УДК 533.9, 536.4

Моделирование поведения полых частиц ZrO₂ в плазменной струе с учетом их термического расширения^{*}

И.П. Гуляев, О.П. Солоненко

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

E-mail: Gulyaev@itam.nsc.ru; solo@itam.nsc.ru

На примере ZrO_2 рассмотрен эффект расширения полых микросферических капель вследствие их нагрева при движении в плазменной струе. Предложена достаточно простая модель, учитывающая изменение размера капель и толщины оболочки вследствие термического расширения газовой полости, а также их возможного испарения. Проведенные расчеты позволили оценить масштаб изменения диаметра (10–20 %) и толщины оболочки (до 50 %) частиц ZrO_2 в условиях, характерных для плазменной обработки порошковых материалов и нанесения покрытий. Исследовано влияние данного эффекта на динамику нагрева и ускорения частиц, а также выполнен сравнительный анализ поведения полых и плотных частиц в плазменной струе.

Ключевые слова: термическая плазма, плазменная обработка порошков, диоксид циркония, полая микросфера, термическое расширение.

Введение

Порошки, состоящие из полых сфер размером в десятки микрон (полые порошки), в настоящее время успешно применяются в различных областях промышленности. В первую очередь, это производство композиционных конструкционных материалов, катализаторов, адсорбентов, капсулирующих и газоразделительных сред и т. д. В технологии газотермического напыления полые порошки диоксида циркония используются для нанесения термобарьерных покрытий (ТБП) на лопатки авиационных и ракетных двигателей, газовых турбин электростанций, в которых основными методами повышения эффективности является увеличение входной температуры газа и рабочей температуры в камере сгорания. Важнейшими требованиями, предъявляемыми к таким покрытиям, являются высокая температура плавления, отсутствие фазовых переходов в рабочем диапазоне температур, высокая адгезия и химическая инертность, малые теплопроводность и скорость спекания пористой микроструктуры [1]. Наиболее широкое применение к настоящему времени получил диоксид циркония, стабилизированный 7–8 % оксидом иттрия Y_2O_3 (Yttria Stabilized Zirconia, YSZ), благодаря сочетанию высокой стабильности и прочности материала.

^{*} Работа выполнена при финансовой поддержке РФФИ в рамках проекта № 12-08-31150.

[©] Гуляев И.П., Солоненко О.П., 2013

Гуляев И.П., Солоненко О.П.

Для получения термобарьерных покрытий из YSZ сегодня используются порошки, полученые дроблением плавленного компакта (Fused & Crashed), агломерированием и спеканием мелких зерен материала (Agglomerated & Sintered), либо путем предварительной термической обработки, приводящей к формированию полых сфер (Hollow Spheres, HOSP) [2, 3]. Многие авторы отмечают, что ТБП, полученные с использованием полых порошков, отличаются меньшей теплопроводностью по сравнению с покрытиями, полученными из плотных частиц [1, 4–6]. Пористость в значительной степени влияет как на теплозащитные, так и на прочностные характеристики покрытия. В работах [2, 7] показано, что покрытия, полученные на основе полых порошков, обладают меньшей теплопроводностью при одних и тех же значениях общей пористости. Причиной этому является увеличенное количество микропустот и микротрещин, ориентированных параллельно поверхности покрытия, что связано с принципиально различным характером растекания полых и плотных капель при соударении с твердой поверхностью [8, 9]. Именно такие пустоты, главным образом, влияют на теплопроводность покрытия в направлении, перпендикулярном поверхности.

Применение полых керамических порошков может существенно расширить возможности таких сравнительно низкотемпературных методов, как высокоскоростное газопламенное и детонационное напыление. Сложности нанесения покрытия YSZ в таких технологиях связаны с низкой температурой несущей струи (порядка 3000 °C) и низкой теплопроводностью материала: полностью расплавить удается плотные частицы размером порядка 10 мкм [10–12], ядро более крупных частиц, традиционно используемых для напыления, остается непроплавленным. Использование полых порошков с размером частиц 40–50 мкм и толщиной оболочки 2–5 мкм может позволить полноценно использовать преимущества указанных методов для восстановления и нанесения ТБП.

Несмотря на большое количество работ, посвященных изучению свойств покрытий, полученных с применением полых порошков, вопросам численного и экспериментального изучения поведения полых частиц в плазменных струях уделено недостаточно внимания. В работе [13] проведено моделирование нагрева и ускорения полых частиц ZrO₂ в осесимметричной плазменной струе. Авторы установили, что в общем случае полые капли ускоряются (замедляются) и нагреваются (остывают) быстрее, чем плотные того же размера. Применение полых порошков для нанесения покрытий, согласно расчетам, позволяет увеличить коэффициент использования материала на коротких дистанциях напыления на 50 %.

В работе [14] проведено численное исследование зависимости траектории, скорости и температуры полых и плотных частиц ZrO₂ в плазменной струе. Для описания теплообмена внутри частицы авторы разделили ее на сферические слои, что позволило учесть частичное плавление и испарение капли. Однако, как показывают оценки числа Вебера, используемое авторами допущение о том, что при полном плавлении газовая полость разрушается и частица принимает форму плотной микросферы той же массы, носит частный характер. При использовании модельного профиля струи расчеты скорости и температуры частиц показали удовлетворительное согласование с экспериментальными данными других авторов. В работе [14] также отмечаются существенные различия в траекториях полых и плотных частиц, более быстрое и полное плавление полых микросфер, меньшая неоднородность температуры в их объеме.

Вопрос формирования полых сфер при обработке агломерированных порошков в плазменной струе рассмотрен в работе [15], где также приведены примеры практического получения полых порошков керамик и металлов. Эти результаты подтверждают тот факт, что полые микросферы сохраняют целостность в процессе обработки в плазменной струе и при последующей закалке.

Принципиальной особенностью полых частиц является наличие закрытой газовой полости (рис. 1), которая после плавления материала в плазме способна изменять размер жидкой капли при изменении температуры. Впервые о наличии данного эффекта было

Рис. 1. Основные характеристики полой частицы.

упомянуто в работе [16], где показано, что при нагреве полых частиц ZrO₂ размером 50 мкм до температуры кипения их диаметр может увеличиваться на 5–20 % в зависимости от начальной толщины оболочки.

Настоящая работа направлена на изучение эффекта расширения полых капель в плазменной струе, а также его влияния на ускорение и нагрев частиц. Для этого разработана достаточно простая физическая модель изменения размера полых капель

при их нагреве. Расчет нагрева и ускорения частиц осуществлялся с использованием известных зависимостей для коэффициентов сопротивления и теплоотдачи без учета градиентного нагрева частиц, изменения плотности материала при плавлении и других более тонких эффектов, которые не влияют непосредственно на изучаемое явление.

1. Модель поведения полой капли в плазменной струе

Рассматривается движение одиночной частицы вдоль оси плазменной струи при следующих допущениях: равномерное распределение температуры по объему капли, зависимость размера капли от ее температуры, отсутствие обратного влияния частиц на параметры плазменной струи.

Модель оперирует среднемассовой температурой частицы ввиду малой толщины оболочки Δ_p , поскольку: 1) число Био Bi = $\alpha \Delta_p / \lambda_p$ для частиц ZrO₂ на начальном этапе нагрева не превышало значений Bi $\approx 0,1$, а при дальнейшем движении частицы в струе убывало, и жидкие микросферы характеризовались значениями Bi $\approx 10^{-2}$ и менее; 2) характерные времена прогрева оболочки частицы $t_p \sim \Delta_p^2 / a_p \sim 10^{-5} - 10^{-4}$ с и тепловой релаксации газа внутри полой капли $t_g \sim 10^{-7} - 10^{-6}$ с значительно меньше характерного времени пребывания частицы в плазменной струе ($t_R \sim 10^{-3}$ с и более).

При расчете межфазного теплообмена учитывались радиационные потери тепла частицей, однако в рассматриваемых условиях их вклад в общий теплообмен с газом не превышал 2-5 % (в зависимости от размера частиц и характеристик потока), что согласуется с известными результатами [17–19]. Свойства ZrO₂, используемые в расчетах, представлены в табл. 1.

Физические свойства ZrO ₂					
Плотность, кг/м ³	5600				
Поверхностное натяжение, Н/м	0,43				
Теплоемкость (твердый/жидкий), Дж/кг·К	755 / 811				
Температура плавления/кипения, К	2960 / 4573				
Теплота плавления/кипения, Дж/кг	8,52·10 ⁵ /73,64·10 ⁵				

Таблица 1

1.1. Расчет движения и нагрева полой частицы в плазменной струе

В основе расчета поведения частицы в плазменном потоке лежат уравнения межфазного обмена импульсом и теплом. Рассматривается одномерная задача движения частицы вдоль оси симметрии плазменной струи z. Скорость частицы U_p , ее энтальпия

 H_p и температура T_p определяются по уравнениям:

$$m_{p} \frac{dU_{p}}{dt} = \frac{\pi D_{p}^{2}}{4} C_{d} \frac{1}{2} \rho_{f} (U_{f} - U_{p}) |U_{f} - U_{p}|,$$

$$c_{p} m_{p} \frac{dT_{p}}{dt} = \frac{dH_{p}}{dt} = \alpha \pi D_{p}^{2} (T_{f} - T_{p}) - \varepsilon \sigma_{SB} \pi D_{p}^{2} T_{p}^{4},$$
(1)

второе слагаемое, входящее в уравнение теплопереноса, отвечает за радиационные потери частицей. Начальные условия (t = 0) имеют вид: $z_{p0} = 0$, $U_{p0} = 0$, $H_{p0} = c_p m_p T_{p0}$, где

$$m_p = \frac{\pi \rho_p}{6} D_p^3 [1 - (1 - 2\frac{\Delta_p}{D_p})^3]$$
 — масса частицы, $T_{p0} = 300$ К — начальная температура

частицы. Для коэффициентов сопротивления и теплообмена используются формулы Карлсон–Хоглунда [20] и Ранца–Маршалла [21] соответственно:

$$C_d = \frac{24}{\text{Re}} (1+0.15 \,\text{Re}^{0.687}), \quad \alpha = \frac{\lambda_{\text{film}}}{D_p} \Big(2+0.6 \,\text{Re}^{0.5} \cdot \text{Pr}^{0.33} \Big),$$

где числа Рейнольдса $\operatorname{Re} = \rho_{\operatorname{film}} D_p \left| U_f - U_p \right| / \mu_{\operatorname{film}}$ и Прандтля $\operatorname{Pr} = \mu_{\operatorname{film}} \cdot c_{\operatorname{film}} / \lambda_{\operatorname{film}}$ рассчитываются по свойствам газа при «пленочной» температуре $T_{\operatorname{film}} = (T_p + T_f) / 2$.

По известным текущим значениям полной энтальпии частицы H_p и ее массе m_p однозначно определяются температура частицы T_p , ее диаметр D_p и относительная толщина оболочки $\delta_p = \Delta_p / D_p$.

1.2. Определение температуры и массы частицы

Температура частицы вычисляется по известному значению ее полной энтальпии H_p . Первоначально для частицы определяются четыре опорных значения энтальпии, отвечающие: $H_1 = c_{ps}m_pT_{pm}$ — началу плавления, $H_2 = H_1 + m_pL_{pm}$ — полному плавлению, $H_3 = H_2 + c_{pl}m_p(T_{pb} - T_{pm})$ — началу кипения (испарения), $H_4 = H_3 + m_pL_{pb}$ — полному испарению соответственно. Здесь c_{ps} , c_{pl} — теплоемкость материала частицы в твердом и жидком состоянии, T_{pm} , T_{pb} — температуры плавления и кипения материала соответственно. Далее температура частицы T_p определяется по следующим формулам:

$$T_{p} = \begin{cases} H_{p} / c_{ps}m_{p} & \text{при } H_{p} < H_{1}, \\ T_{pm} & \text{при } H_{1} \leq H_{p} \leq H_{2}, \\ T_{pm} + (H_{p} - H_{2}) / c_{pl}m_{p} & \text{при } H_{2} < H_{p} < H_{3} \\ T_{pb} & \text{при } H_{3} \leq H_{p} \leq H_{4}. \end{cases}$$

По завершении каждой временной итерации производится коррекция массы частицы с учетом ее возможного испарения. Считается, что при $H_p \ge H_3$ масса частицы уменьшается на величину $\Delta m_p = (H_p - H_3)/L_{pb}$, а энтальпия частицы — на $\Delta H_p = \Delta m_p L_{pb}$. Если энтальпия капли превышает значение H_4 , считается, что частица полностью испарилась. После поправки массы производится перерасчет величин H_1 , H_2 , H_3 , H_4 .

1.3. Определение текущего размера частицы

Внешний диаметр частицы D_p и относительная толщина оболочки δ_p не изменяются до тех пор, пока по мере нагревания частицы не произойдет ее плавление. Дальнейший нагрев частицы приводит к расширению внутреннего газа, который совершает работу против сил поверхностного натяжения и внешнего давления. При этом диаметр газовой полости (и всей капли) увеличивается, а давление в ней падает. В каждый момент времени (при каждом значении температуры) выполняется баланс указанных давлений. В частности, начальный диаметр частицы D_{p0} и безразмерная толщина оболочки δ_{p0} отвечают балансу лапласова давления, давления в газовой полости P_{g0} и внешнего давления среды P_{∞} при температуре плавления материала $T_0 = T_{pm}$, т. е. отвечают условиям, при которых была получена твердая полая сфера:

$$P_{g0} = P_{\infty} + \frac{4\sigma}{D_{p0}} \left(1 + \frac{1}{1 - 2\delta_{p0}} \right).$$
(2)

Нами принимается допущение о том, что давление и состав газа внутри микросферы в момент ее полного плавления не подвергаются изменению с момента ее получения, то есть оболочка твердой микросферы остается непроницаемой при хранении порошка.

Воспользуемся уравнениями, предложенными в работе [2], устанавливающими связь между текущими значениями радиуса R_p и толщины оболочки Δ_p полой капли при заданной температуре газа $T_g = T_p$ внутри частицы:

$$P_{g\infty} + \frac{2\sigma_p}{R_p} \cdot \left(1 + \frac{1}{1 - \Delta_p / R_p}\right) - \frac{3m_{g0}RT_g}{4\pi R_p^3 M_g} \left(1 - \frac{\Delta_p}{R_p}\right)^{-3} = 0, \quad 1 - \frac{\Delta_p}{R_p} = \sqrt[3]{1 - \frac{3m_{p0}}{4\pi\rho_p R_p^3}},$$

где m_{p0} и m_{g0} — заданные значения начальной массы полой сферы и газа, содержащегося внутри нее, M_g — относительная молекулярная (атомная) масса.

Для получения зависимости текущего давления в газовой полости P_g от температуры T_p воспользуемся далее уравнением состояния идеального газа и условием постоянства массы захваченного газа в момент образования полой частицы:

$$m_g = M_0 P_{g0} V_{g0} / RT_0 = M P_g V_g / RT_p,$$
(3)

где $V_{g0} = \frac{\pi}{6} D_{p0}^3 (1 - 2\delta_{p0})^3$ — начальный объем газовой полости, $V_g = \frac{\pi}{6} D_p^3 (1 - 2\delta_p)^3$ —

объем газовой полости при температуре T_p ; M_0 , M — относительные молярные массы газа при начальной и текущей температуре, R — универсальная газовая постоянная. С другой стороны, в состоянии равновесия текущее давление газа должно удовлетворять уравнению баланса сил, действующих на жидкую оболочку, подобному уравнению (2):

$$P_g = P_{\infty} + \frac{4\sigma}{D_p} \left(1 + \frac{1}{1 - 2\delta_p} \right). \tag{4}$$

Используя выражения (3) и (4), получим следующее уравнение, связывающее текущие значения диаметра и относительной толщины оболочки при заданной температуре частицы:

$$P_{\infty} + \frac{4\sigma}{D_p} \left(1 + \frac{1}{1 - 2\delta_p} \right) - P_{g0} \left(\frac{V_{g0}}{V_g} \right) \left(\frac{T_p}{T_0} \right) \left(\frac{M_0}{M} \right) = 0.$$
(5)

Выразим толщину оболочки δ_p через текущий диаметр частицы D_p , воспользовавшись уравнением баланса массы:

$$m_p = \frac{\pi}{6} \rho_p D_p^3 [1 - (1 - 2\delta_p)^3],$$

откуда

$$(1-2\delta_p) = \sqrt[3]{1-6m_p/(\pi\rho_p D_p^3)}.$$
 (6)

После подстановки (6) в (5) получаем алгебраическое уравнение относительно переменной D_p , которое решается численно с использованием итерационного метода Ньютона.

Отметим интересный факт, обнаруженный в результате проведенных расчетов: расширение частиц при нагревании слабо зависит от коэффициента поверхностного натяжения материала. Чтобы понять причину этого на качественном уровне, рассмотрим расширение полой капли с пренебрежимо малой толщиной стенки — «мыльного пузыря». Пусть частица имеет начальный диаметр D_0 , давление в газовой полости P_0 и температуру T_0 , которая, например, равна температуре плавления материала. Рассчитаем значение диаметра D_1 , который будет иметь частица при нагреве до максимальной температуры T_1 (температуры кипения), отвечающее давлению в полости P_1 . Согласно уравнению Клапейрона–Менделеева имеем:

$$V_1/V_0 = P_0 T_1/(P_1 T_0)$$

Выразим отношение объемов через диаметры: $V_1 / V_0 = (D_1 / D_0)^3$ и запишем в явном виде полное давление газа в частице $P = 8\sigma/D + P_{\infty}$. Тогда

$$\left(\frac{D_1}{D_0}\right)^3 = \frac{T_1}{T_0} \frac{1 + 8\sigma/P_{\infty}D_0}{1 + 8\sigma/P_{\infty}D_1}.$$
(7)

Рассмотрим два предельных случая: предельно малое значение поверхностного натяжения $8\sigma/P_{\infty}D_0 \ll 1$ и предельно большое — $8\sigma/P_{\infty}D_0 \gg 1$. Тогда из равенства (7) получим

$$\frac{D_1}{D_0} = \begin{cases} \left(T_1 / T_0\right)^{1/3}, \ 8\sigma / P_\infty D_0 << 1, \\ \left(T_1 / T_0\right)^{1/2}, \ 8\sigma / P_\infty D_0 >> 1. \end{cases}$$
(8)

Таким образом, в обоих предельных случаях расширение частицы — «мыльного пузыря» — при нагревании достаточно слабо зависит от поверхностного натяжения материала, зависимость относительного увеличения размера D_1 / D_0 ограничена сверху и снизу квадратным и кубическим корнями из относительного увеличения температуры T_1 / T_0 . Если учесть ненулевую толщину оболочки полой сферы, то зависимость относительного увеличения диаметра D_1 / D_0 от относительного увеличения температуры T_1 / T_0 является существенно более слабой по сравнению с зависимостями (8): малые изменения диаметра капли обеспечивают большие изменения объема газовой полости.

На рис. 2 показан диапазон изменения относительного диаметра полых частиц с начальной толщиной оболочки $\delta_p = 0,1$ в зависимости от температуры: при $T_1/T_0 = 2$ изменение значения коэффициента поверхностного натяжения в любых пределах приводит к изменению относительного расширения D_1/D_0 не более чем на 6 %, а при $T_1/T_0 = 5$ — на 12 %. Отметим, что для реальных материалов максимальное значение отношения

Рис. 2. Коридор зависимости диаметра полой частицы с $\delta_{p0} = 0,1$ от температуры при произвольных значениях поверхностного натяжения.

температур T_1/T_0 определяется отношением температуры кипения к температуре плавления, которое для ZrO_2 равно $T_{pb}/T_{pm} \approx 1.5$.

Обращаясь к свойствам газа, заполняющего полость частицы, отметим, что, если в рассматриваемом диапазоне температур относительная молярная масса газа *M*

не претерпевает изменений (отсутствуют диссоциация и ионизация), то изменение диаметра капли с ростом температуры не зависит от типа газа-наполнителя. В противном случае следует учитывать зависимость расширения частицы не от отношения T_1/T_0 , а от комплекса $T_1M(T_0)/T_0M(T_1)$.

1.4. Профили температуры и скорости плазменной струи

В качестве основы расчетов параметров плазменной струи были выбраны реальные условия работы плазмотрона с межэлектродной вставкой (МЭВ) номинальной мощностью 50 кВт, разработанного в ИТПМ СО РАН [22]. В табл. 2 приведены мощностные характеристики режимов работы плазмотрона с соплом диаметром 8 мм, расходом плазмообразующего газа (воздуха) 0,75 г/с (40 л/мин).

Среднемассовые значения скорости U_{f0} и температуры T_{f0} в выходном сечении сопла, при заданном диаметре d_0 и расходе плазмообразующего газа G, рассчитывались с использованием измеренных величин рабочего тока I и напряжения дуги U с учетом теплового к.п.д. плазмотрона η_T . Тогда тепловая мощность плазменной струи $P_T = \eta_T UI$, удельная энтальпия плазмы $H = P_T / G$, а ее среднемассовая температура T_{f0} определяется из уравнения $H = H_0 + \int_{T_0}^{T_{f0}} c(T) dT$ с использованием табличных данных, характеризующих зависимость теплоемкости воздуха от температуры $c_p(T)$ [23]. Среднемассовая скорость плазмы в выходном сечении сопла равна $U_{f0} = \frac{4G}{\pi d_0^2 \rho_{Air}(T_{f0})}$.

Как видно, увеличение тока дуги от 100 до 350 А приводит к значительному изменению основных характеристик струи: повышению начальной скорости плазмы с 420 до 1000 м/с, а температуры — с 6670 до 11200 К.

Г	a	б	л	И	ц	a	2
---	---	---	---	---	---	---	---

Характеристики плазменных струй при различных режимах работы плазмотрона

G		0,75 г/с (40 л/мин)					
<i>d</i> ₀ , мм		8					
I, A	100	150	200	250	300	350	
<i>U</i> , B	210	201	192	191	188	189	
$\eta_T, \%$	77,4	70,1	67,4	65,2	62,8	62,4	
P_T , к B т	16,3	21,1	25,9	31,1	35,4	41,3	
Н, кДж/г	21,7	28,2	34,5	41,5	47,2	55	
T_{f0} , K	6670	7150	7650	8500	9840	11200	
<i>U_{f0}</i> , м/с	420	500	580	700	840	1000	

Рис. 3. Расчетные профили скорости U_f и температуры T_f газа вдоль оси струи при токах I = 100 (I), 150 (2), 200 (3), 250 (4), 300 (5) А.

Использованные в расчетах распределения скорости и температуры плазмы вдоль оси струи получены с помощью вычислительного пакета ANSYS Fluent. Решалась стационарная задача в двумерной осесимметричной постановке с использованием системы уравнений переноса компонент тензора рейнольдсовых напряжений (Reynolds stress model, RSM) [24]. В расчетах использовались данные работы [23], о термодинамических и переносных свойствах воздуха от температуры. На рис. 3 приведены распределения температуры и скорости газа вдоль оси воздушной плазменной струи, истекающей из плазмотрона (диаметр сопла — 8 мм, длина — 15 мм), при токах дуги 100–300 А и расходе рабочего газа 0,75 г/с.

2. Результаты вычислительных экспериментов

2.1. Анализ результатов расчетов

Рассмотрим движение полых частиц диаметром $D_{p0} = 50$ и 100 мкм с толщиной оболочки $\delta_{p0} = 0,1$, а также плотных частиц эквивалентной массы, диаметры которых определяются выражением $D_{p \ eq} = D_p \sqrt[3]{1 - (1 - 2\delta_p)^3}$ и равны соответственно 39 и 79 мкм. На рис. 4, в качестве примера, представлено изменение скорости и температуры частиц вдоль оси струи, отвечающей току 150 А (табл. 2).

В табл. 3 приведены максимальные значения скорости и температуры, которых достигают полые и плотные частицы в плазме, а также соответствующие интервалы времени с момента инжекции частицы и достижения ею заданного сечения струи. Там же представлены расчеты потери массы частиц за счет испарения материала. Можно видеть, что во всех случаях полые частицы достигают максимальных значений скорости и температур за меньшие промежутки времени и в более близких к соплу сечениях струи. Увеличение рабочего тока приводит к росту максимальных скоростей и температур частиц (сферы меньшего размера, как полая, так и эквивалентная ей плотная, во всех случаях достигают температуры кипения). Для режима работы плазмотрона 200 А частицы меньшего размера теряют большую часть своей массы за счет испарения: полая — 91 %, а плотная — 63 %, что приводит к резкой потере скорости при выходе из струи.

Гис. 4. изменение скорости (*a*) и температуры (*b*) полых и плотных частиц 210₂ при движении вдоль плазменной струи: ток дуги I = 150 А, начальная скорость струи $U_{f0} = 500$ м/с, начальная температура $T_{f0} = 7150$ К.

Полые частицы: 50 (1), 100 (2) мкм с $\delta_{p0} = 0,1$; плотные частицы: 39 (3), 79 (4) мкм.

В различных режимах истечения струи максимальные значения скорости и температуры полых частиц с толщиной оболочки $\delta_p = 0,1$ примерно на 15 % выше, чем для плотных частиц эквивалентной массы. Это связано с более интенсивным межфазным обменом импульсом и теплом "газ–частица" за счет большей площади поверхности полых сфер.

Рассмотрим более детально поведение полых сфер диаметром $D_{p0} = 100$ мкм с различной толщиной оболочки в плазменной струе для режима I = 150 А. На рис. 5, *a*, *b* представлено изменение скорости и температуры полых частиц ZrO₂ с начальной толщиной оболочки $\delta_{p0} = 0,05, 0,1, 0,15$ и 0,2. Также для сравнения здесь приведены распределения скорости и температуры плотной частицы того же диаметра. Видно, что более легкая частицы характеризуются большими значениями скорости и температуры. Наиболее легкая частица с толщиной оболочки $\delta_{p0} = 0,05$ быстро достигает температуры кипения (0,7 мс, z = 5 см) и теряет 18 % свой массы, за счет чего достигает максимальной скорости (> 170 м/с), которая значительно превосходит скорость более плотных сфер. Максимальная скорость плотной частицы составляет 93 м/с; для частицы с $\delta_{p0} = 0,2$ — 103 м/с (+ 11 %), с $\delta_{p0} = 0,15$ — 112 м/с (+ 20 %), с $\delta_{p0} = 0,10$ — 130 м/с (+ 38 %).

Таблица З

Максимальные значения скорости и температуры частиц ZrO₂.

Ток дуги	Частицы ZrO ₂							
	полая 50 мкм, $\delta_p = 0,1$	плотная 39 мкм	полая 100 мкм, $\delta_p = 0,1$	плотная 79 мкм				
	Максимальная скорость, м/с (время, мс / сечение струи, см)							
100 A	190 (0,9 / 10)	165 (1,2 / 12)	110 (1,8 / 12)	95 (2,0 / 12)				
150 A	240 (0,8 / 10)	195 (1,0 / 12)	130 (1,6 / 12)	110 (1,9 / 12)				
200 A	330 (0,7 / 10)	233 (0,9 / 12)	150 (1,5 / 12)	125 (1,7 / 12)				
	Максимальная температура, К (время, мс / сечение струи, см)							
100 A	4573 (0,5 / 3,3)	4573 (0,7 / 4,5)	3490 (1,8 / 12)	3165 (2,0 / 13)				
150 A	4573 (0,4 / 2,5)	4573 (0,5 / 3,2)	4055 (1,6 / 12)	3480 (2,0 / 13)				
200 A	4573 (0,3 / 1,8)	4573 (0,4 / 2,1)	4573 (1,0 / 7)	4200 (1,7 / 12)				
Потеря массы, %								
100 A	28	15	0	0				
150 A	58	37	0	0				
200 A	91	63	9	0				

 $U_{f0} = 500$ м/с, $T_{f0} = 7150$ K); a — скорость, b — температура, c — внешний диаметр, d — относительная толщина оболочки.

Полые частицы: $\delta_p = 0,05$ (1), 0,1 (2), 0,15 (3), 0,2 (4); плотные частицы — 5 (a, b).

Максимальные температуры капель $T_{p \max}$ также существенно зависят от толщины оболочки: если частица с $\delta_p = 0,05$ достигает температуры кипения, то плотная сфера успевает расплавиться лишь до 81 % ее массы. Максимальные температуры полых капель с $\delta_{p0} = 0,1, 0,15$ и 0,2 равны 4054, 3448 и 3183 К соответственно.

На рис. 5, *с*, *d* показано изменение внешнего диаметра и относительной толщины оболочки тех же частиц. Диаметр сферы с начальной толщиной оболочки $\delta_{p0} = 0,05$ изменяется в диапазоне 98–118 мкм (после потери массы диаметр становится меньше начального), наименьшее значение толщины оболочки для этой частицы достигает 0,025, т. е. 50 % от начального значения. Изменения размеров частиц с более толстыми оболочками менее значительны, что связано с меньшим объемом газовой полости и более низкими температурами нагрева. Так, частица с $\delta_{p0} = 0,1$ расширяется до диаметра 109 мкм, в то время как изменение диаметра частицы с $\delta_{p0} = 0,2$ не превышает 1 %.

2.2. Влияние расширения полых частиц ZrO₂ на их поведение в плазменной струе

Как было показано выше, полые сферы могут существенно изменять свой размер вследствие расширения газовой полости. Для определения влияния этого эффекта на поведение частиц в струе были выполнены расчеты скорости и температуры полых микросфер ZrO_2 с начальным диаметром 50 мкм и относительной толщиной оболочки $\delta_{p0} = 0.05, 0.1$ и 0.2 при их движении вдоль оси плазменной струи, истекающей при токе дуги I = 150 А (табл. 2), с учетом и без учета расширения газовой полости. Показано, что

учет расширения газовой полости, при прочих равных условиях, приводит к некоторому повышению скорости частиц и снижению их температуры, однако данные изменения составляют единицы процентов: для частиц с $\delta_{p0} = 0.05$ скорость увеличивается на 5 %, а температура — на 2 %. Для микросфер с большей толщиной оболочки ($\delta_{p0} = 0,1$ и 0,2) эти отличия пренебрежимо малы. Аналогичные расчеты, выполненные для полых частиц с размером 20-100 мкм и различных режимов работы плазмотрона, показали, что для фиксированной дистанции обработки влияние расширения капель ZrO₂ на их скорость и температуру, при осевом вводе порошка в плазменную струю, значительно меньше погрешностей, вызванных выбором эмпирических зависимостей для коэффициентов сопротивления и теплообмена, учетом или неучетом "пленочной температуры" и других эффектов. Следовательно, инженерные оценки скорости и температуры полых капель ZrO₂ (например, для заданной дистанции напыления) с использованием распределений среднемассовой скорости и температуры плазмы вдоль оси струи можно проводить без учета расширения полых капель. В то же время, для более детальных расчетов, в частности при радиальном вводе частиц в струю, необходимо принимать во внимание существенные градиенты скорости и температуры в несущем потоке плазмы, что обуславливает значительное различие траекторий полых частиц и, следовательно, условий их обработки.

2.3. Эффективность межфазного теплопереноса

Как было показано, температура и скорость полых частиц в плазменном потоке существенно зависят от их диаметра и толщины оболочки. Нагрев и ускорение (увеличение температуры и скорости) частицы пропорциональны площади ее поверхности S_{surf} и времени пребывания в плазме Δt , и обратно пропорционально массе m_n : $\sim \Delta t \cdot S_{\text{surf}} / m_p$. Однако при большей удельной поверхности $S_{\text{spec}} = S_{\text{surf}} / m_p$ частицы быстрее набирают скорость, и время их пребывания в высокотемпературной области струи Δt становится меньше. Чтобы определить, какой из этих факторов более значим, были выполнены расчеты ускорения и нагрева полых частиц с различной толщиной оболочки, в частности, плотных частиц, в контрольном сечении однородного потока плазмы с параметрами $U_{f0} = 580$ м/с, $T_{f0} = 7600$ К. Было выбрано контрольное сечение z = 2,4 см, чтобы все частицы сохраняли свою начальную массу и испарение материала не влияло на результаты расчетов. На рис. 6 приведены расчетные зависимости скорости и удельной энтальпии для 36-ти частиц (девять значений диаметра и четыре значения толщины оболочки). По оси абсцисс на первой серии графиков (a, b) отложен диаметр, на второй (c, d) — масса, на третьей (e, f) — удельная поверхность частиц. Удельное теплосодержание есть отношение тепла, полученного частицей от плазмы, к ее массе и является прямым показателем эффективности теплопереноса от газовой к дисперсной фазе. В результатах не используется температура сфер, чтобы избежать неопределенностей, связанных с плавлением материала, когда частицы, получившие разное количество тепла, могут иметь одинаковую температуру T_{nm} .

В таблице 4 представлены значения массы и удельной поверхности для полых частиц диаметра $D_p = 20, 40, 60, 80$ и 100 мкм с толщиной оболочки $\delta_{p0} = 0.05-0.5$.

Видно, что во всех трех сериях расчетов (рис. 6) наблюдаются значимые различия в скорости и удельном теплосодержании частиц с разной толщиной оболочки, т. е. зависимость этих величин от D_p , m_p , S_{spec} не является инвариантной относительно изменения толщины оболочки частиц. Чем тоньше оболочка частицы, тем сильнее она ускоряется и нагревается. Темп ускорения и нагрева полых частиц с толщиной оболочки $\delta_{p0} = 0,05$ выше в 2–2,5 раза, чем у плотных сфер того же диаметра, в 1,3–1,5 раз выше, чем у эквивалентных плотных частиц той же массы и в 1,7–2,1 раза выше, чем у плотных

Рис. 6. Зависимость скорости (*a*, *c*, *e*) и удельного теплосодержания (*b*, *d*, *f*) частиц от диаметра (*a*, *b*), массы (*c*, *d*) и удельной поверхности (*e*, *f*) в контрольном сечении однородного потока плазмы.

Полые частицы — $\delta_p = 0.05 (1), 0.1 (2), 0.2 (3)$; плотная частица — 4.

частиц той же удельной поверхности. Необходимо отметить, что наименьшие отличия в скорости и температуре наблюдаются у частиц одинаковой массы, поэтому в качестве грубой оценки (различия до 30–50 %) поведение полых частиц можно моделировать с помощью плотных частиц эквивалентной массы.

Остальные результаты, представленные на рис. 6, позволяют сделать следующие выводы: полые частицы ускоряются и нагреваются, во-первых, более интенсивно, чем плотные частицы того же диаметра, во-вторых, более интенсивно, чем эквивалентные плотные частицы той же массы, в-третьих менее интенсивно, чем плотные частицы той же удельной поверхности.

Таблица 4

15,01

13

29,31

11

δ_p	0,05	0,1	0,15	0,2	0,5 (плотная)
		$D_p = 2$	20 мкм		
<i>m_p</i> , 10 ⁻¹⁰ кг	0,06	0,11	0,15	0,18	0,23
$S_{\text{spec}}, \text{ м}^2/\text{кг}$	198	110	82	68	54
		$D_p = d$	40 мкм		
<i>m_p</i> , 10 ⁻¹⁰ кг	0,51	0,92	1,23	1,47	1,88
$S_{\rm spec}, {\rm M}^2/{\rm K}{\rm \Gamma}$	99	55	41	34	27
		$D_p = 0$	60 мкм		
<i>m_p</i> , 10 ⁻¹⁰ кг	1,72	3,09	4,16	4,96	6,33
S M ² /KT	66	37	27	23	18

 $D_{\rm p} = 80 \, {\rm MKM}$

 $D_p = 100 \text{ мкм}$

9,86

20

19,25

16

7,32

27

14,30

22

Характеристики частиц ZrO2 различного размера и толщины оболочки

Заключение

4,07

49

7 94

40

1. Предложена и численно исследована одномерная модель движения, нагрева, плавления и испарения полых частиц, позволившая выявить влияние расширения газовой полости на поведение капель в плазменной струе. Показано, что при плазменной обработке диаметр и толщина оболочки полых капель могут претерпевать существенные изменения — до 20 % и 50 % соответственно.

2. В общем случае полые частицы ускоряются и нагреваются более интенсивно, чем плотные частицы того же диаметра или той же массы, и менее интенсивно, чем плотные частицы эквивалентной удельной поверхности. Минимальные отличия в динамике нагрева и ускорения наблюдаются для частиц одинаковой массы.

3. Показано, что расширение полых капель при нагреве не зависит от типа газа наполнителя, если в рассматриваемом температурном диапазоне относительная молярная масса газа не претерпевает изменений.

Используемые обозначения

D_p — диаметр частицы, м,

 $m_p, 10^-$

 $S_{\text{spec}}, \text{ m}^2/\text{kr}$

 $m_p, 10^{-10}$ кг

м²/кг

'кг

- Δ_p толщина оболочки полой частицы, м,
- $\delta_p = \square \Delta_p / D_p$ безразмерная толщина оболочки частицы.
- z_p координата частицы вдоль оси z, м,
- U_p скорость частицы вдоль оси z, м/с,
- *T_n* среднемассовая температура частицы, К,
- *H_n* энтальпия частицы, Дж,
- *m_n* масса частицы, кг,
- *m_o* масса газа в полости, кг,
- ρ_n плотность материала частицы, кг/м³,
- с_{ps}, с_{pl} теплоемкость материала частицы в твердом и жидком состоянии, Дж/(кг·К),
- λ_p теплопроводность материала частицы, Вт/(м·К),
- a_{p} температуропроводность материала частицы, м²/с,
- U_f локальная скорость потока, м/с,
- *T_f* локальная температура потока, К,

- С_d коэффициент сопротивления сферы,
- α коэффициент теплообмена между частицей и плазмой, Вт/(м²·K),
- $ho_{\rm film}, \mu_{\rm film}, \lambda_{\rm film}$ плотность, динамическая вязкость и теплопроводность плазмообразующего газа, рассчитанные при "пленочной" температуре $T_{\rm film} = (T_f + T_p)/2,$

11,76

17

22,98

14

- е интегральная излучательная способность материала,
- σ_{SB} постоянная Стефана–Больцмана, Вт/(м $^2 \cdot K^4),$
- Re число Рейнольдса относительного движения частицы в потоке,
- Pr число Прандтля для плазмообразующего газа,
- σ— коэффициент поверхностного натяжения материала, Дж/м²,
- *P_g* давление газа в полости частицы, Па,
- *V_g* объем газовой полости частицы, м³,
- *M* молярная масса газа в полости, кг/моль.

Список литературы

- Markocsan N., Nylen P., Wigren J., Li X.-H. Low thermal conductivity coatings for gas turbine application // J. Therm. Spray Technol. 2007. Vol. 16, No. 4. P. 498–505.
- Solonenko O.P., Smirnov A.V., Gulyaev I.P. Spreading and solidification of hollow molten droplet under its impact onto substrate: computer simulation and experiment // Complex Systems: 5th Intern. Workshop on Complex Systems, 25–28 September 2007, Sendai, Japan. AIP Conf. Proc. 2008. Vol. 982. P. 561–568.
- Солоненко О.П., Гуляев И.П., Смирнов А.В. Плазменные процессы получения порошков, состоящих из полых микросфер // Проблемы и достижения прикладной математики и механики: сб. науч. тр. Новосибирск: Изд-во Нонпарель. 2010. С. 502–519.
- 4. Ravichandran K.S., An K., Dutton R.E., Semiatin S.L. Thermal conductivity of plasma-sprayed monolithic and multilayer coatings of alumina and yttria-stabilised zirconia // J. Am. Ceram. Soc. 1999. Vol. 82, No. 3. P. 673–682.
- Dorfman M.R., Nonni M., Mallon J., Woodard W., Meyer P. Thermal spray technology growth in gas turbine coatings // Proc. of Int. Thermal Spray Conf. Osaka, Japan, 2004. DVS-Germany, Dusseldorf, Germany. P. 90–95.
- Guo H.B., Kuroda S., Murakami H. Comparative study on segmented thermal barrier coatings sprayed from different feedstocks // Proc. of Int. Thermal Spray Conf. Basel, Switzerland, 2005. P. 935–939.
- Chi W., Sampath S., Wang H. Ambient and high-temperature thermal conductivity of thermal sprayed coatings // J. Therm. Spray Technol. 2006. Vol. 15, No. 4. P. 773–778.
- Solonenko O.P., Mikhalchenko A.A., Kartaev E.V. Splat formation under YSZ hollow droplet impact onto substrate // Proc. of Intern. Thermal Spray Conf. Basel, Switzerland, 2005. P. 1410–1415.
- Gulyaev I.P., Solonenko O.P. Hollow droplets impacting onto a solid surface // Exp. Fluids. 2013. Vol. 54:1432. DOI 10.1007/s00348-012-1432-z. 12 p.
- Kadyrov B., Evdokimenko Y., Kisel V., Kadyrov E. Calculation of the limiting parameters for oxide ceramic particles during HVOF spraying // Thermal Spray Industrial Applications / ed. C.C. Berndt, S. Sampath. ASM International, Materials Park, 1994. P. 245–250.
- Joshi S.V. Comparison of particle heat-up and acceleration during plasma and high velocity oxy-fuel spraying // Powder Metall. Int. 1992. No. 24. P. 373–378.
- 12. Dobbins T., Knight R., Mayo M. HVOF thermal spray deposited Y2O3-stabilized ZrO2 coatings for thermal barrier applications // J. Therm. Spray Technol. 2003. Vol. 12, No. 2. P. 214–225.
- Klocker T., Clyne T.W., Dorfman M.R. Process modelling to optimize the structure of hollow zirconia particles for use in plasma sprayed thermal barrier coatings // Proc. of Int. Thermal Spray Conf. Singapore, 2001. P. 149–155.
- Wroblewski D., Ghosh O., Lum A., VanHout MBasu., S.N., Gevelber M., Willoughby D. Analysis of plasma spray particle state distribution for deposition rate control // Proc. of Int. Thermal Spray Conf. Maastricht, Netherlands, 2008. P. 826–831.
- Solonenko O.P., Gulyaev I.P., Smirnov A.V. Thermal plasma processes for production of hollow spherical powders: Theory and experiment // J. Therm. Sci. Technol. 2011. Vol. 6, No. 2. P. 219–234.
- 16. Solonenko O.P., Gulyaev I.P., Smirnov A.V. Hollow droplets micro explosive thermal spraying: fundamentals // Proc. of Int. Thermal Spray Conf. Maastricht, Netherlands, 2008. P. 229–234.
- 17. Кудинов В.В., Пекшев П.Ю., Белащенко В.Е., Солоненко О.П., Сафиуллин В.А. Нанесение покрытий плазмой. М.: Наука, 1990. 408 с.
- 18. Fauchais P. Understanding plasma spraying // J. Phys. D: Appl. Phys. 2004. Vol. 37, No. 9. P. R86-R108.
- Xu D., Wu X., Chen X. Motion and heating of non-spherical particles in a plasma jet // Surf. Coat. Technol. 2002. Vol. 171. P. 149–156.
- Carlson D.J., Hoglund R.F. Particle drag and heat transfer in rocket nozzles // AIAA J. 1964. Vol. 2, No. 11. P. 1980–1984.
- 21. Ranz W.E., Marshall W.R. Evaporation from drops // Chem. Eng. Prog. 1952. Vol. 48, No. 3. P. 141–146.
- 22. Высокоэнергетические процессы обработки материалов // Солоненко О.П., Алхимов А.П., Марусин В.В. и др. Новосибирск: Наука, 2000. 425 с.
- 23. Таблицы термодинамических функций воздуха / Предводителев А.С., Ступоченко Е.В., Плешанов А.С. и др. М.: ВЦ АН СССР, 1962. 267 с.
- 24. FLUENT 6.3 User's guide. [Электронный ресурс].

Статья поступила в редакцию 6 июня 2013 г.