УДК 621.391.1

КВАЗИОПТИМАЛЬНЫЙ МЕТОД РЕШЕНИЯ ЗАДАЧИ ТРИАНГУЛЯЦИИ В УСЛОВИЯХ АПРИОРНОЙ НЕОПРЕДЕЛЁННОСТИ

Ю. Г. Булычев, Е. Н. Чепель

АО «Всероссийский научно-исследовательский институт "Градиент"», 344000, г. Ростов-на-Дону, просп. Соколова, 96 E-mail: ProfBulychev@yandex.ru

Предложен новый метод оценивания местоположения излучающей цели для случая существенной априорной неопределённости относительно условий функционирования триангуляционной измерительной системы. Приведены результаты сравнительного анализа и практические рекомендации по применению метода.

Ключевые слова: источник излучения, триангуляционная измерительная система, местоположение, пеленги, кластер, селекция, принципы «размножения» и «кластеризации» оценок.

DOI: 10.15372/AUT20170610

Введение. В силу теоретической и практической актуальности интерес к пассивным информационно-измерительным системам не ослабевает и по настоящее время [1–12]. Среди известных методов многопозиционной пассивной локации наиболее популярным считается триангуляционный метод, эффективный с технико-экономической точки зрения [1]. Для обработки данных в триангуляционной измерительной системе (ТИС) привлекаются как оптимальные, так и квазиоптимальные процедуры оценивания, некоторые из них подробно описаны в [1, 6]. Известно [6], что при выполнении ряда ограничений на условия функционирования ТИС эти процедуры приводят к асимптотически близким оценкам. Такие условия функционирования называют нормальными.

На практике мы зачастую сталкиваемся с аномальными условиями, характеризующимися существенным уровнем неопределённости [7, 8]: отсутствие достоверной информации о статистических характеристиках ошибок измерений, пропадание измерений, наличие инструментальных и методических ошибок, «деградация» структуры ТИС и др. Всё это может привести к тому, что результаты пеленгования могут допускать наличие неизвестных аномальных ошибок измерений (АОИ).

Один из возможных подходов преодоления неопределённости в ТИС рассмотрен в [7, 8]. Он предполагает построение конечного семейства несовпадающих множеств измерительных каналов (азимута и угла места), при этом каждому множеству соответствует своя альтернативная измерительная структура (ИС). Семейство таких структур порождает множество единичных оценок, которые необходимо каким-то образом использовать при построении результирующей оценки. В [7, 8] вопрос нахождения такой оценки не получил должного обоснования, поскольку построение результирующей оценки по существу сводится к весовому слиянию единичных оценок. При наличии АОИ данные оценки распределены в пространстве по сложному топологическому закону, который не поддаётся аналитическому описанию. В этом случае существенно затруднён выбор весов в алгоритме построения результирующей оценки.

В предлагаемой работе применительно к ТИС развивается альтернативный метод оценивания местоположения излучающей цели в условиях существенной априорной неопределённости на основе принципов «размножения» единичных оценок и их «кластеризации», который позволяет обнаружить недостоверные измерительные каналы (как по азимуту, так и по углу места), а также формировать устойчивую к АОИ результирующую оценку с учётом этих каналов. Именно наличие большого семейства единичных оценок и учёт их топологии дают возможность преодолеть указанную неопределённость при выполнении некоторых условий наблюдения ТИС.

Используемые модели и ограничения, постановка задачи. Для изложения метода в декартовой системе координат XYZ рассмотрим ТИС с позициями $(\Pi_m, m = \overline{1, M})$, положение которых задаётся в пространстве векторами $\boldsymbol{\xi}_m = [x_m, y_m, z_m]^T$. Местоположение цели характеризуется вектором $\boldsymbol{\lambda} = [x, y, z]^T$, при этом $\boldsymbol{\lambda} \in \Lambda = \Lambda_R \times \Lambda_\alpha \times \Lambda_\beta$ (где $\Lambda_R = [R_{\min}, R_{\max}], \Lambda_\alpha = [\alpha_{\min}, \alpha_{\max}], \Lambda_\beta = [\beta_{\min}, \beta_{\max}]$). Здесь R — наклонная дальность, α — азимут и β — угол места, α отсчитывается от оси OX, а β — от плоскости XOY. Каждой Π_m ставятся в соответствие два измерительных канала: \mathbf{K}_m^α — азимутальный, \mathbf{K}_m^β — угломестный. Данные каналы производят измерения азимута α_m и угла места β_m : $\tilde{\alpha}_m = \alpha_m + \Delta \alpha_m, \tilde{\beta}_m = \beta_m + \Delta \beta_m$, где $\Delta \alpha_m$ и $\Delta \beta_m$ — опшобки измерений, для которых в случае аномальности выполняются условия $|\Delta \alpha_m| > \varepsilon_\alpha = \max_m \varepsilon_{\alpha_m}$ и $|\Delta \beta_m| > \varepsilon_\beta = \max_m \varepsilon_{\beta_m}$. Будем также считать, что в рамках развиваемого метода число каналов, не содержащих AOИ, должно быть не менее $\varsigma_{\alpha\beta} = \varsigma_\alpha^s + \varsigma_\beta^s$, $s = \overline{1, S}, \varsigma_\alpha^s, \varsigma_\beta^s \in \{1, 2, ..., M\}$, $M+1 \leq \varsigma_{\alpha\beta} \leq 2M$, где $\varsigma_\alpha^s, \varsigma_\beta^s$ — составляющие числа $\varsigma_{\alpha\beta}$ для *s*-го варианта представления, обеспечивающего наблюдаемость задачи (S — общее число таких вариантов).

Требуется решить две основные задачи: разбить измерительные каналы ТИС на два класса (достоверные и недостоверные) и построить результирующую оценку местоположения цели с учётом полученного разбиения. Для решения первой задачи необходимо сформировать правило селекции каналов. Очевидно, что данное правило должно предполагать вычисление соответствующих невязок между прямыми измерениями ТИС и некоторыми косвенными измерениями (именуемыми в дальнейшем «вторичными» пеленгами), отвечающими семейству вышеобозначенных ИС. Для решения второй задачи (с учётом того, что найдены все достоверные каналы и выполнена редукция измерений) достаточно применить один из известных оптимальных или квазиоптимальных методов построения триангуляционной оценки на выделенных достоверных измерениях.

В рассматриваемой постановке задачи мы сознательно отказываемся от традиционно принятых в радиотехнических приложениях статистических законов распределения и их числовых характеристик и оперируем лишь неизвестными величинами (типа АОИ).

Формирование рабочих измерительных структур и соответствующих им оценок. По аналогии с [7] сформируем семейство измерительных структур { $\overline{\mathrm{MC}}_1, \overline{\mathrm{MC}}_2, \ldots$..., $\overline{\mathrm{MC}}_{\overline{N}}$ } как наблюдаемых, так и ненаблюдаемых. Под $\overline{\mathrm{MC}}_n$ (где $n \in \{1, 2, \ldots, \overline{N}\}$) понимается произвольный набор измерительных каналов, при этом $\overline{\mathrm{MC}}_n$ и $\overline{\mathrm{MC}}_m$ не совпадают для всех $n, m \in \{1, 2, \ldots, \overline{N}\}, n \neq m$. Для выделения из множества { $\overline{\mathrm{MC}}_1, \overline{\mathrm{MC}}_2, \ldots, \overline{\mathrm{MC}}_{\overline{N}}$ } только наблюдаемых измерительных структур зададимся парой чисел ($\gamma_{\alpha}, \gamma_{\beta}$), которые соответствуют минимально необходимому числу $\gamma_{\alpha\beta} = \gamma_{\alpha} + \gamma_{\beta}$ азимутальных и угломестных каналов, достаточных для наблюдаемости задачи оценивания. Общее количество потенциально наблюдаемых измерительных структур для ТИС характеризуется парой ($\gamma_{\alpha}, \gamma_{\beta}$).

Замечание 1. Количество наблюдаемых ИС для пары $(\gamma_{\alpha}, \gamma_{\beta})$ определяется по формуле $N = \left(\sum_{n=\gamma_{\alpha}}^{M} C_{M}^{n}\right) \left(\sum_{n=\gamma_{\beta}}^{M} C_{M}^{n}\right)$, образованных каналами без АОИ — $N^{(\varsigma_{\alpha}^{s}, \varsigma_{\beta}^{s})} = \left(\sum_{n=\gamma_{\alpha}}^{\varsigma_{\alpha}^{s}} \sum_{n=\gamma_{\alpha}}^{s} \sum_{n=\gamma_{$

$$= \Big(\sum_{n=\gamma_{\alpha}}^{\varsigma_{\alpha}} C_{\varsigma_{\alpha}^{s}}^{n}\Big)\Big(\sum_{n=\gamma_{\beta}}^{\gamma} C_{\varsigma_{\beta}^{s}}^{n}\Big), \text{ а минимальное их количество} - N^{(\varsigma_{\alpha\beta})} = \min_{s} N^{(\varsigma_{\alpha}^{s},\varsigma_{\beta}^{s})}\Big)$$

Выделим из $\{\overline{\mathrm{MC}}_1, \overline{\mathrm{MC}}_2, \dots, \overline{\mathrm{MC}}_{\overline{N}}\}$ множество наблюдаемых структур $\{\mathrm{MC}_{[1]}, \mathrm{MC}_{[2]}, \dots, \mathbb{MC}_{[N]}\}$, где $N < \overline{N}$. Для всех этих структур задача определения местоположения цели (без учёта ошибок измерений) имеет единственное решение. Полагается, что $\mathrm{MC}_{[k]}$ и $\mathrm{MC}_{[l]}$ (где $k, l \in \{1, 2, \dots, N\}, k \neq l$) не должны совпадать. Каждой сформированной $\mathrm{MC}_{[n]}$ соответствует вектор первичных измерений $\mathbf{W}_{[n]} = [\tilde{\alpha}_{[n]p}, p = \overline{1, M_{[n]}^{\alpha}}; \tilde{\beta}_{[n]p}, p = \overline{1, M_{[n]}^{\alpha}}; \tilde{\beta}_{[n]p}, p = \overline{1, M_{[n]}^{\alpha}}; \tilde{\beta}_{[n]p}, p = \overline{1, M_{[n]}^{\beta}}]^T$, при этом $L_{[n]} = M_{[n]}^{\alpha} + M_{[n]}^{\beta}$ — общее число измерений, $\tilde{\alpha}_{[n]p} \in \{\tilde{\alpha}_1, \tilde{\alpha}_2, \dots, \tilde{\alpha}_M\}$ и $\tilde{\beta}_{[n]p} \in \{\tilde{\beta}_1, \tilde{\beta}_2, \dots, \tilde{\beta}_M\}$. Для каждой $\mathrm{MC}_{[n]}$ сформируем оценку местоположения цели $\lambda_{[n]}^* = [x_{[n]}^*, y_{[n]}^*, z_{[n]}^*]^T$, например, на базе одного из квазиоптимальных методов, рассмотренных в работе [6]. Далее будем полагать, что все оценки удовлетворяют условию $\lambda_{[n]}^* \in \Lambda = \Lambda_R \times \Lambda_{\alpha} \times \Lambda_{\beta}$. Для фиксированной $\mathrm{MC}_{[n]}$ и соответствующей ей оценки $\lambda_{[n]}^*$ по отношению ко всем Π_m ($m = \overline{1, M}$) строим так называемые вторичные пеленги $\alpha_{m[n]}^*$ на $\beta_{m[n]}$ (это угловые координаты точки, характеризуемой вектором $\lambda_{[n]}^*$ по отношению к Π_m), для которых проверяем выполнение условий (отдельно по азимуту и углу места)

$$|\alpha_{m[n]}^* - \tilde{\alpha}_m| < \varepsilon_{\alpha}; \qquad |\beta_{m[n]}^* - \tilde{\beta}_m| < \varepsilon_{\beta}, \quad m = \overline{1, M}.$$
(1)

Для нахождения вторичных пеленгов используются формулы связи декартовых и радиотехнических координат: $\alpha_{m[n]}^* = \arccos\{r_{m[n]}^{-1/2}(x_{[n]}^* - x_m)\}$ и $\beta_{m[n]}^* = \arccos\{R_{m[n]}^{-1/2}r_{m[n]}^{1/2}\}$, где $R_{m[n]} = [(x_{[n]}^* - x_m) + (y_{[n]}^* - y_m) + (z_{[n]}^* - z_m)]^{1/2}$ и $r_{m[n]} = [(x_{[n]}^* - x_m) + (y_{[n]}^* - y_m)]^{1/2}$ — наклонная и горизонтальная дальности соответственно. Набор невязок (1) для первичных $\tilde{\alpha}_m, \tilde{\beta}_m$ и вторичных $\alpha_{m[n]}^*, \beta_{m[n]}^*$ пеленгов является мерой достоверности $\operatorname{MC}_{[n]}$ с учётом условия $M + 1 \leq \varsigma_{\alpha\beta} \leq 2M$. Если для всех сформированных вторичных пеленгов $\alpha_{m[n]}^*$ и $\beta_{m[n]}^*$ (их суммарное количество по азимуту и углу места), то рассматриваемая $\operatorname{MC}_{[n]}$ отсенвается. Оставшиеся после отсеивания (селекции) ИС назовём рабочими измерительными структурами ($\operatorname{PUC}_{[n_i]}, \operatorname{rde} i = \overline{1, N_1}, N_1 \leq N, n_i \in \{1, 2, \dots, N\}$). Таким $\operatorname{PUC}_{[n_i]}$ соответствуют оценки $\lambda_{[n_i]}^* = [x_{[n_i]}^*, y_{[n_i]}^*, z_{[n_i]}^*]^T$, для которых выполняется более чем M условий (1) (суммарное по азимутам места всех приёмных позиций ТИС).

Замечание 2. Следует помнить, что в состав некоторых $\mathrm{PMC}_{[n_i]}$ наряду с достоверными могут входить и недостоверные измерительные каналы, поскольку ещё не решена задача их обнаружения. Но число недостоверных каналов меньше количества достоверных, так как нами принято условие $M + 1 \leq \varsigma_{\alpha\beta} \leq 2M$.

На этом заканчивается этап предварительной обработки измеренных пеленгов на базе развиваемого метода, в результате которого отсеиваются «грубые» ИС и соответствующие им оценки. Далее рассматриваются только оценки, прошедшие этап селекции и соответствующие $PMC_{[n,i]}$.

Кластеризация и вычисление параметров кластеров. На множестве сформированных единичных оценок $\lambda_{[n_i]}^*$, $i = \overline{1, N_1}$, осуществляется операция кластеризации с использованием Q кластеров. Алгоритм кластеризации устанавливает отображение f: $\{n_1, n_2, \ldots, n_{N_1}\} \rightarrow \{1, 2, \ldots, Q\}$, которое номерам n_i , сформированным ранее РИС $[n_i]$, ставит в соответствие метку (номер кластера) $k \in \{1, 2, \ldots, Q\}$. В результате семейство номеров $\{n_1, n_2, \ldots, n_{N_1}\}$ разбивается на Q непересекающихся множеств-кластеров $\{K_1, K_2, \ldots, K_Q\}$, где $K_k = \{n_{1k}, n_{2k}, \ldots, n_{L_kk}\}$, $n_{dk} \in \{n_1, n_2, \ldots, n_{N_1}\}$, $d = \overline{1, L_k}$, L_k количество элементов в кластере K_k , $K_k \neq \emptyset \forall k = \overline{1, Q}$. При этом $\{n_1, n_2, \ldots, n_{N_1}\}$ = K₁ \cup K₂ \cup ... \cup K_Q, где K_l \cap K_r = $\oslash \forall l, r \in \{1, 2, ..., Q\}, l \neq r$. Для кластеризации применяется иерархический агломеративный алгоритм с евклидовой нормой ($\|\cdot\|_2$) [13– 15]. Согласно данному алгоритму оценки $\lambda_{[n_1]}^*, \lambda_{[n_2]}^*, \ldots, \lambda_{[n_{N_1}]}^*$ последовательно (по шагам) объединяются в группы: сначала самые близкие, а затем всё более отдалённые друг от друга. На первом шаге каждая оценка рассматривается как отдельный кластер. Для одноэлементных кластеров K_l и K_r естественным образом определяется функция расстояния $\rho(K_l, K_r) = \|\lambda_{[w]}^* - \lambda_{[s]}^*\|_2, w \in K_l, s \in K_r$. Далее на каждом шаге алгоритма происходит слияние двух самых близких кластеров K_u и K_v, образуя новый кластер K_w = K_u \cup K_v. Расстояние от кластера K_w до любого другого кластера K_s вычисляется по расстояниям $\rho(K_u, K_v), \rho(K_u, K_s)$ и $\rho(K_v, K_s)$, которые к этому моменту уже известны. Каждый кластер K_k ($k \in \{1, 2, ..., Q\}$) характеризуется параметрами: L_k^* — мощность кластера, $g_k^* = D_k^*/L_k^*$ — разряженность кластера,

$$\boldsymbol{\xi}_{k}^{*} = \left[\sum_{d} x_{[n_{dk}]}^{*} L_{k}^{-1}, \sum_{d} y_{[n_{dk}]}^{*} L_{k}^{-1}, \sum_{d} z_{[n_{dk}]}^{*} L_{k}^{-1}\right]^{T}$$

— центр кластера. Здесь $n_{dk} \in \mathcal{K}_k$, $D_k^* = \max_{i,j} \|\boldsymbol{\lambda}_{[n_{ik}]}^* - \boldsymbol{\lambda}_{[n_{jk}]}^*\|$ — диаметр кластера \mathcal{K}_k (где

 $i, j = \overline{1, L_k^*}, n_{ik}, n_{jk} \in K_k$). Кластер K_k по своей топологической структуре может быть сосредоточенным или распределённым, однородным или неоднородным, иметь или не иметь «близких соседей-кластеров». Для учёта этих особенностей для каждого кластера K_k сформируем множество $\Omega_k = \{n_{\Omega_k i}, i = \overline{1, L_{\Omega_k}^*}\}$ (где $n_{\Omega_k i} \in \{n_1, n_2, \ldots, n_{N_1}\}$), которое объединяет в себе все метки, соответствующие оценкам из множества $\{\lambda_{[n_1]}^*, \lambda_{[n_2]}^*, \ldots, \lambda_{[n_{N_1}]}^*\}$, наиболее близким к центру $\boldsymbol{\xi}_k^*$ кластера K_k . При этом используется следующий критерий близости оценок:

$$\left|\alpha_{m[n_{\Omega_k i}]}^* - \alpha_m^{\boldsymbol{\xi}_k^*}\right| < \varepsilon_{\alpha}; \qquad \left|\beta_{m[n_{\Omega_k i}]}^* - \beta_m^{\boldsymbol{\xi}_k^*}\right| < \varepsilon_{\beta}, \quad m = \overline{1, M}, \tag{2}$$

где $\alpha_m^{\boldsymbol{\xi}_k^*}$ и $\beta_m^{\boldsymbol{\xi}_k^*}$ — вторичные пеленги оценки $\boldsymbol{\xi}_k^*$ по отношению к приёмной позиции Π_m ; $\alpha_{m[n_{\Omega_k i}]}^*$ и $\beta_{m[n_{\Omega_k i}]}^*$ — вторичные пеленги оценки $\boldsymbol{\lambda}_{[n_{\Omega_k i}]}^*$, соответствующие РИС $_{[n_{\Omega_k i}]}$, по отношению к Π_m . Множество Ω_k назовём ядром кластера K_k . Основными характеристиками ядра Ω_k являются: мощность $L_{\Omega_k}^* \geq 1$, его разреженность $g_{\Omega_k}^*$ и центр

$$\mathbf{I}_{\mathbf{\Omega}_{k}}^{*} = \left[\sum_{i} x_{[n_{\mathbf{\Omega}_{k}i}]}^{*} (L_{\mathbf{\Omega}_{k}}^{*})^{-1}, \sum_{i} y_{[n_{\mathbf{\Omega}_{k}i}]}^{*} (L_{\mathbf{\Omega}_{k}}^{*})^{-1}, \sum_{i} z_{[n_{\mathbf{\Omega}_{k}i}]}^{*} (L_{\mathbf{\Omega}_{k}}^{*})^{-1}\right]^{T}, \quad n_{\mathbf{\Omega}_{k}i} \in \mathbf{\Omega}_{k}$$

Таким образом, в пространстве \mathbb{R}^3 сформирована некоторая окрестность O_{Ω_k} (с центром в точке $\mathbf{I}^*_{\Omega_k}$), которую назовём доверительной областью ядра Ω_k для кластера \mathbf{K}_k .

Каждому ядру Ω_k можно поставить в соответствие множество измерительных каналов $\mathbf{K}_k = \{\mathbf{K}_k^{\alpha}, \mathbf{K}_k^{\beta}\}$, где $\mathbf{K}_k^{\alpha} = \{\mathbf{K}_{ki}^{\alpha}, i = \overline{1, M_k^{\alpha}}\}$ и $\mathbf{K}_k^{\beta} = \{\mathbf{K}_{ki}^{\beta}, i = \overline{1, M_k^{\beta}}\}$ — множества азимутальных и угломестных каналов, использованных при построении ядра Ω_k , при этом $M_k^{\alpha} + M_k^{\beta} \leq 2M$.

Обнаружение недостоверных каналов, формирование результирующей оценки. Для каждого ядра Ω_k определяем множества условно достоверных ($\mathbf{K}_k^0 = \{\mathbf{K}_k^{0\alpha}, \mathbf{K}_k^{0\beta}\} \subseteq \mathbf{K}$) и условно недостоверных ($\mathbf{K}_k^1 = \{\mathbf{K}_k^{1\alpha}, \mathbf{K}_k^{1\beta}\} \subseteq \mathbf{K}$) измерительных каналов, где $\mathbf{K}_k^0 \cap \mathbf{K}_k^1 = \oslash$, $\mathbf{K}_k^0 \cup \mathbf{K}_k^1 = \mathbf{K}$, $\|\mathbf{K}_k^0\| + \|\mathbf{K}_k^1\| = \|\mathbf{K}\| = 2M$, $\|\cdot\|$ — оператор вы-

числения мощности множества. При этом для элементов множеств $\mathbf{K}_k^{0\alpha}$ и $\mathbf{K}_k^{0\beta}$ справедливы неравенства

$$\left|\tilde{\alpha}_m - \alpha_m^{\mathbf{I}_{\mathbf{\Omega}_k}^*}\right| \le \varepsilon_{\alpha}; \qquad \left|\tilde{\beta}_m - \beta_m^{\mathbf{I}_{\mathbf{\Omega}_k}^*}\right| \le \varepsilon_{\beta}, \quad m = \overline{1, M}, \tag{3}$$

 $\mathbf{I}_{\Omega_k}^*$ и $\beta_m^{\mathbf{I}_{\Omega_k}^*}$ — вторичные пеленги центра ядра Ω_k (точка $\mathbf{I}_{\Omega_k}^*$). Соответственно для элементов множеств $\mathbf{K}_k^{1\alpha}$ и $\mathbf{K}_k^{1\beta}$ неравенства (3) не выполняются.

Вариант 1: $\|\mathbf{K}_{k}^{1}\| \neq 0 \ \forall k = \overline{1, Q}$, т. е. у каждого ядра Ω_{k} есть условно недостоверные измерительные каналы. В этом случае выбираем приоритетное ядро $\Omega^{*} \in \{\Omega_{1}, \Omega_{2}, \ldots, \Omega_{Q}\}$, для которого $\|(\mathbf{K}^{0})^{*}\| = \max_{k} \|(\mathbf{K}_{k}^{0})^{*}\|, k = \overline{1, Q}$. Если решение не единственное, то предпочтение отдаётся наиболее плотному ядру (по принципу ранжирования). Далее на базе первичных измерений достоверных каналов (\mathbf{K}^{0})^{*} производим вторую прогонку изложенного выше метода и осуществляем выбор приоритетного ядра Ω_{opt}^{*} , центр которого $\mathbf{I}_{\Omega_{\text{opt}}}^{*}$ и является результирующей оценкой местоположения цели.

Вариант 2: существует семейство ядер $\{\Omega_i^*, i = \overline{1, Q^*}\}$ (где $\Omega_i^* \in \{\Omega_1, \Omega_2, \dots, \Omega_Q\}$, $Q^* \leq Q$), у которых отсутствуют недостоверные измерительные каналы. В варианте 2 приоритетное ядро Ω_{opt}^* теперь выбирается из множества $\{\Omega_i^*, i = \overline{1, Q^*}\}$ с учётом указанного выше принципа ранжирования. Поскольку для ядра Ω_{opt}^* характерно отсутствие недостоверных каналов, то его центр $\mathbf{I}_{\Omega_{opt}}^*$ принимается за результирующую оценку и вторая прогонка развитого метода не нужна.

Иллюстративный пример. Исходные данные для моделирования: M = 5, $\Pi_0(0,0,0)$, $\Pi_m(0,5\pi m,10000,0)$, $m = \overline{1,4}$, $\varepsilon_{\alpha} = 1,5$, $\varepsilon_{\beta} = 3$, $\gamma_{\alpha\beta} = 3$, $\gamma_{\alpha} = 2$, $\gamma_{\beta} = 1$, Q = 7, N = 806, $\varsigma^{\alpha\beta} = 6$, S = 4, $(\varsigma_1^{\alpha}, \varsigma_1^{\beta}) = (2, 4)$, $(\varsigma_2^{\alpha}, \varsigma_2^{\beta}) = (3, 3)$, $(\varsigma_3^{\alpha}, \varsigma_3^{\beta}) = (4, 2)$, $(\varsigma_4^{\alpha}, \varsigma_4^{\beta}) = (5, 1)$, $N^{\{2,4\}} = 15$, $N^{\{3,3\}} = 28$, $N^{\{4,2\}} = 33$, $N^{\{5,1\}} = 26$, $N^{\{\varsigma^{\alpha\beta}\}} = N^{\{6\}} = 15$. Здесь и далее положение пеленгаторов и цели указывается в цилиндрической системе координат (φ, ρ, z), где φ даётся в градусах, ρ и z — в метрах, все угловые величины, связанные с измерениями, также выражены в градусах.

Основные этапы первой прогонки развитого метода на исходных измерениях отражены на рис. 1 и в табл. 1, при этом использовались следующие частные исходные данные

Puc. 1. Гистограмма распределения единичных оценок по кластерам для исходных измерений

k	L_k^*	g_k^*	$ ho(oldsymbol{\xi}_k^*,oldsymbol{\lambda})$	$ ho(\mathbf{I}^*_{\mathbf{\Omega}_k}, oldsymbol{\lambda})$	\mathbf{K}_k^{1lpha}	\mathbf{K}_k^{1eta}	$\ \mathbf{K}_k^1\ $
1	58	159	1051	254	$\{5\}$	{3}	2
2	177	87	1844	908	$\{5\}$	$\{3\}$	2
3	48	133	14800	14692	$\{1, 2, 4\}$	$\{3\}$	4
4	93	73	9697	9271	$\{1, 2, 4, 5\}$	{3}	5
5	14	481	29862	29835	$\{1, 2, 3, 4, 5\}$	$\{\oslash\}$	5
6	2	1427	26044	26044	$\{1, 2, 5\}$	$\{3\}$	4
7	5	2175	93634	93634	$\{1, 2, 5\}$	{3}	4

Т	а	б	л	и	Π	а	1
_	~	~	• •		~	~	_

(предполагается наличие АОИ в каналах K_5^{α} и K_3^{β}):

$$\boldsymbol{\lambda} = [43,50 \cdot 10^3, 3 \cdot 10^3]^T, \quad \boldsymbol{\Delta}\boldsymbol{\alpha} = [\boldsymbol{\Delta}\alpha_m, \ m = \overline{1,5}]^T = [0,44, \ 0,16, -0,39, -0,90, -10,08]^T,$$

$$\boldsymbol{\Delta\beta} = [\Delta\beta_m, \ m = \overline{1,5}]^T = [-0,60, \ 0,10, \ 9,56, \ 0,11, \ 0,90]^T,$$

 $\mathbf{W} = [33,82, 36,37, 49,94, 51,17, 32,92, 3,31, 3,07, 12,56, 4,08, 2,52]^T.$

Количественное распределение оценок по кластерам показано на рис. 1, где на оси абсцисс указывается номер кластера, а на оси ординат — количество оценок, образующих данный кластер. Сводные результаты первой прогонки метода приведены в табл. 1, из которой видно, что общее количество участвующих в кластеризации оценок $N_1 = 402$, т. е. это те оценки из N = 806 потенциально возможных (соответствующих наблюдаемым ИС), прошедших отсев (селекцию) с учётом условий (1). Согласно критерию $\|(\mathbf{K}^0)^*\| = \max_k \|(\mathbf{K}^0_k)^*\|$ (при $k = \overline{1, Q}$) были выбраны приоритетные ядра $\Omega^* = \{\Omega_1, \Omega_2\}$ и ранжированием (по параметру L_k^*) осуществлён отбор оптимального ядра $\Omega_{\text{opt}}^* = \{\Omega_2\}$. Далее для ядра $\Omega_{\text{opt}}^* = \{5\}$, что отвечает АОИ, фигурирующим в исходных данных. Затем на основе первичных измерений достоверных каналов ($\mathbf{K}^{0\alpha}$)^{*} = $\{1, 2, 4, 5\}$ производилась вторая прогонка метода (поскольку мы имеем дело с вариантом 1), сводные результаты которой представлены в табл. 2. Заметим, что при ($\mathbf{K}^{1\beta}$)^{*} = $\{3\}$ и ($\mathbf{K}^{1\alpha}$)^{*} = $\{5\}$ в соответствии с замечанием о количестве наблюдаемых ИС имеем $\zeta_{\alpha\beta} = 4 + 4$, при этом $N^{(4,4)} = \left(\sum_{n=2}^4 C_4^n\right) \left(\sum_{n=1}^4 C_4^n\right) = 165$.

Т	aб	Л	И	ц	a	2
---	----	---	---	---	---	---

	k	L_k^*	g_k^*	$ ho(oldsymbol{\xi}_k^*,oldsymbol{\lambda})$	$ ho(\mathbf{I}^*_{\mathbf{\Omega}_k}, \boldsymbol{\lambda})$	\mathbf{K}_{k}^{1lpha}	\mathbf{K}_{k}^{1eta}	$\ \mathbf{K}_k^1\ $
-	1	15	418	2476	901	{⊘}	{⊘}	0
	2	94	15	407	389	{⊘}	{⊘}	0
	3	1	0	73876	87124	$\{1, 2, 3\}$	{3}	4
	4	2	1765	97545	91834	$\{1, 2, 5\}$	{⊘}	3
	5	3	2872	23132	23132	$\{1, 2, 5\}$	{⊘}	3
	6	1	0	38789	41457	$\{1, 2, 3\}$	{3}	4
	7	1	134	23586	22752	$\{1, 2, 3, 4, 5\}$	{⊘}	5

Puc. 2. Гистограмма распределения единичных оценок по кластерам для измерений достоверных каналов

Puc. 3. Результирующие ошибки сравниваемых методов: *a*, *b* — без и с учётом аномальных ошибок измерений (при дальности 50 км); *c* — с учётом аномальных ошибок измерений (при дальности 200 км)

Сравнение таблиц показывает, что в результате второй прогонки метода (на измерениях достоверных каналов) уменьшилось общее количество оценок, участвующих в кластеризации, до $N_1^{(4,4)} = 117$ (ранее их было $N^{(4,4)} = 165$), которые прошли отсев с учётом условий (1). Также построено оптимальное ядро $\Omega_{\rm opt}^* = \{\Omega_2\}$, однако в сравнении с первой прогонкой существенно повысилась точность оценивания местоположения цели: при работе метода на первичных измерениях (первая прогонка) имели невязку $\rho(\mathbf{I}_{\Omega_k}^*, \boldsymbol{\lambda}) = 908$, а при работе на измерениях достоверных каналов (вторая прогонка) — $\rho(\mathbf{I}_{\Omega_k}^*, \boldsymbol{\lambda}) = 389$. Количественное распределение оценок по кластерам после повторного применения метода приведено на рис. 2.

Помимо развитого метода местоположение цели оценивалось ещё двумя методами: ММП (метод максимального правдоподобия) и РММП (расширенный ММП, когда неизвестные АОИ включаются в вектор оцениваемых параметров). При этом для РММП полагалось, что номера каналов с аномальными ошибками известны, а неизвестны лишь значения соответствующих аномальных ошибок. Сравнение производилось для различных значений $\varphi \in \{3i, i = \overline{1,120}\}, \rho \in \{5, 10, 15, 20, 25, 30, 35\} \cdot 10^4$ и $z = 3 \cdot 10^3$. Оценки усреднялись по 100 измерениям текущего положения цели с независимой шумовой составляющей, распределённой по нормальному закону с СКО 0,5° и 1° для азимутального и угломестного каналов соответственно.

На рис. 3, *а* приведены зависимости усреднённой ошибки оценивания (в метрах) местоположения цели от φ для трёх методов (сплошные кривые — для развитого метода, штриховые — для ММП, пунктирные — для РММП) при $\rho = 5 \cdot 10^4$ и отсутствии АОИ. На рисунке видно, что в нормальных условиях функционирования ТИС методы сравнимы по точности. Ситуация кардинально меняется, если ТИС функционирует в аномальных условиях (рис. 3, *b*, *c* для $\rho = 5 \cdot 10^4$ и $\rho = 2 \cdot 10^5$ соответственно). Отметим, что только развитой метод обеспечивает построение надёжной оценки для всех направлений визирования цели (с учётом φ).

Заключение. Развитой метод можно отнести к классу интеллектуально-аналитических методов, поскольку он предполагает выполнение традиционных аналитических процедур и интеллектуальных операций, относящихся к перебору вариантов, распознаванию ситуаций, формированию кластеров и т. д. Анализ показал, что метод обеспечивает существенный выигрыш в точности оценивания местоположения цели на базе ТИС по сравнению с классическими методами при аномальных условиях наблюдения, а также асимптотическую сходимость формируемых оценок к оценкам классических методов в нормальных условиях функционирования ТИС. При практической реализации развитого метода может быть весьма эффективным участие опытного оператора, особенно на этапе, связанном с определением необходимого числа кластеров. Наибольший эффект от применения метода возможен в ТИС с большим числом измерительных каналов, поскольку именно в этом случае обеспечивается формирование необходимого количества альтернативных ИС и соответствующих им единичных оценок местоположения излучающей цели.

СПИСОК ЛИТЕРАТУРЫ

- 1. Черняк В. С. Многопозиционная радиолокация. М.: Радио и связь, 1993. 416 с.
- 2. Булычев Ю. Г., Булычев В. Ю., Ивакина С. С., Насенков И. Г. Амплитудноугломерный метод нестационарной пассивной локации с учётом частично известных параметров движения цели // Автометрия. 2015. **51**, № 3. С. 70–79.
- 3. Булычев Ю. Г., Ивакина С. С., Мозоль А. А., Насенков И. Г. Анализ модификации энергетического метода пассивной дальнометрии // Автометрия. 2016. **52**, № 1. С. 37–44.

- Singhal S. C., Stansel L. E. A statistical model for optical instrument location // Opt. Eng. 1980. 19, N 3. P. 376.
- Wax M. Position location from sensors with position uncertainly // IEEE Trans. 1983. AES-19, N 5. P. 658.
- Булычев В. Ю., Булычев Ю. Г., Ивакина С. С. и др. Обоснование методов оптимального оценивания параметров движения цели в триангуляционной измерительной системе // Изв. РАН. Теория и системы управления. 2015. № 4. С. 94–110.
- Булычев Ю. Г., Головской В. А. Обработка измерений угломерных систем в условиях априорной неопределённости в регуляризированной постановке // Радиотехника и электроника. 2010. 55, № 1. С. 71–77.
- Булычев Ю. Г., Бурлай И. В., Манин А. П., Крицкий Я. В. Вариационно-селективный метод оценивания координат местоположения объекта в угломерной системе // Изв. РАН. Теория и системы управления. 2001. № 4. С. 161–167.
- Lin X., Kirubarajan T., Bar-Shalom Y., Maskell S. Comparison of EKF, pseudomeasurement and particle filters for a bearing-only target tracking problem // Proc. SPIE. 2002. 4728. P. 240–250.
- Aidala V. J., Nardone S. C. Biased estimation properties of the pseudolinear tracking filter // IEEE Trans. Aerospase Electron. Syst. 1982. 18, N 4. P. 432–441.
- Amelin K. S., Miller A. B. An algorithm for refinement of the position of a light UAV on the basis of Kalman filtering of bearing measurements // Journ. Commun. Technol. and Electron. 2014. 59, N 6. P. 622–631.
- Miller A. B. Development of the motion control on the basis of Kalman filtering of bearing-only measurements // Automation and Remote Control. 2015. 76, N 6. P. 1018–1035.
- 13. Мандель И. Д. Кластерный анализ. М.: Финансы и статистика, 1988. 176 с.
- Уиллиамс У. Т., Ланс Д. Н. Методы иерархической классификации // Статистические методы для ЭВМ /Под ред. М. Б. Малютова. М.: Наука, 1986. 464 с.
- Lance G. N., Willams W. T. A general theory of classificatory sorting strategies. 1. Hierarchical systems // Comp. Journ. 1967. 9, N 4. P. 373–380.

Поступила в редакцию 13 февраля 2017 г.