rm X} = 6.766$ г/см³). С повышением температуры отжига количество этой фазы начинает заметно уменьшаться, однако после отжига при 1000 °C эта фаза преобладает (см. рис. 1, кривая 2), также фиксируются небольшие рефлексы фазы кубического феррониобата свинца Pb(Fe_{0.5}Nb_{0.5})O₃ (32-522), Pm3m, D_X = 8.456 г/см³). Фаза Pb₂Fe₄Nb₄O₂₁ формируется преимущественно на поверхности спеченного образца. Однако даже после шлифовки (см. рис. 1, кривая 3) это не чистый $Pb(Fe_{0.5}Nb_{0.5})O_3$, а с заметной примесью Pb₂Fe₄Nb₄O₂₁, т. е. в этих образцах наблюдается явный дефицит оксида свинца.

Синтез феррониобата свинца из смеси предварительно синтезированного ниобата железа и оксида свинца

Смесь оксидов железа и ниобия на состав FeNbO₄ (серия Б) активирована в течение 15 мин, затем спрессована в таблетку и подвергнута отжигу при температуре 1000 °С. По данным РФА, образуется ниобат железа FeNbO₄ моноклинной модификации с пр. гр. *P**/*a*. Далее спеченный ниобат железа растирали и смешивали с оксидом свинца β-PbO в расчете на реакцию FeNbO₄ + 2PbO = 2(PbFe_{0.5}Nb_{0.5}O₃)

Рис. 2. Дифрактограммы образцов: 1 – после механической активации смеси ниобата железа и оксида свинца в течение 15 мин; 2, 3 – отожженный при 1000 °С и затем отшлифованный соответственно; 4, 5 – отожженный при 1100 °С и затем отшлифованный соответственно.

Затем данную смесь активировали в мельнице в течение 15 мин.

Из данных рис. 2 следует, что в результате механической активации начинает образовываться почти монофазный феррониобат свинца кубической модификации (кривая 1). Затем спрессованные из полученного материала образцы отжигали в широком интервале температур. Из данных РФА следует, что до температуры 700 °С формируется двухфазная система, в составе которой преобладает фаза со структурой перовскита, в небольшом количестве присутствует фаза

ТАБЛИЦА 1

Параметры решетки, размеры и микродеформации блоков когерентного рассеяния, плотность образцов (серия Б), полученных после активации в течение 15 мин

Температура отжига, °С	Параметр решетки a, Å	Размер, нм	Микродеформации, %	Плотность, г/см ³
_	4.011	13	0.35	_
400	4.022	14	0.1	6.06
500	4.017	15	0.2	6.20
700	4.001	38	0.09	6.14
800	4.004	43	0.07	6.64
900	4.005	41	0.1	7.48
1000	4.004	46	0.09	8.04
1000*	4.009	26	0.13	8.04
1100*	4.010	28	0.08	7.59

* Дифрактограммы образцов сняты со шлифованной поверхности.

пирохлора. Беспримесный феррониобат свинца образуется уже при 750 °C. Однако на поверхности образцов, отожженных при 1000 °С, появляется фаза магнетоплюмбита PbFe₁₂O₁₉ (84-2046) гексагональной модификации Р63/ттс, (см. рис. 2, кривая 2). Ее образование начинается при температуре почти 900 °C, и с повышением температуры спекания количество этой фазы возрастает, образец обедняется свинцом. Однако эта фаза также формируется только на поверхности спеченного образца. После сошлифовки поверхностного слоя толщиной 0.05-0.1 мм следы этой фазы на дифрактограммах не обнаружены (рис. 2, кривая 3). Аналогичная картина наблюдается и на дифрактограммах образца, отожженного при 1100 °С (см. рис. 2, кривые 4, 5). В табл. 1 приведены данные о параметрах решетки, размерах и микродеформации блоков когерентного рассеяния, плотности образцов, полученные для данной серии опытов. В случае температур отжига 1000 и 1100 °C дифрактограммы сняты со шлифованной поверхности образцов.

Образцы серии Б, отожженные при 1000 °С, характеризуются максимальной плотностью – 8.04 г/см³, что соответствует 95 % от рентгеновской плотности. Образы серии А менее плотные, их максимальная плотность при спекании 1000 °С достигает 7.57 г/см³. Изменение плотности при температурах от 400 до 800 °С можно объяснить тем, что в этом интервале идет синтез одновременно двух фаз (рис. 3). Одна имеет структуру перовскита с рентгеновской плотностью $D_{\rm X} = 8.456$ г/см³ (номер карточки 32-522), другая – структуру пирохлора с плотностью 6.766 г/см³ (23-322).

Влияние избытка оксида свинца и способа его введения в смесь на формирование структуры феррониобата свинца Pb(Fe_{0.5}Nb_{0.5})O₃

Поскольку при синтезе феррониобата свинца стадии спекания избежать не удается, необходимо исследовать влияние на данный процесс избытка оксида свинца, вводимого на стадии механической активации, с целью установить его оптимальное количество. Нами проведены эксперименты с избытком свинца от стехиометрии в количестве 10, 7 и 3 мас. %.

Механическая активация смеси трех оксидов, содержащей 10 мас. % избытка свинца, проводилась в течение 3, 6, 9, 12, 15 и 25 мин (серия В). Видно (рис. 4), что процесс аморфизации и начальная стадия образования перовскитной структуры феррониобата свинца протекают медленнее, чем в случае, когда исходные компоненты взяты в стехиометрическом соотношении. Вероятно, избыток оксида свинца, "мягкого" по сравнению с окси-

Рис. 3. Плотность образцов в зависимости от температуры спекания: 1 – спекание после механической активации трех оксидов (серия А); 2 – спекание после механической активации ранее синтезированного ниобата железа с добавлением оксида свинца (серия Б).

Рис. 4. Дифрактограммы образцов после механической активации в течение 3 мин (1), 6 (2), 9 (3), 12 (4), 15 (5) и 25 мин (6).

Рис. 5. Дифрактограммы образцов: 1 — после механической активации в течение 15 мин; 2-4 — после отжига при 800 (2), 1000 (3) и 1100 °С (4); 5 — шлифованный после отжига при 1100 °С.

дами железа и ниобия, снижает эффективность химического взаимодействия компонентов и образования Pb(Fe_{0.5}Nb_{0.5})O₃.

На рис. 5 представлена дифрактограмма исходной смеси после 15 мин активации (кривая 1). Видно, что процесс образования перовскитной структуры феррониобата свинца начинается с момента, когда исходные продукты перемешаны и частично аморфизованы. На рис. 5, кривая 2 представлена дифрактограмма образца после отжига при 600 °С. Видно, что наряду с формированием феррониобата свинца образуются соединения Pb₂Fe₄Nb₄O₂₁, причем количество этой фазы заметно преобладает. После отжига при 800 °С получается чистый феррониобат свинца Рb(Fe_{0.5}Nb_{0.5})O₃, как и после отжига при 1000 °С (см. рис. 5, кривая 3). Ранее, при стехиометрическом содержании оксида свинца в смеси, на поверхности образцов при температуре отжига 1000 °С формировалась фаза РbFe₁₂O₁₉. В случае отжига при 1100 °С на поверхности образца вновь образуется фаза Pb₂Fe₄Nb₄O₂₁ с небольшим количеством PbFe₁₂O₁₉ (см. рис. 5, кривая 4), а основные рефлексы феррониобата свинца лишь незначительно превышают уровень фона. Однако, как и в предыдущих случаях, это поверхностная фаза. После шлифовки образца на 0.07 мм (см. рис. 5, кривая 5) снова обнаруживается фаза феррониобата свинца без посторонних примесей.

При активации шихты в течение 25 мин получены аналогичные данные. Однако образцы из активированной в течение 15 мин шихты и спеченные при 1000 °С получаются более плотными, нежели образцы, полученные из шихты, активированной в течение 25 мин: плотность равна 7.7 и 7.55 г/см³ соответственно. Таким образом, продолжительность механической активации смеси в 15 мин можно считать оптимальной.

Исследование синтеза и спекания образцов трех оксидов с избытком оксида свинца от стехиометрии в количестве 7 мас. % показало, что все процессы протекают аналогично синтезу с избытком оксида свинца от стехиометрии в количестве 10 мас. %.

В следующей серии опытов (серия Г) изучено влияние способа введения оксида свинца в стехиометрическую смесь. В предварительно активированную в течение 15 мин и отожженную при 1000 °С стехиометрическую смесь был добавлен избыток оксида свинца (7 мас. %), затем смесь тщательно перемешивалась. После прессования и отжига установлено, что уже при температуре 700 °С образуется фаза феррониобата свинца с небольшой примесью фазы $Pb_2Fe_4Nb_4O_{21}$. На дифрактограммах отожженного при 1000 °С образца и после его шлифовки интенсивность рефлексов примесной фазы соизмерима с уровнем

Рис. 6. Дифрактограммы образцов: 1, 2 – после механической активации в течение 10 и 15 мин соответственно; 3, 4 – после отжига при 500 и 600 °С соответственно.

Рис. 7. Дифрактограммы образцов после отжига при 800 (1) 1000 °C (2, 3) и дальнейшей шлифовки (3).

фона. Максимальная плотность полученных в этих опытах образцов составляет 7.54 г/см³.

В другой серии экспериментов (Д) после механической активации смеси оксидов в барабаны добавили оксид свинца и продолжили процесс активации. Оксид свинца был взят в избытке от стехиометрического соотношения в количестве 3 мас. %. На дифрактограммах данной смеси после 10 мин активации (рис. 6, кривая 1) только намечаются рефлексы, соответствующие зарождению фазы феррониобата свинца, и фиксируются рефлексы не прореагировавших оксида железа и оксида свинца, хотя и сильно аморфизованных.

После 15 мин механической активации появляются все рефлексы Pb(Fe_{0.5} Nb_{0.5})O₃, наряду с рефлексами оксидов железа и свинца. Идет образование твердого раствора на ос-

Рис. 8. Зависимости от температуры отжига $T_{\rm a}$ среднего размера блоков когерентного рассеяния D и температуры магнитного фазового перехода $T_{\rm N}$ для стехиометрической смеси PbO + FeNbO₄, активированной в течение 15 мин. Штриховой линией отмечено значение $T_{\rm N}$ для монокристалла PFN.

нове оксида ниобия (см. рис. 6, кривые 1, 2). Отжиг образцов при 500 °С приводит к тому, что помимо феррониобата свинца образуется также кубическая фаза $Pb_2Fe_4Nb_4O_{21}$. Количество ее после отжига при 600 °С (см. рис. 6, кривые 3, 4) довольно значительно, однако с увеличением температуры оно быстро уменьшается, а после отжига при 800 °С получается чистый феррониобат свинца без следов примесей других фаз (рис. 7, кривая 1). После спекания при температуре 1000 °С на поверхности данных образцов образуется фаза $PbFe_{12}O_{19}$ (см. рис. 7, кривая 2), которая может быть удалена шлифовкой поверхности (см. рис. 7, кривая 3).

Таким образом, в данном эксперименте нами получен феррониобат свинца с максимальной плотностью 8.05 г/см³ (95.6 % от рентгеновской

ТАБЛИЦА 2

Параметры решетки, размеры и микродеформации блоков когерентного рассеяния, плотности образцов (серия Д), продолжительность активации 15 мин

Температура отжига, °С	Параметр решетки a, Å	Размер, нм	Микродеформации, %	Плотность, г/см ³		
_	4.020	11	0.64	-		
500	4.013	4	0.25	6.49		
600	4.005	25	0.11	6.62		
800	4.008	35	0.12	6.73		
1000	4.004	76	0.21	8.01		
1000	4.006	27	0.13	8.01		
1000*	4.003	44	0.09	8.05		
1000*	4.006	26	0.13	8.05		

* Дифрактограммы образцов сняты со шлифованной поверхности.

плотности), и при этом исключена довольно трудоемкая операция предварительного спекания промежуточной фазы ниобата железа. Следовательно, для получения качественной керамики феррониобата свинца достаточно ввести 3 мас. % оксида свинца на стадии механической активации смесей.

В табл. 2 представлены данные о параметрах решетки, размерах и микродеформации блоков когерентного рассеяния, плотности образцов, полученные для данной серии опытов.

Механическая активация и последующий отжиг влияют на магнитные свойства PFN. На рис. 8 показаны зависимости от температуры отжига T_a среднего размера блоков когерентного рассеяния D и температуры магнитного фазового перехода T_N для стехиометрической смеси PbO и FeNbO₄, активированной в течение 15 мин. Значения T_N определялись с помощью экспресс-измерений мессбауэровских спектров при различных температурах.

ЗАКЛЮЧЕНИЕ

В данной работе с целью выбора оптимальных составов и условий механической активации и последующей термической обработки исследован синтез феррониобата свинца из оксидов свинца, железа и ниобия, взятых в стехиометрическом соотношении, а также в присутствии избытка оксида свинца, добавленного для предотвращения отклонения от стехиометрии полученной после спекания керамики. Прослежено изменение фазового состава смесей в ходе механической активации и последующей термической обработки. Представлены результаты расчетов параметров решетки, размеров и микродеформаций блоков когерентного рассеяния для серий опытов, в которых получена наиболее плотная керамика. Показано, что наиболее совершенен по структуре и свойствам феррониобат

свинца, полученный при избытке оксида свинца по отношению к стехиометрическому составу на уровне 3 мас. %. Установлено, что с помощью механоактивации можно в широких пределах изменять температуру магнитного фазового перехода в порошках и керамике феррониобата свинца.

Работа выполнена при финансовой поддержке РФФИ (проекты № 13-03-00869 a, 12-08-00887_a).

СПИСОК ЛИТЕРАТУРЫ

- 1 Eerenstein W., Mathur N. D., Scott J. F. // Nature. 2006. Vol. 442. P. 759.
- 2 Звездин А. К., Логинов А. С., Мешков Г. А., Пятаков А. П. // Изв. РАН. Сер. физ. 2007. Т. 71, № 1. С. 1604.
- 3 Scott J. F. // Nature Materials. 2007. Vol. 6. P. 256.
- 4 Боков А. А., Шпак Л. А., Раевский И. П. // Журн. техн. физики. 1993. Т. 63, № 7. С. 197.
- 5 Павелко А. А., Лутохин А. Г., Раевская С. И., Захаров Ю. Н., Малицкая М. А., Раевский И. П., Захарченко И. Н., Ситало Е. И., Корчагина Н. А., Кузнецов В. Г. // Изв. РАН. Сер. физ. 2010. Т. 74, № 8. С. 1154.
- 6 Sitalo E. I., Raevski I. P., Lutokhin A. G., Kubrin S. P., Raevskaya S. I., Zakharov Yu. N., Malitskaya M. A., Blazhevich A. V., Zakharchenko I. N. // Ferroelectrics. 2011. Vol. 419, No. 1–2. P. 76.
- 7 Laguta V. V., Glinchuk M. D., Матуљко М., Kuzian R. O., Prosandeev S. A., Raevskaya S. I., Smotrakov V. G., Eremkin V. V., Raevski I. P. // Phys. Rev. B. 2013. Vol. 87, No. 6. P. 8.
- 8 Gao X. S., Chen X. Y., Yin J., Wu J., Liu Z. G., Wang M. // J. Materials Sci. 2000. Vol. 35. P. 5421.
- 9 Коротков Л. Н., Кожухарь С. Н., Посметьев В. В., Уразов Д. В., Роговой Д. Ф., Бармин Ю. В., Кубрин С. П., Раевская С. И., Раевский И. П. // Журн. техн. физики. 2009. Т. 79, № 8. С. 62.
- 10 Raevski I. P., Kubrin S. P., Kovrigina S. A., Raevskaya S. I., Titov V. V., Emelyanov A. S., Malitskaya M. A., Zakharchenko I. N. // Ferroelectrics. 2010. Vol. 397. P. 96.
- 11 Singh K., Band S. A., Kinge W. K. // Ferroelectrics. 2004. Vol. 306. P. 179.
- 12 Стрелецкий А. Н., Борунова А. Б., Козина Н. П., Лапшин В. И., Релушко П. Ф. Механохимический синтез в неорганической химии: Сб. статей СО АН СССР / Под ред. Е. Г. Аввакумова. Новосибирск: Наука, 1991. С. 66.
- 13 Gao X. S., Xue J. M., Wang J., Yu T. and Shen Z. X. // J. Am. Ceram. Soc. 2002. Vol. 85, No. 3. P. 565.
- 14 Bochenek D., Dercz G., Oleszak D. // Archives of Metallurgy and Materials. 2011. Vol. 56, No. 4. P. 1015.
- 15 Пат. 975068 В 02С 17/08 РФ, 1982.