УДК 532. 517

Нестационарная газовая завеса при воздействии неоднородного колеблющегося потока

Т.Ю. Измоденова¹, Н.Н. Кортиков², Н.Б. Кузнецов¹

¹ОАО "Климов", Санкт–Петербург

²Санкт–Петербургский государственный политехнический университет

E-mail: tizm@mail.ru, n-kortikov@yandex.ru

Рассмотрено влияние колебаний основного потока на эффективность нестационарной газовой завесы. Подтверждена возможность применения критического значения модифицированного критерия Струхаля для однорядной перфорации при идентификации квазистационарного режима в случае двухрядной перфорации. Отмечено проникновение возмущений внутрь каналов перфорации, что связано с эффектом "вантуза". Показано, что влияние нестационарности на эффективность завесы проявляется слабее для двухрядной перфорации по сравнению с однорядной.

Ключевые слова: нестационарная завеса, эффективность охлаждения, колебания основного потока, число Струхаля.

введение

Нестационарное изменение параметров набегающего потока (давления, температуры, скорости) приводит к изменению работы системы пленочного охлаждения рабочих лопаток газотурбинных двигателей [1]. В частности, это может выразиться в прорыве горячих газов через систему отверстий перфорации во внутреннюю полость рабочей лопатки [2]. При анализе нестационарных турбулентных потоков необходимо выделить две области возможных частот колебаний: низкочастотные и высокочастотные [3]. К низкочастотным колебаниям относятся колебания, частота которых много меньше, чем основная (или низшая) частота турбулентных пульсаций. К высокочастотным колебаниям следует отнести колебания, частота которых соизмерима или больше основной частоты турбулентных пульсаций.

Эксперименты работы [4], проведенные на струях в условиях акустических воздействий в диапазоне чисел Рейнольдса $\text{Re} = 6,5 \cdot 10^3 - 5,2 \cdot 10^6$, показывают, что низкочастотные акустические сигналы приводят к увеличению интенсивности турбулентности и к расширению струи; высокочастотные сигналы уменьшают интенсивность турбулентности и перемешивание жидкости.

В работах [5, 6] отмечается важность учета воздействия колебаний давления и скорости в основном потоке на развитие завесы за однорядной перфорацией,

© Измоденова Т.Ю., Кортиков Н.Н., Кузнецов Н.Б., 2008

которое проявляется, в частности, в уменьшении эффективности охлаждения. Показано, что влияние нестационарности на характеристики завесы определяется значением числа Струхаля Sh, критическая величина Sh_{кр} которого находится

в интервале 0,055-0,07.

Отмеченные изменения параметров нестационарной газовой завесы по сравнению со стационарным случаем указывают на необходимость более детального анализа эффективности пленочного охлаждения при воздействии неоднородного колеблющегося потока, что является целью работы.

постановка задачи и вычислительные аспекты

Анализ воздействия поперечных колебаний основного потока на развитие завесы на пластине осуществлялся с помощью системы трехмерных уравнений Навье–Стокса и энергии, осредненных по Рейнольдсу. На входе в расчетную область задавалась эпюра полного давления (рис. 1, a), которая получена в следе за неподвижным цилиндром (рис. 1, b). Падение полного давления в следе относительно среднемассового по абсолютной величине достигает 2,4 %, а относительно максимального — 2,8 %.

Эпюра полного давления размещена на расстоянии 21,3*d* (64 мм) до выхода завесы на пластину (рис. 2). Помимо традиционных параметров, используемых для анализа газовой завесы, таких как скорость на входе в основной канал U_1 , диаметр отверстия перфорации *d*, степень турбулентности *Tu*, безразмерная толщина потери импульса δ^{**}/d , параметр вдува $M = (\rho_2 U_2)/(\rho_1 U_1)$, относительная длина каналов перфорации *l/d* и отношение плотностей ρ_2/ρ_1 , можно выделить другие параметры. К ним, в частности, относятся безразмерный диаметр цилиндра D/d,

который характеризует влияние следовой неравномерности в основном потоке на развитие завесы (D — диаметр цилиндра), и отношение D/H (где H — высота канала), определяющее стесненность основного потока.

Рис. 1. Эпюра полного давления с провалом значений в области следа (*a*), развитие следа для стационарного решения (*b*).

Рис. 2. Геометрия расчетной области.

Колебание основного потока, вызванное периодическим перемещением цилиндра поперек канала с частотой f = 1/T, где T — период колебаний, характеризуется либо числом Струхаля охладителя $\operatorname{Sh}_{c} = \frac{2\pi fl}{U_{2}}$, либо модифицированным

числом Струхаля [5, 6] Sh = Sh_c / $\left[M^{0,6} \left(\rho_2 / \rho_1 \right)^{2,0} \left(l / d \right)^{2,0} \right]$. Значения параметров

задачи задавались такие же, как в работе [7].

Расчеты проводились с использованием лицензионного пакета *STAR-CD* [9] на сетке с количеством ячеек 1755710, для двух вариантов, основные параметры которых представлены в таблице.

Таблица

N₂	$Tu_1, \%$	δ^{**}/d	М	l/d	$ ho_1/ ho_2$	D/d	D/H	Sh_{c}
1	5	0,08	0,466	6,7	0,9	3,6	9,3	5,12
2	20	0,13	0,415	6,7	0,9	3,6	9,3	5,75

Безразмерные параметры нестационарной газовой завесы

Масштаб турбулентности на входе в основной канал выбирался $L_1 = 5 \cdot 10^{-3}$ м, во вторичный канал — $L_2 = 3 \cdot 10^{-3}$ м. Для моделирования турбулентности использовалась анизотропная низкорейнольдсовая V2F модель Дурбина [9]. Для дискретизации системы уравнений применялся метод конечных объемов с использованием TVD-схемы MARS второго порядка точности.

Эффективность пленочного охлаждения вычислялась по формуле $\eta = (T_{l_{in}}^* - T_{w_i}^*)/(T_{l_{in}}^* - T_{2_{in}}^*)$, где $T_{l_{in}}^*, T_{2_{in}}^*$ — температуры торможения на входе в основной и вторичный каналы, $T_{w_i}^*$ — температура торможения на пластине.

РЕЗУЛЬТАТЫ РАСЧЕТА И ИХ АНАЛИЗ

На рис. 3 показаны колебания статического давления на стенке, вызванные колебанием потока газа со следовой неравномерностью. Колебания давления на стенке происходят с переменной во времени амплитудой, абсолютная величина

Рис. 3. Изменение во времени давления на защищаемой стенке при различных расстояниях от места выдува завесы.

x/d = −26,7 (на входе в расчетную область, 1), −5,3 (перед первым рядом отверстий, 2), 0,1 (3), 3,9 (4), 15,3 (5), 42,6 (6), 79,2 (7).

Рис. 4. Мгновенные значения осредненной по ширине пластины эффективности завесы.

Стационар (1), *t*/*T* = 3 (2), 4 (3), 4,9 (4), 6 (5).

которой не превышает 8–10 % относительно осредненного значения. Периодическое изменение давления на стенке и эффективности охлаж-

дения не является синусоидальным и имеет сложную форму, которая в общем случае может быть определена с помощью Фурье–анализа в виде набора синусоид (гармоник) с различными фазами, амплитудами и частотами. Однако начиная с третьего периода колебаний, можно отметить, что частота колебаний остается неизменной и практически равной частоте наложенных колебаний потока газа.

Распределение осредненной по ширине пластины эффективности охлаждения η в различные периоды времени представлено на рис. 4, где отмечается волновой характер перемещения экстремумов эффективности вдоль защищаемой поверхности пластины, который указывает на колебательный характер распространения возмущений в виде бегущей волны.

Картины течения в подводящем канале перфорации при отсутствии и наличии пульсирующего давления показаны на рис. 5, *a*, *b* соответственно.

Наложение гармонических колебаний приводит к выравниванию профиля скорости на срезе канала и, как следствие, к уменьшению размеров отрывной зоны в области, примыкающей к задней кромке отверстий перфорации (см. рис. 5, *b*). Это можно объяснить тем, что нестационарность способствует опережению слоев, расположенных вблизи оси канала, пристеночными слоями [8]. Это способствует увеличению параметра вдува с M = 0,39 (для стационарного случая) до $\overline{M} = 0,415$ (осредненного значения за четыре периода колебаний) для нестационарной завесы (табл., № 1 — высокочастотные колебания) и с M = 0,45 до $\overline{M} = 0,466$ (табл., № 2 — низкочастотные колебания).

Увеличение параметра вдува в колеблющемся потоке можно связать с эффектом 'вантуза', который способствует увеличению подачи расхода охладителя на защищаемую пластину, что приводит к повышению эффективности пленочного охлаждения вблизи отверстия перфорации при *x/d* < 5 (см. рис. 4).

Рис. 5. Поле скорости в плоскости симметрии. Стационарная завеса при M = 0,45 (*a*), нестационарная завеса при M = 0,506 в момент времени t = 6T (*b*).

Колебания основного потока проявляются по-разному для различных сечений завесы, в частности, вблизи места выдува завесы эти колебания способствуют увеличению эффективности охлаждения (не более 5 %) (рис. 6, *a*, *b*).

При $Tu_1 = 20$ % колебания основного потока вызывают уменьшение осредненной по времени и ширине пластины эффективности охлаждения $\overline{\eta}$ (см. рис. 6, *a*) в диапазоне $5 \le x/d \le 33$ по сравнению с эффективностью при отсутствии колебаний. На переходном участке падение эффективности охлаждения может достигать 20 %. На основном участке завесы влияние колебаний основного потока, вызванных периодическим поступательным движением цилиндра, на эффективность охлаждения завесы практически исчезает при $x/d \ge 33$.

При $Tu_1 = 5$ % гармонические колебания основного потока с числом Струхаля Sh_c = 5,12 приводят к увеличению эффективности охлаждения завесы на 25 % на основном участке (см. рис. 6, *b*) по сравнению со стационарным случаем.

Столь разный характер воздействия гармонических колебаний на величину эффективности охлаждения в зависимости от Tu_1 , по-видимому, связан с качественным изменением вида наложенных колебаний, а именно: переходом от низкочастотных ($Tu_1 = 20$ %) колебаний к высокочастотным ($Tu_1 = 5$ %). В этом случае изменение величины эффективности охлаждения можно увязать с эффектом из работы [4], авторы которой отмечают снижение уровня турбулентных пульсаций в струях при воздействии высокочастотных колебаний и соответствующее их повышение при наложении колебаний низких частот.

Обобщение результатов численного расчета настоящей работы и проверка их адекватности проводится путем сравнения с опытными данными из работ [5, 6], полученными для нестационарной завесы, испускаемой из однорядной перфорации. На рис. 7 представлены данные при одинаковом параметре вдува $\overline{M} = 0,4$ и l/d в интервале от 3,0 до 6,7.

Рис. 7. Поправка на нестационарность для завесы при $\overline{M} = 0.4$; Sh = 0.27 (1), расчет настоящей работы; расчет из работ [5, 6]: 0,18 (2), 0,33 (3), 0,44 (4).

Анализ опытных данных подтверждает волновой характер воздействия колебаний основного потока на завесу с однорядной перфорацией. Причем, максимальное снижение относительной эффективности $\varepsilon_{\rm Sh} = \left(\Delta \eta / \eta_{\rm crau} \right)_{\rm макс}$, где $\Delta \eta = \overline{\eta} - \eta_{\rm crau}$, увеличивается с увеличением числа Струхаля, которое превышает 70 % при Sh = 0,44.

На рис. 7 также отмечается, что двухрядность перфорации способствует снижению влияния нестационарности на развитие завесы. Для количественной оценки $\left(\Delta \eta / \eta_{\text{стац}}\right)_{\text{макс}}$ может быть предложено выражение:

$$\varepsilon_{\rm Sh} = C(\rm Sh - \rm Sh_{\scriptscriptstyle \rm KD})^{0,82} \cdot 100\%, \tag{1}$$

где Sh_{кр} = 0,055 и C = 1,55 для однорядной перфорации, C = 0,75 — для двухрядной перфорации.

ЗАКЛЮЧЕНИЕ

Влияние нестационарности в большей степени проявляется для однорядной перфорации (в два раза) при идентичных значениях параметра вдува и модифицированного числа Струхаля по сравнению с двухрядной перфорацией. Снижение эффективности (до 20 %) наблюдается для переходного участка газовой завесы в случае воздействия низкочастотного колебания. Возрастание эффективности охлаждения (до 25 %) может быть получено на основном участке завесы при наложении высокочастотного гармонического колебания.

Авторы благодарны профессору Терехову В.И. за предоставленные данные [5, 6], позволившие полнее осветить механизмы воздействия колеблющегося потока на развитие завесы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Лопотко В.М., Кухтин Ю.П. Анализ пленочного охлаждения лопаток турбин в нестационарном потоке газа // Вестник двигателестроения. Харьков. 2003. № 3. С. 90–96.
- Lee H.W., Lee U.G. Effects of bulk flow pulsation on film cooling with shaped holes / ICHMT (Inter. Centre for heat and mass transfer). Inter. Symp. on Heat Transfer in Gas Turbine Systems. 2000. Cesme. Turkey. P. 71–72.
- Галицейский Б.М., Рыжов Ю.А., Якуш Е.Б. Тепловые и газодинамические процессы в колеблющихся потоках. — М.: Машиностроение, 1977. — 256с.
- 4. Гиневский А.С.. Власов Е.В., Каравосов Р.К. Акустическое управление турбулентными струями. М.: Физматлит, 2001. — 241с.
- Bell M., Ligrani P.M., Hull W.A., Norton C.M. Film cooling subject to bulk flow pulsations: effects of blowing ratio, free stream velocity, and pulsation frequency // IJHMT. — 1999. — Vol. 42. — P. 4333–4344.
- 6. Ligrani P.M., Bell C.M. Film cooling subject to bulk flow pulsations: effects of density ratio, hole length-to-diameter ratio, and pulsation frequency // Technical Note. IJHMT. 2001. Vol. 44. P. 2005–2009.
- 7. Измоденова Т.Ю., Кортиков Н.Н., Кузнецов Н.Б. Газовая завеса за двухрядной перфорацией на пластине: опыт использования различных моделей турбулентности и расчетных сеток. Проблемы газодинамики и тепломассообмена в энергетических установках (XVI Школа-семинар молодых ученых и специалистов под руководством акад. РАН А.И. Леонтьева). Т. 1. М.: Изд-во МЭИ, 2007. С.148–151.
- 8. Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1987. 840 с.
- 9. STAR CD version 3.22. Methodology. CD adapco Group. 2004. 314 p.

Статья поступила в редакцию 5 марта 2008 г.