2010. Том 51, № 2

Март – апрель

C. 253 – 258

УДК 539.193/194

СТРУКТУРА И СПЕКТРЫ 1,3-ДИОКСАНОВ. МИКРОВОЛНОВЫЙ СПЕКТР, СТРУКТУРНЫЕ ПАРАМЕТРЫ И РАСЧЕТЫ *АВ INITIO* 5-МЕТИЛ-1,3-ДИОКСАНА

© 2010 А.Х. Мамлеев¹*, Л.Н. Гундерова¹, Р.В. Галеев¹, А.А. Шапкин¹, М.Г. Файзуллин¹, А.П. Никитина², Д.В. Шорников²

Институт физики молекул и кристаллов УНЦ РАН, Уфа

²Уфимский государственный нефтяной технический университет

Статья поступила 1 октября 2008 г.

В микроволновом спектре препарата 5-метил-1,3-диоксана в диапазоне частот 18— 42 ГГц идентифицированы вращательные переходы *a*- и *с*-типов с $4 \le J \le 11$ пяти изотопомеров молекулы с изотопами ¹³С и ¹⁸О в различных положениях. Найдены спектроскопические константы изотопомеров. Определены замещенные r_s и эффективные r_o структурные параметры 5-метил-1,3-диоксана. Методом функционала плотности B3PW91/aug-cc-pVDZ вычислена равновесная структура молекулы. Результаты квантово-химических расчетов сопоставлены с экспериментальными данными.

Ключевые слова: 5-метил-1,3-диоксан, микроволновый спектр, структура, кван-тово-химические расчеты.

введение

На протяжении длительного времени 1,3-диоксаны исследуются различными методами [1—3]. Накоплен обширный материал по физико-химическим свойствам этих соединений [4]. Использование современных методов позволяет исследовать тонкие детали пространственного строения подобных соединений [5—8]. В последние годы опубликован ряд работ [9—11] по изучению 1,3-диоксанов *ab initio* квантово-химическими методами различного уровня. Однако экспериментальных исследований строения и конформационных свойств этих соединений в газовой фазе выполнено мало.

В работах [12, 13] методом микроволновой спектроскопии для молекулы 1,3-диоксана основного изотопного состава были определены вращательные постоянные и дипольный момент. По этим данным сделан вывод о том, что преимущественной конформацией молекулы является форма *кресло*.

В метилзамещенных 1,3-диоксанах возможно экваториальное или аксиальное расположение заместителя относительно кольца. В работах [14—17] методом микроволновой спектроскопии установлено, что для 2-метил-1,3-диоксана, 4-метил-1,3-диоксана и 5-метил-1,3диоксана низшей по энергии является конформация *кресло* с экваториальным расположением метильной группы.

Структура 1,3-диоксана была впервые определена методом газовой электронографии [18], но приведенные в [18] данные не отличаются высокой точностью. Нами методами микроволновой спектроскопии и квантовой химии найдены структурные параметры 1,3-диоксана [19] и 2-метил-1,3-диоксана [20]; экспериментально установлено влияние замещения атома водо-

^{*} E-mail: mwsm@anrb.ru

рода во втором положении метильной группой на строение 1,3-диоксанового кольца. Настоящее исследование 5-метил-1,3-диоксана является продолжением цикла работ авторов по изучению строения и конформационных свойств метилзамещенных 1,3-диоксанов с использованием вышеназванных методов.

МИКРОВОЛНОВЫЙ СПЕКТР

Исследование выполнено на микроволновом спектрометре в диапазоне частот 18—42 ГГц при температуре поглощающей ячейки ≈ -50 °C и давлении паров вещества $\approx 0,1$ —1 Па. По-грешность измерения частот $\approx 0,05$ МГц. Содержание изотопозамещенных молекул в препарате 5-метил-1,3-диоксана соответствовало естественной распространенности изотопов ¹³C ($\approx 1,1$ %) и ¹⁸O ($\approx 0,2$ %).

Модельные расчеты вращательных спектров изотопомеров с изотопами ¹³С и ¹⁸О в различных положениях выполнены для конформации *кресло* с экваториальной ориентацией метильной группы (см. рисунок, *a*) с использованием программы ASROT [21]. В процессе моделирования использованы вращательные постоянные *A*, *B*, *C* и компоненты дипольного момента μ_a , μ_c , вычисленные методом функционала плотности B3PW91/aug-cc-pVDZ с помощью пакета программ PC GAMESS [22]. Выбор метода обусловлен тем, что он хорошо воспроизводит результаты микроволновых экспериментов по совокупности параметров {*A*, *B*, *C*, μ_a , μ_b , μ_c } для молекул 1,3-диоксана [19], 2-метил-1,3-диоксана [14], 4-метил-1,3-диоксана [15] и 5-метил-1,3-диоксана [17].

Изотопозамещение каждого из семи тяжелых атомов в 5-метил-1,3-диоксане приводит к появлению только пяти вращательных спектров. Это связано с тем, что молекула 5-метил-1,3-диоксана симметрична (симметрия C_s) относительно плоскости, проходящей через атомы C(2), C(5) и C(7) (см. рисунок, *a*). В силу симметрии спектры монозамещенных изотопомеров с изотопом ¹³C в положениях 4 и 6, а также с изотопом ¹⁸O в положениях 1 и 3 совпадают.

В спектре исследуемого соединения методом радиочастотного микроволнового двойного резонанса были идентифицированы вращательные переходы *a*- и *c*-типов с $4 \le J \le 9$, принадлежащие монозамещенным изотопомерам с изотопом ¹³С (табл. 1). Для изотопомера с изотопом ¹⁸О идентифицированы вращательные переходы только *a*-типа с $8 \le J \le 11$ (табл. 2). Интенсивности *a*-переходов с $J \le 8$ и *c*-переходов для изотопомера с ¹⁸О оказались слишком слабыми, чтобы их можно было надежно идентифицировать.

Параметры, описывающие спектры, определены с использованием гамильтониана Уотсона в квартичном приближении центробежного искажения [23]:

$$H_{R} = AP_{Z}^{2} + BP_{X}^{2} + CP_{Y}^{2} - \Delta_{J}P^{4} - \Delta_{JK}P^{2}P_{Z}^{2} - \Delta_{K}P_{Z}^{4} - 2\delta_{J}P^{2}(P_{X}^{2} - P_{Y}^{2}) - \delta_{K}[P_{Z}^{2}(P_{X}^{2} - P_{Y}^{2}) + (P_{X}^{2} - P_{Y}^{2})P_{Z}^{2}].$$
(1)

При обработке спектров (см. табл. 1, 2) варьировали вращательные постоянные *A*, *B*, *C* при фиксированных значениях констант центробежного искажения, принятых равными соответствующим константам молекулы основного изотопного состава [17]: $\Delta_J = 0,1507(17)$, $\Delta_{JK} = 0,2513(61)$, $\Delta_K = 0,662(20)$, $\delta_J = 0,03825(57)$, $\delta_K = 0,3177(42)$ кГц. Спектроскопические пара-

Конформеры *кресло—экваториал: а*) 5-метил-1,3-диоксан, *б*) 2-метил-1,3-диоксан

Таблица 1

$I'(K' K') \leftarrow I(K K)$	$^{13}C(2)$		$^{13}C(4)$		$^{13}C(5)$		$^{13}C(7)$	
$J(\mathbf{K}_a,\mathbf{K}_c) \leftarrow J(\mathbf{K}_a,\mathbf{K}_c)$	f	δ	f	δ	f	δ	f	δ
$5(1,5) \leftarrow 4(1,4)$	18293,64	-0,01	_	_		_	18090,01	0,02
$5(0,5) \leftarrow 4(0,4)$	18623,21	0,06	18695,09	-0,05	18732,98	0,11	—	_
$5(4,2) \leftarrow 4(3,2)$	—		38398,92	0,05	—	—	38693,28	0,12
$5(4,1) \leftarrow 4(3,1)$	38676,26	0,00	38303,52	-0,04		—	38619,04	-0,13
7(3,5) ←6(3,4)	28753,29	0,04	29031,51	0,00	28968,15	0,00		—
7(3,4) ←6(3,3)			30421,22	0,01	30246,09	-0,00	29522,71	-0,02
$8(2,7) \leftarrow 7(2,6)$	31173,02	0,01	31360,19	0,02	31374,80	-0,02	30821,73	-0,06
$8(1,7) \leftarrow 7(1,6)$	31858,13	-0,08	31969,59	-0,02	32039,07	0,08	31541,68	0,11
$8(4,5) \leftarrow 7(4,4)$	33146,87	-0,01	33513,48	-0,06	33407,33	-0,04	32697,39	0,00
$8(4,4) \leftarrow 7(4,3)$	33510,35	0,01	33964,26	0,02	33796,32	0,05		—
$9(1,9) \leftarrow 8(1,8)$	32110,53	-0,06	32253,66	-0,04	32308,01	-0,01	31766,30	-0,13
$9(0,9) \leftarrow 8(0,8)$	32131,46	0,08	32269,93	0,07	32327,61	0,02	31789,88	0,06
$9(2,8) \leftarrow 8(2,7)$	34724,23	-0,12	34912,85	0,02	34943,56	-0,09	34341,77	0,08
$9(1,8) \leftarrow 8(1,7)$	35147,63	0,10	35270,91	-0,01	35348,15	-0,04	34798,95	-0,05

Экспериментальные значения частот f (MГц), разности между экспериментальными и вычисленными значениями частот δ (МГц) монозамещенных изотопомеров 5-метил-1,3-диоксана с изотопом¹³С в разных положениях

Таблица 2

Экспериментальные значения частот f (МГц), разности между экспериментальными и вычисленными значениями частот δ (МГц) изотопомера 5-метил-1,3-диоксана с изотопом ¹⁸О

$J'(K'_a,K'_c) \leftarrow J(K_a,K_c)$	f	δ	$J'(K'_a,K'_c) \leftarrow J(K_a,K_c)$	f	δ
$9(1,8) \leftarrow 8(1,7)$	34862,56	-0,05	$10(1,9) \leftarrow 9(1,8)$	38155,23	0,09
$9(4,6) \leftarrow 8(4,5)$	37296,01	-0,07	$10(2,9) \leftarrow 9(2,8)$	37965,91	-0,01
$9(4,5) \leftarrow 8(4,4)$	38223,13	-0,01	$10(5,6) \leftarrow 9(5,5)$	41535,58	0,01
$9(5,5) \leftarrow 8(5,4)$	37272,38	0,09	$10(5,5) \leftarrow 9(5,4)$	41785,16	-0,08
$9(5,4) \leftarrow 8(5,3)$	37368,35	0,07	$11(1,10) \leftarrow 10(1,9)$	41485,49	-0,05

метры изотопомеров приведены в табл. 3. Там же даны необходимые для вычисления замещенных *r*_s-координат тяжелых атомов спектроскопические параметры основного изотопомера [17].

По данным табл. 3 методом Крейчмана—Костейна [24, 25] определены замещенные r_s -координаты атомов углерода и кислорода 5-метил-1,3-диоксана в системе главных осей инерции молекулы основного изотопного состава (табл. 4). Для атомов углерода во втором, пятом и седьмом положениях, расположенных в плоскости симметрии молекулы (a, c), координата b принята равной нулю.

СТРУКТУРА И ОБСУЖДЕНИЕ

Найденные по координатам (см. табл. 4) замещенные *r_s*-структурные параметры 5-метил-1,3-диоксана приведены в табл. 5. Там же даны равновесные *r_e*-структурные параметры 5-метил-1,3-диоксана, полученные оптимизацией геометрии молекулы методом B3PW91/aug-cc-pVDZ с использованием комплекса программ PC GAMESS [22]. Эффективная *r_o*-структура 5-метил-1,3-диоксана (см. табл. 5) определена путем подгонки методом наименьших квадратов струк-

Таблица З

Вращательные постоянные А, В, С (МГц) и главные моменты инерции (коэффициент преобразования 505379,1) I_a, I_b, I_c (a.e.м. Å²) молекулы 5-метил-1,3-диоксана основного изотопного состава и пяти изотопомеров с изотопами ¹³С и ¹⁸О

п	Изотопомер								
Параметр	$^{12}C_5H_{10}O_2$	$^{13}C(2)$	$^{13}C(4)$	$^{13}C(5)$	$^{13}C(7)$	$^{18}O(1)$			
	4(50,504(2))*	4655.07(1)	4502 707(4)	4652 54(6)		4545 5(0)			
A	4658,524(3)*	4655,07(1)	4593,797(4)	4653,54(6)	4657,96(1)	4545,5(2)			
В	2383,393(1)	2350,861(5)	2382,439(2)	2370,551(5)	2316,979(7)	2355,12(1)			
C	1724,2891(9)	1707,738(2)	1715,073(1)	1718,297(4)	1689,324(3)	1694,85(1)			
I_a	108,48478(8)	108,5652(2)	110,0134(1)	108,601(2)	108,4980(2)	111,183(5)			
I_b	212,0418(1)	214,9761(4)	212,1268(2)	213,1906(4)	218,1198(6)	214,588(1)			
I_c	293,0941(2)	295,9348(4)	294,6692(2)	294,1163(6)	299,1606(5)	298,186(2)			
N	62	12	13	11	11	10			
σ	0,06	0,07	0,04	0,06	0,10	0,08			

* В скобках приведены погрешности в единицах последней значащей цифры, соответствующие стандартному отклонению; *N* — число экспериментальных частот, включенных в обратную задачу; σ стандартное отклонение частот (МГц).

Таблица 4

Замещенные r_s-координаты a, b, c (Å) тяжелых атомов 5-метил-1,3-диоксана в системе главных осей инерции молекулы основного изотопного состава

Координата	O(1)	C(2)	O(3)	C(4)	C(5)	C(6)	C(7)
a	-1,106(2)*	-1,692(1)	-1,106(2)	0,255(6)	1,017(2)	0,255(6)	2,471(1)
b	1,168(1)	0	-1,168(1)	-1,233(1)	0	1,233(1)	0
c	-0,202(8)	0,298(5)	-0,202(8)	0,140(11)	-0,351(4)	0,140(11)	0,113(13)

* В скобках приведены погрешности в единицах последней значащей цифры, вычисленные по формуле Костейна $\delta(x) = 0.0015/x$ [26].

Таблица 5

Параметр	r _s	r _o	r _e	Параметр	r _s	r _o	r _e
	1 200(4)	1 404(2)	1 402		112 0(4)	110 7(0)	112.0
C(2) = O(3)	1,399(4)	1,404(3)	1,403	O(1) - C(2) - O(3)	113,2(4)	112,7(3)	112,9
O(3) - C(4)	1,405(7)	1,425(6)	1,422	C(2) - O(3) - C(4)	110,9(6)	110,8(5)	110,8
C(4)—C(5)	1,530(5)	1,525(5)	1,528	O(3) - C(4) - C(5)	111,5(5)	110,9(5)	111,1
C(5)—C(7)	1,526(5)	1,530(4)	1,524	C(4) - C(5) - C(6)	107,4(4)	108,1(4)	107,9
O(1)O(3)	2,336(2)	2,338(2)	2,338	α	54,6(1,3)	55,2(1,2)	55,1
C(4)C(6)	2,465(2)	2,470(2)	2,470	β	46,9(1,3)	47,7(1,2)	47,4
C(2)C(5)	2,786(2)	2,791(2)	2,794	γ	129,5(1,2)	128,2(1,1)	129,4

Замещенные r_s-, эффективные r_o- и равновесные r_e-структурные параметры (длины связей, Å, углы, град.) 5-метил-1,3-диоксана

П р и м е ч а н и е. В скобках приведены погрешности в единицах последней значащей цифры; нумерация атомов и углы α, β и γ показаны на рисунке *a*.

Таблица б

-,						
Параметр	1,3-Диоксан	2-Метил-1,3-диоксан	5-Метил-1,3-диоксан			
C(2)—O(3)	1,405(5)	1,412(4)	1,399(4)			
O(3)—C(4)	1,417(6)	1,414(6)	1,405(7)			
C(4)—C(5)	1,527(4)	1,524(3)	1,530(5)			
C—C _{Me}		1,510(5)	1,526(5)			
O(1)—C(2)—O(3)	112,8(5)	111,5(4)	113,2(4)			
C(2) - O(3) - C(4)	110,6(3)	111,4(3)	110,9(6)			
O(3) - C(4) - C(5)	110,2(3)	110,2(3)	111,5(5)			
C(4) - C(5) - C(6)	108,5(4)	108,4(3)	107,4(4)			
α	55,6(8)	54,7(8)	54,6(1,3)			
β	48,6(8)	48,8(6)	46,9(1,3)			
γ	—	124,2(8)	129,5(1,2)			

Замещенные r_s-структурные параметры (длины связей, Å, углы, град.) 1,3-диоксана, 2-метил-1,3-диоксана и 5-метил-1,3-диоксана

П р и м е ч а н и е. В скобках приведены погрешности в единицах последней значащей цифры; нумерация атомов и углы α, β и γ показаны на рисунке.

турных параметров молекулы к экспериментальным значениям 18 моментов инерции с помощью программы STRFIT [21]. В качестве исходной при определении r_o -структуры молекулы была использована r_e -структура 5-метил-1,3-диоксана. При подгонке относительные положения атомов водорода были фиксированы. Стандартное отклонение вычисленных моментов инерции от экспериментальных составило $\sigma = 0,0057$ а.е.м. \cdot Å².

Из анализа табл. 5 следует, что для 5-метил-1,3-диоксана структурные параметры, найденные различными методами, достаточно хорошо согласуются между собой. Отличия в длинах связей r_o - и r_e -структур не превышают 0,006 Å, а для углов составляют не более 1,2°. Значения соответствующих параметров r_s - и r_o -структур в пределах приведенных в табл. 5 оценок погрешностей не отличаются, за исключением r_s -длины связи O(3)—C(4), которая оказалась короче r_o -длины на 0,02 Å. Известно [25, 27], что отличие r_s -, r_o - и r_e -структур физически обусловлено наличием в основном колебательном состоянии молекулы "нулевых колебаний". Близость параметров трех структур указывает на то, что для 5-метил-1,3-диоксана влияние "нулевых колебаний" на структуру не столь значительно.

Замещенные r_s -структурные параметры 5-метил-1,3-диоксана интересно сравнить с аналогичными параметрами 1,3-диоксана [19] и 2-метил-1,3-диоксана [20] (табл. 6). Из табл. 6 видно, что замещение атома водорода 1,3-диоксана метильной группой во втором или в пятом положениях по-разному влияет на геометрию кольца. При замещении во втором положении происходит уплощение ацетального фрагмента, уменьшение угла O(1)—C(2)—O(3) и увеличение угла C(2)—O(3)—C(4). В то же время при замещении в пятом положении уплощается алифатический фрагмент, при этом угол C(4)—C(5)—C(6) уменьшается, а угол O(3)—C(4)—C(5) увеличивается. При анализе длин связей можно говорить лишь о тенденциях их изменений, поскольку сами различия укладываются в рамки указанных погрешностей. Однако длина связи С—C_{ме} в 5-метил-1,3-диоксане больше (примерно на 0,016 Å), чем в 2-метил-1,3-диоксане.

ЗАКЛЮЧЕНИЕ

Исследованы вращательные спектры пяти изотопомеров 5-метил-1,3-диоксана с изотопами $^{18}O(1)$, $^{13}C(2)$, $^{13}C(4)$, $^{13}C(5)$, $^{13}C(7)$. По экспериментальным значениям главных моментов инерции определены замещенные r_s - и эффективные r_o -структурные параметры молекулы. Экспериментально установлено влияние замещения атома водорода в пятом положении метильной группой на строение 1,3-диоксанового кольца. Методом B3PW91/aug-cc-pVDZ выполнен расчет равновесной *r*_e-структуры 5-метил-1,3-диоксана. Как в случае 1,3-диоксана [19] и 2-метил-1,3-диоксана [20], результаты квантово-химических расчетов хорошо согласуются с экспериментальными данными.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 08-03-97021).

СПИСОК ЛИТЕРАТУРЫ

- 1. Eliel E.L., Knoeber Sr.M.C. // J. Amer. Chem. Soc. 1968. 90. P. 3444 3458.
- 2. Eliel E.L., Wilen S.M. Stereochemistry of Organic Compounds. N. Y.: Wiley, 1994.
- 3. Внутреннее вращение молекул / Под ред. В. Дж. Орвилл-Томаса. М.: Мир, 1975.
- 4. Рахманкулов Д.Л., Сыркин А.М., Караханов Р.А. и др. Физико-химические свойства 1,3-диоксанов. М.: Химия, 1980.
- 5. Alonso J.L., Wilson E.B. Jr. // J. Amer. Chem. Soc. 1980. 102. P. 1248 1251.
- 6. Lopez J.C., Alonso J.L., Villamanan R.M. // J. Mol. Struct. 1986. 147. P. 67 76.
- 7. Lee Jung Eun, Oh Jung Jin. // J. Mol. Spectroscop. 2000. 199. P. 124 127.
- 8. Antolinez S., Lesarri A., Mata S. et al. // J. Mol. Struct. 2002. 612. P. 125 131.
- 9. Smith G.D., Jaffe R.L., Yoon D.Y. // Chem. Phys. Lett. 1998. 289. P. 460 486.
- 10. Fillmore Freeman, Katie Uyen Do. // J. Mol. Struct. (Theochem). 2002. 577. P. 43 54.
- 11. Курамшина А.Е., Бочкор С.А., Кузнецов В.В. // Журн. орган. химии. 2006. 42, № 4. С. 629 631.
- 12. Kewley R. // Canad. J. Chem. 1972. 50. P. 1690 1697.
- 13. Lowe R.S., Kewley R. // J. Mol. Spectroscop. 1976. 60. P. 312 323.
- 14. *Мамлеев А.Х., Галеев Р.В., Гундерова Л.Н. и др. //* Журн. структур. химии. 2006. **47**, № 2. С. 373 375.
- 15. Мамлеев А.Х., Гундерова Л.Н., Галеев Р.В. и др. // Там же. 2007. 48, № 5. С. 1020 1023.
- Файзуллин М.Г., Галеев Р.В., Гундерова Л.Н. и др. // Сб. статей XIV Всерос. конф. "Структура и динамика молекулярных систем. Яльчик-2007", Казань—Москва—Йошкар-Ола—Уфа, 2007. – С. 613 – 616.
- 17. *Мамлеев А.Х., Галеев Р.В., Гундерова Л.Н. и др. //* Журн. структур. химии. 2008. **49**, № 4. С. 667 671.
- 18. Schultz G., Hargittai I. // Acta Chim. Acad. Sci. Hungaria. 1975. 83. P. 1974.
- 19. Мамлеев А.Х., Гундерова Л.Н., Галеев Р.В. и др. // Журн. структур. химии. 2007. **48**, № 3. С. 501 506.
- 20. Мамлеев А.Х., Гундерова Л.Н., Галеев Р.В. и др. // Там же. № 6. С. 1097 1103.
- 21. Kisiel Z. "Programs for ROtational SPEctroscopy (PROSPE)", http://info.ifpan.edu.pl/~kisiel/prospe.htm
- 22. Granovsky A.A., PC GAMESS version 7.1, http://classic.chem.msu.su/gran/gamess/index.html
- 23. Watson J.K.G. // J. Chem. Phys. 1967. 46. P. 1935.
- 24. Kraitchman J. // Amer. J. Phys. 1953. 21. P. 17 24.
- 25. Costain C.C. // J. Chem. Phys. 1958. 29. P. 864 874.
- 26. Costain C.C. // Trans. Amer. Cryst. Assos. 1966. 2. P. 157.
- 27. Watson J.K.G. // J. Mol. Spectr. 1973. 48. P. 479 502.