УДК 536.41:669.45'884

Термические свойства жидких сплавов литий-свинец околоэвтектического состава^{*}

Р.Н. Абдуллаев¹, А.Ш. Агажанов², Р.А. Хайрулин², С.В. Станкус²

¹Новосибирский государственный университет ²Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: kra@itp.nsc.ru

Методом просвечивания образцов узким пучком гамма-излучения измерены плотность и тепловое расширение жидких сплавов литий-свинец с содержанием Pb 83,0 и 84,3 ат. % в интервале температур от ликвидуса до 1000 К. Впервые непосредственно измерен скачок плотности при фазовом переходе твердое тело-жидкость для сплава Li_{15,7}Pb_{84,3}. Проведено сравнение данных настоящей работы с результатами работ других авторов.

Ключевые слова: гамма-метод, плотность, сплавы литий-свинец, расплав.

Введение

Жидкий сплав системы Li-Pb эвтектического состава рассматривается как перспективный материал для бланкетов (утилизаторов энергии нейтронов и воспроизводителей трития) в ряде разрабатываемых проектов термоядерных реакторов [1]. Согласно справочнику [2], богатая свинцом эвтектика в этой системе содержит 83 ат. % Рb и имеет температуру плавления 508 К. Авторы [2] построили фазовую диаграмму системы литий-свинец на основании имеющихся в литературе экспериментальных данных по состоянию на 1958 год. Подавляющее большинство сведений по теплофизическим свойствам сплавов литий-свинец относится именно к составу Li₁₇Pb₈₃ (см., например, [3]). В 1992 году были проведены подробные исследования фазовой диаграммы системы Li-Pb в области, богатой свинцом, направленные на уточнение линий ликвидуса и координат эвтектической точки [4]. Согласно полученным в работе [4] результатам, концентрация эвтектики равна 84,3±0,2 ат. % Pb, а температура плавления составляет 508±1 K. В ряде обзорных работ и баз данных [5-7] фазовая диаграмма системы Li-Pb была пересмотрена с учетом результатов [4]. Тем не менее, и после 1992 года во многих исследованиях, посвященных разработке научно-технических основ и технологий применения расплавов литий-свинец в термоядерной энергетике, в качестве эвтектического сплава рассматривается состав $Li_{17}Pb_{83}$ (см., например, [8, 9]). В справочнике [10], выпущенном в 2001 году, фазовая диаграмма системы Li-Pb приведена по данным [2].

^{*} Работа выполнена при частичной финансовой поддержке РФФИ (проект № 15-08-00275_а)

[©] Абдуллаев Р.Н., Агажанов А.Ш., Хайрулин Р.А., Станкус С.В., 2016

Целью настоящей работы являлось экспериментальное исследование плотности и теплового расширения двух жидких сплавов системы Li-Pb (83,0 и 84,3 ат. % Pb) в интервале температур от ликвидуса до ~1000 К. Кроме того, для сплава, содержащего 84,3 ат. % Pb, измерен скачок плотности при переходе твердое тело-жидкость.

Экспериментальная техника

Термические свойства расплавов и изменения плотности при кристаллизации исследовались методом просвечивания образцов узким пучком гамма-излучения (гаммаметод). Экспериментальная установка и методика измерений подробно описаны в работах [11–13]. В качестве источника излучения использовался изотоп цезий-137 (энергия гамма-квантов 662 кэВ) с активностью 50 ГБк. Измерительные ячейки для образцов изготавливались из нержавеющей стали 12Х18Н10Т. Ячейка состояла из цилиндрического тигля высотой 60 мм, внутренним диаметром 25 мм и крышки с тонкостенной гильзой для хромель-алюмелевой термопары. Градуировка термопар проверялась по точкам кристаллизации чистых лития, олова, свинца и сурьмы. Отклонения измеренных температур затвердевания металлов от справочных данных не превышали 0,3–1,0 К.

Для приготовления образцов сплавов использовались свинец марки C0 по ГОСТ 3778–98 и литий производства Новосибирского завода химических концентратов. Химический состав металлов приведен в табл. 1 и 2.

Операции по приготовлению сплавов проводились в боксе, заполненном чистым аргоном (99,992 об. %). Поверхности слитков металлов механически очищались от пленок окислов и нитридов. Массы навесок лития и свинца, необходимые для расчета состава сплавов, измерялись на аналитических весах с точностью 2–3 мг. Составной образен помещался в ячейку. Защитная гильза термопары погружалась в образец на глубину 30-35 мм. Ячейка устанавливалась в печь гамма-плотномера, контакт образца с воздухом при этом не допускался. Печь вакуумировалась и заполнялась аргоном до давления 0,1 МПа. Затем образец плавился и тщательно перемешивался механической мешалкой. Однородность расплава контролировалась его сканированием, т.е. измерением коэффициента ослабления пучка гамма-излучения в образце на различных высотах. Далее в ходе нагревов и охлаждений определялась температурная зависимость плотности жидкого сплава, а также скачок плотности при фазовом переходе твердое тело-жидкость. Скорость нагревов-охлаждений составляла 2-3 К/мин в однофазных областях и не более 0,3 К/мин в области кристаллизации. По окончании эксперимента проводилось контрольное взвешивание ячейки с образцом. Фактическое содержание свинца в изученных сплавах составляло 82,96±0,04 ат. % и 84,30±0,05 ат. %.

Расчет плотности жидкого сплава $\rho_{\rm m}$ проводился по абсолютному варианту гаммаметода [14]:

$$\rho_{\rm m}(T) = \ln \left[J_0(T) / J(T) \right] / \left(\mu l_{293} \left[1 + \overline{\alpha}(T)(T - 293) \right] \right), \tag{1}$$

здесь $J_0(T)$, J(T) — интенсивности пучка излучения, прошедшего через пустую и заполненную (с образцом) измерительную ячейку соответственно, T — температура в K,

Таблица 1

Химический состав свинца марки СО по ГОСТ 3778-98

Содержание примесей не более, масс. %						Содержание			
Ag	Cu	Zn	Bi	As	Sn	Sb	Fe	Ca+Na+Mg	свинца, масс. %
$3 \cdot 10^{-4}$	$5 \cdot 10^{-4}$	$1 \cdot 10^{-3}$	$4 \cdot 10^{-3}$	$5 \cdot 10^{-4}$	$5 \cdot 10^{-4}$	$5 \cdot 10^{-4}$	$1 \cdot 10^{-3}$	$2 \cdot 10^{-3}$	Не менее 99,992

Таблица 2

Содержание примесей не более, масс. %					Содержание				
Na	K	Ca	Mg	Mn	Fe	Al	SiO ₂	Ν	лития, масс. %
$3 \cdot 10^{-3}$	$1 \cdot 10^{-3}$	$3,5 \cdot 10^{-3}$	$1 \cdot 10^{-3}$	$3 \cdot 10^{-4}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-3}$	$6 \cdot 10^{-3}$	$3 \cdot 10^{-3}$	Не менее 99,95

Химический состав лития по данным производителя

 l_{293} — длина ослабления излучения при 293 К (внутренний диаметр тигля с поправкой на диаметр пучка излучения), $\bar{\alpha}(T)$ — средний линейный коэффициент теплового расширения материала тигля, μ — массовый коэффициент ослабления излучения для сплава, который рассчитывается по правилу аддитивности через массовые концентрации и массовые коэффициенты ослабления излучения для компонентов. Для лития коэффициент μ взят из справочника [15], а для свинца — определен экспериментально на специально изготовленных для этой цели твердых образцах с хорошо известными геометрическими размерами. Плотность твердого сплава ρ_{c} вблизи точки плавления также рассчитывалась по формуле (1), т. к. диаметр твердого образца сразу после кристаллизации совпадает с внутренним диаметром тигля.

Результаты и обсуждение

На рис. 1 показаны фрагменты типичных термограмм охлаждения сплавов литийсвинец в области кристаллизации. Термограммы получены при скорости охлаждения печи 2 К/мин. Как видно, кристаллизация жидкого сплава Li_{15,7}Pb_{84,3} начинается после небольшого переохлаждения. Максимальная температура саморазогрева составила $T_L = 507,9 \pm 1,5$ К и была принята за температуру ликвидуса для данного сплава. Величиина T_L практически совпадает со значением эвтектической температуры, приведенной в работах [2, 4]: $T_E = 508$ К. На термограмме сплава Li₁₇Pb₈₃ замедление скорости охлаждения наблюдается при двух температурах: $T \approx 510$ К и $T \approx 508$ К. При температуре 510 К расплав, очевидно, достигает линии ликвидуса. При дальнейшем охлаждении состав жидкой фазы приближается к эвтектическому, и при температуре 508 К начинается кристаллизация эвтектики. Таким образом, полученные данные свидетельствуют о том, что состав Li_{15,7}Pb_{84,3} лежит существенно ближе к эвтектической концентрации, чем состав Li₁₇Pb₈₃.

Результаты измерений плотности сплава $Li_{15,7}Pb_{84,3}$ в твердом и жидком состояниях представлены на рис. 2 и в табл. 3. Было проведено два эксперимента. В первом опыте ось пучка излучения проходила в 20 мм от дна ячейки, а во втором — в 11,5 мм. Как видно, данные по плотности образца в жидком состоянии, полученные в двух опытах, совпадают в пределах случайных погрешностей, что говорит о высокой гомогенности расплава. Совместная обработка данных двух экспериментов дала уравнение для температурной зависимости плотности жидкого сплава:

$$\rho_{\rm m}(T) = 9958 - 1,229 (T - 507,9),$$
кг/м³. (2)

Случайные погрешности плотности и объемного коэффициента теплового расширения (КТР) $\beta = -(\partial \rho / \partial T) / \rho$ для расплава вблизи температуры ликвидуса равны соответственно 0,04 и 1,2 % (для доверительной вероятности 95 %). Общая погрешность КТР, включающая доверительные границы неучтенных систематических ошибок, составляет 2,2 %. Общая погрешность расчета плотности по уравнению (2), согласно оценкам, не превышает 0,25 % вблизи температуры ликвидуса и 0,4 % при максимальной температуре измерений (~1000 K).

Рис. 1. Термограммы охлаждения сплавов литий-свинец в области кристаллизации. Время отсчитывается от момента начала охлаждения расплава.

1 — эксперимент 1, 2 — эксперимент 2; AL — жидкое состояние, SB — твердое состояние.

Как видно из рис. 2, экспериментальные результаты по плотности твердого сплава, полученные в первом и втором экспериментах, незначительно (~0,2 %), но систематически различаются между собой (напомним, что в первом опыте плотность образца измерялась на расстоянии 20 мм от дна ячейки, а во втором опыте — на расстоянии 11,5 мм). Сканирование при комнатной температуре показало, что после первого опыта перепады плотности по высоте твердого образца (на расстояниях 5–25 мм от дна тигля) достигали 0,3 %, а после второго опыта — 0,6 %. Сегрегация компонентов сплава при его затвердевании связана, вероятно, с тем, что кристаллизация расплава протекала в неравновесных условиях (с переохлаждением), а также с тем, что состав Li_{15,7}Pb_{84,3} все-таки несколько отличается от эвтектической концентрации. Данные обоих экспериментов по плотности сплава в твердом состоянии аппроксимировались единой линейной температурной зависимостью:

$$\rho_{\rm c}(T) = 10543 - 0.955 \ (T - 293), \ \kappa \Gamma / {\rm M}^3.$$
 (3)

Максимальная ошибка расчета плотности твердого сплава по формуле (3), согласно оценкам, составляет 0,4 %. Несколько более высокие, по сравнению с жидким состоянием, погрешности измерений связаны с негомогенностью твердого образца.

Результаты измерений термических свойств сплава Li _{15,7} Pb _{84,3}

Таблица З

Эксперимент	$ ho_{\rm m}(T_L)$, кг/м ³	$\beta_{\rm m}(T_L), 10^{-5} \cdot {\rm K}^{-1}$	$\delta ho_{f}, \%$	
Опыт 1, нагрев	9935 ± 5	$11,91 \pm 0,14$	-	
Опыт 1, охлаждение	$9957\pm~3$	$12,\!37\pm0,\!10$	$3,51 \pm 0,12$	
Опыт 2, нагрев 1	9959 ± 4	$12,\!65 \pm 0,\!48$	$3,70 \pm 0,10$	
Опыт 2, нагрев 2	9954 ± 8	$12,\!36\pm0,\!36$	-	
Опыт 2, охлаждение	9969 ± 3	$12{,}80\pm0{,}17$	$3,71 \pm 0,07$	
Средневзвешенное значение	9958 ± 25	$12,34 \pm 0,27$	3,67 ± 0,19	

В таблице для измеренных величин приведена случайная погрешность, для средневзвешенных — общая; доверительная вероятность — 95 %; $\beta_{\rm m}$ — объемный коэффициент теплового расширения расплава,

 $\delta \rho_f = \left(\rho_c(T_L) - \rho_m(T_L) \right) / \rho_c(T_L)$ — относительный скачок плотности при плавлении.

Рис. 3. Экспериментальные данные по
плотности жидкого сплава Li ₁₇ Pb ₈₃ .
<i>1</i> — нагрев, <i>2</i> — охлаждение.

Плотность сплава Li₁₅₇Pb₈₄₃ вблизи комнатной температуры можно оценить с помощью правила аддитивности для мольных или удельных объемов, или правила Зена [16]. Согласно фазовой диаграмме [5-7], богатая свинцом эвтектика в системе Li-Pb представляет собой смесь практически чистого свинца и промежуточного соединения LiPb (Li₅₀Pb₅₀). Плотность промежуточной фазы при 298 К, рассчитанная из параметров ее кристаллической решетки, равна 8000 кг/м³ [17], а плотность свинца при этой же температуре равна 11340 кг/м³ [18]. Оценка по правилу

Зена дает значение плотности сплава Li_{15,7}Pb_{84,3}, равное 10501 кг/м³. Эта величина всего лишь на 0,35 % отличается от значения плотности, рассчитанной по формуле (3), что косвенно подтверждает надежность полученных здесь экспериментальных данных для твердого состояния.

Результаты измерений плотности жидкого сплава Li₁₇Pb₈₃ показаны на рис. 3. В изученном интервале плотность расплава линейно зависит от температуры:

$$\rho_{\rm m}(T) = 9869 - 1,238 \, (T - 510), \, {\rm kr/m^3}. \tag{4}$$

Погрешности плотности и КТР для расплава Li₁₇Pb₈₃, согласно оценкам, аналогичны погрешностям соответствующих величин для расплава Li_{15.7}Pb_{84,3}.

На рис. 4 приведено сопоставление полученных в настоящей работе температурных зависимостей плотности жидких сплавов литий-свинец с литературными данными. Зависимость $\rho_m(T)$ для расплава Li₁₇Pb₈₃ из работы [19] (где измерения также выполнены гамма-методом) лежит несколько выше зависимости, полученной в настоящей работе для сплава этого же состава. Различие составляет 0,45 % вблизи температуры ликвидуса и достигает 0,7 % при 1000 К. В принципе, эти расхождения не превышают суммарных погрешностей измерений. Следует, однако, отметить, что в экспериментах [19] пучок гамма-излучения проходил вблизи дна ячейки, исследуемый расплав перед измерениями не перемешивался, а контроль гомогенности жидкого образца не производился. Вероятно, содержание свинца в нижней части столба расплава, исследовавшегося в работе [19], несколько превышало среднее значение, что и привело к небольшому завышению полученных значений плотности.

Зависимости $\rho_{\rm m}(T)$ для расплава Li₁₇Pb₈₃ из работ [20, 21] лежат существенно ниже полученных здесь данных. Более того, они лежат ниже температурной зависимости плотности жидкого сплава литий-свинец, содержащего 80 ат. % Pb [22]. Атомный вес лития почти в тридцать раз меньше атомного веса свинца. Соответственно, увеличение концентрации Pb в расплаве неизбежно должно приводить к увеличению его плотности, что не согласуется с результатами работ [20, 21] (см. рис. 5). Можно предположить, что данные [20, 21] по плотности и КТР отягощены существенными погрешностями.

Рис. 4. Температурные зависимости плотности жидких сплавов литий-свинец. Результаты настоящей работы (1, 2), результаты работ [19] (3), [20] (4), [21] (5), [22] (6).

Рис. 5. Концентрационная зависимость плотности жидкой системы литий-свинец в интервале составов 80–84,3 ат. % Рb.

Результаты настоящей работы (1), результаты работ [22] (2), [19] (3), [21] (4), [20] (5),

6 — аппроксимация данных [22] и настоящей работы линейной зависимостью; T = 600 K

Заключение

В результате проведенных исследований получены новые надежные данные по термическим свойствам жидких сплавов системы литий-свинец с концентрациями, близкими к эвтектическому составу, важному с практической точки зрения. Подтверждено, что состав Li_{15,7}Pb_{84,3} более близок к эвтектической концентрации, чем состав Li₁₇Pb₈₃.

Список литературы

- Malang S., Raffray A.R., Morley N.B. An example pathway to a fusion power plant system based on lead–lithium breeder: comparison of the dual-coolant lead-lithium (DCLL) blanket with the helium-cooled lead-lithium (HCLL) concept as initial step // Fusion Engng and Design. 2009. Vol. 84. P. 2145–2157.
- 2. Hansen M., Anderko K. Constitution of Binary Alloys. N.Y.: McGraw-Hill, 1958. 1305 p.
- 3. Mas de les Valls E., Sedano L.A., Batet L., Ricapito I., Aiello A., Gastaldi O., Gabriel F. Lead-lithium eutectic material database for nuclear fusion technology // J. of Nuclear Materials. 2008. Vol. 376. P. 353–357.
- 4. Hubberstey P., Sample T., Barker M.G. Is Pb-17Li really the eutectic alloy? A redetermination of the lead-rich section of the Pb-Li phase diagram (0.0 < X_{Li} (at %) < 22.1) // J. of Nuclear Materials. 1992. Vol. 191–194. P. 283–287.</p>
- 5. Okamoto H. Li-Pb (Lithium-Lead) // J. of Phase Equilibria. 1993. Vol. 14. P. 770.
- 6. ASM Alloy Phase Diagram Database. URL: http://www1.asminternational.org/asmenterprise/apd/default.aspx.
- 7. Springer Materials. URL: http://materials.springer.com.
- 8. Семенов А.В., Безносов А.В., Молодцов А.А., Константинов В.Л., Баранова О.В. Экспериментальные исследования теплоотдачи к эвтектике свинец-литий и коррозионных свойств // Вопросы атомной науки и техники. Серия: Термоядерный синтез. 2006. № 2. С. 40–49.
- Edao Y., Noguchi H., Fukada S. Experiments of hydrogen isotope permeation, diffusion and dissolution in Li-Pb // J. of Nuclear Materials. 2011. Vol. 417. P. 723–726.
- Диаграммы состояния двойных металлических систем. Т. 3. Кн. 1 / Под общ. ред. Н.П. Лякишева. М.: Машиностроение, 2001. 872 с.
- 11. Хайрулин Р.А., Станкус С.В., Кошелева А.С. Взаимная диффузия в расплавах системы олово-свинец эвтектического и околоэвтектического составов // Теплофизика высоких температур. 2008. Т. 46, № 2. С. 239–245.
- 12. Станкус С.В., Хайрулин Р.А. Измерение термических свойств платины в интервале температур 293–2300 К методом проникающего излучения // Теплофизика высоких температур. 1992. Т. 30, № 3. С. 487–494.
- Stankus S.V., Tyagel'sky P.V. Thermal properties of Al₂O₃ in the melting region // Intern. J. of Thermophysics. 1994. Vol. 15. P. 309–316.
- 14. Станкус С.В., Хайрулин Р.А., Багинский А.В. Термодинамические и переносные свойства гексафторбензола и перфтортриэтиламина в жидком состоянии // Теплофизика и аэромеханика. 2001. Т. 8, № 2. С. 317–327.
- 15. Немец О.Ф., Гофман Ю.В. Справочник по ядерной физике. Киев: Наукова думка, 1975. 414 с.
- 16. Zen E. Validity of "Vegard's law" // American Mineralogist. 1956. Vol. 41. P. 523.
- Jauch U., Haase G., Karcher V., Schulz B. Thermophysical properties in the system Li-Pb. Pt. I–III. // Kernforschungszentrum Karlsruhe Report 4144. 1986. 82 p.
- 18. Станкус С.В., Хайрулин Р.А. Плотность сплавов системы олово-свинец в твердом и жидком состояниях // Теплофизика высоких температур. 2006. Т. 44, № 3. С. 393–400.
- 19. Станкус С.В., Хайрулин Р.А., Мозговой А.Г. Экспериментальное исследование плотности и термического расширения перспективных материалов и теплоносителей жидкометаллических систем термоядерного реактора. Свинец-литиевая эвтектика // Теплофизика высоких температур. 2006. Т. 44, № 6. С. 838–846.
- 20. Schulz B. Thermophysical properties of the Li(17)Pb(83) alloy // Fusion Engng and Design. 1991. Vol. 14. P. 199–205.
- 21. Алчагиров Б.Б., Мозговой А.Г., Таова Т.М., Сижажев Т.А. Термические свойства перспективных тритий-воспроизводящих материалов и теплоносителей жидкометаллического бланкета термоядерного реактора. Свинец-литиевая эвтектика // Перспективные материалы. 2005. № 6. С. 35–42.
- **22. Saar J., Ruppersberg H.** Calculation of $C_p(T)$ for liquid Li/Pb alloys from experimental $\rho(T)$ and $(\partial p/\partial T)_S$ data // J. of Physics F: Metal Physics. 1987. Vol. 17. P. 305–314.

Статья поступила в редакцию 12 мая 2015 г.