ОТРАЖЕНИЕ УДАРНОЙ ВОЛНЫ ОТ ЖЕСТКОЙ СТЕНКИ В СМЕСИ ЖИДКОГО МЕТАЛЛА И ТВЕРДЫХ ЧАСТИЦ

А. А. Жилин, А. В. Федоров

Институт теоретической и прикладной механики СО РАН, 630090 Новосибирск, e-mail: fedorov@itam.nsc.ru

Изучена проблема отражения ударных волн и волн разрежения от жесткой стенки в смеси жидкого железа и мелких кристаллов молибдена. Исследование проведено в рамках равновесного и неравновесного приближений механики гетерогенных сред с различными давлениями компонентов. Верификация математической модели проведена путем согласования зависимости равновесно-замороженной скорости звука от начального давления в смеси с известными экспериментальными данными. В равновесном подходе определена зависимость типа отраженной ударной волны от типа падающей. Прямыми численными расчетами в рамках неравновесной модели механики гетерогенных сред обоснована справедливость полученной карты отражений. Выявлена возможность значительного компактирования частиц молибдена в отраженных волнах.

В [1] высказана гипотеза о возможности протекания в недрах планет цепных ядерных реакций при взаимодействии ударных волн (УВ) со слоем частиц диоксида урана в жидком железе. Для моделирования этого явления нами была взята смесь жидкого железа и кристаллов молибдена. Плотность последнего близка к плотности диоксида урана, он мало растворим в железе, и, кроме того, хорошо известны его другие физические параметры (см. [2, 3]). Ниже в одномерном изотермическом приближении изучается возможность компактирования в такой смеси слоя мелких кристаллов под действием УВ с позиции механики гетерогенных сред с различными скоростями и давлениями компонентов смеси.

1. ФИЗИКО-МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Рассматривается смесь жидкого железа (легкого компонента) и мелких кристаллов молибдена (тяжелого компонента), находящаяся в термодинамическом равновесии, по которой справа налево распространяется УВ либо волна разрежения. За фронтом УВ после зоны релаксации давлений и скоростей параметры смеси принимают значения, равные конечному равновесному состоянию. Слева от УВ расположена жесткая стенка (x = 0), отражаясь от которой УВ формирует новое равновесное состояние в среде за ее фронтом. Изучим возможные типы ударно-волновых течений, возникающих при отражении от жесткой границы в области $x \ge 0, t \ge 0.$

Течение смеси описывается уравнениями сохранения массы и количества движения для каждого компонента. Для замыкания системы привлекаются уравнение переноса для тяжелого компонента и уравнения состояния компонентов, записываемые в безразмерном виде:

$$\frac{\partial \rho_1}{\partial t} + \frac{\partial \rho_1 u_1}{\partial x} = 0, \quad \frac{\partial \rho_2}{\partial t} + \frac{\partial \rho_2 u_2}{\partial x} = 0,$$
$$\frac{\partial \rho_1 u_1}{\partial t} + \frac{\partial \rho_1 u_1^2}{\partial x} = -m_1 \frac{\partial P_1}{\partial x} + F_{\rm S},$$
(1)

$$\frac{\partial \rho_2 u_2}{\partial t} + \frac{\partial \rho_2 u_2^2}{\partial x} = -m_2 \frac{\partial P_2}{\partial x} - (P_2 - P_1) \frac{\partial m_2}{\partial x} - F_{\rm S},$$

$$\frac{\partial m_2}{\partial t} + u_2 \,\frac{\partial m_2}{\partial x} = R,$$

$$P_1 = \frac{\rho_1}{m_1} - 1, \quad P_2 = a^2 \left(\frac{\rho_2}{m_2} - \bar{\rho}\right), \quad m_1 = 1 - m_2.$$

Здесь ρ_i, u_i, P_i и m_i — средняя плотность, скорость, давление и объемная концентрация *i*-го компонента смеси; $F_{\rm S} = m_1 \rho_2 (u_2 - u_1) / \tau_{\rm S}$ — сила Стокса; $\tau_{\rm S} = 2\bar{\rho}/9\mu_1$ — время релаксации скоростей под действием силы Стокса; $R = m_1 m_2 (P_2 - P_1) / \tau_{m_2}$ — функция, описывающая процесс переноса твердой фазы; $\tau_{m_2} =$

 $2
ho_{22,0}a_2r/
ho_{11,0}a_1^2 \approx 2\mu_2$ — время релаксации объемной концентрации тяжелого компонента смеси; μ_i — динамическая вязкость *i*-го компонента; $a = a_2/a_1$; $\bar{\rho} = \rho_{22,0}/\rho_{11,0}$; $C = 1 - a^2 \bar{\rho}$; $ho_i m_i
ho_{ii}; \ \xi_i =
ho_i /
ho; \
ho_{ii}$ — истинная плотность i-го компонента; a_i и $\rho_{ii,0}$ — скорость звука и истинная начальная плотность материала *i*го компонента смеси. Обезразмеривание скоростей проводилось по отношению к a_1 , плотностей — к $\rho_{11,0}$, давления — к $a_1^2 \rho_{11,0}$, динамической вязкости — к $\mu_0 = a_1 \rho_{11,0} r$, пространственной координаты x — к радиусу твердых частиц r, времени t — к $t_0 = r/a_1$. Здесь и далее индекс 1 относится к параметрам легкого компонента, а индекс 2 соответствует тяжелому компоненту, 0 — начальным значениям величин, «к» — конечным.

В работах [4, 5] в автомодельном приближении рассматриваются асимптотические подходы к исследуемой математической модели. В [4] изучаются решения в случае равновесия скоростей компонентов смеси $(u_1 = u_2)$, но с различными давлениями $(P_1 \neq P_2)$. В [5] изучено второе асимптотическое решение, когда смесь описывается общим давлением $(P_1 = P_2)$, но скорости компонентов различны $(u_1 \neq u_2)$.

При изучении процессов распространения УВ по смеси для уравнений (1) корректной является начально-краевая задача для вектора решения $\varphi(\rho_1, \rho_2, u_1, u_2, m_2)$:

$$\varphi = \varphi_0(x), \quad x \ge 0, \quad t = 0,$$

$$u_1 = u_2 = 0, \quad x = 0, \quad t \ge 0.$$
 (3)

Здесь $\varphi_0(x)$ описывает структуру стационарной УВ какого-либо из типов ударно-волновых течений, определенных в автомодельном приближении [6].

2. АВТОМОДЕЛЬНОЕ ПРИБЛИЖЕНИЕ

В соответствии с [6–8] приведем результатов расчетов задачи (1), (2) для смеси жидкого железа и молибдена. Карта стационарных решений приведена на рис. 1. Здесь сплошными вертикальными линиями нанесены характерные скорости смеси: a_i — скорость звука *i*-го компонента и C_{fe} — замороженноравновесная скорость звука [6]. Штриховая линия $U_{\kappa} = 1$ разделяет плоскость (m_{10} , D) на область непрерывных решений по легкому компоненту (ниже рассматриваемой линии)

Рис. 1. Карта решений

и область, где решения существуют в классе разрывных функций (выше линии $U_{\kappa} = 1$). Здесь D, D_r — скорость падающей и отраженной УВ соответственно. На рисунке представлены также равновесная (C_e) и равновеснозамороженная (C_{ef}) скорости звука [6]. В отличие от [5], где для смеси воды и кварцевого песка было показано, что равновесная скорость звука пересекает линию a_1 , для изучаемой смеси во всем интервале $m_{10} \in (0,1)$ скорость С_е является монотонной функцией. Это объясняется близостью значений скоростей звука и истинных плотностей компонентов смеси. Так, для смеси воды и кварцевого песка $a = a_2/a_1 = 3$, $\bar{\rho} = \rho_{22,0}/\rho_{11,0} = 2,65$, а для смеси жидкого железа и кристаллов молибдена соответствующие отношения таковы: $a = 1,5; \ \bar{\rho} = 1,4 \ [2, 9].$

Согласно утверждению о четырех типах УВ [6], здесь также имеются полностью дисперсионные УВ в областях I_{21} и I_{31} , замороженнодисперсионные УВ в областях I_{22} и I_{32} , дисперсионно-замороженные УВ в областях I_{41} и I_{51} , замороженные УВ двухфронтовой конфигурации в областях I_{42} и I_{52} . В области I_{11} , I_{12} течение неустойчиво и представлено неустойчивыми ударными волнами разрежения $u_0 - D < u_{\kappa} - D$, т. е. здесь не выполняется условие теоремы Цемплена.

На рис. 2 показаны распределения скоростей легкого и тяжелого компонентов смеси, которые иллюстрируют все рассмотренные выше типы ударно-волновых конфигураций. Так, при D = -1.4 и $m_{10} = 0.4$ реализуется пол-

Рис. 2. Ударно-волновые структуры: штриховые линии — легкий компонент, сплошные — тяжелый

ностью дисперсионная структура, которая характеризуется непрерывными профилями скорости компонентов; при D = -1,4 и $m_{10} =$ 0,9 — замороженно-дисперсионная конфигурация с внутренним разрывом в легком компоненте и непрерывным течением в тяжелом; при D = -1.6 и $m_{10} = 0.2$ — дисперсионнозамороженная структура с непрерывным течением смеси в легком компоненте и головным скачком уплотнения в тяжелом; при D = -1.6 и $m_{10} = 0.8$ реализуется замороженная УВ двухфронтовой конфигурации с головным скачком в тяжелом компоненте и внутренним разрывом в легком. В табл. 1 приведено распределение ширины зоны релаксации по скоростям до одновременного выполнения трех условий: $|u_1 - u_2| \leqslant \varepsilon, \ |u_1 - u_{\mathbf{k}}| \leqslant \varepsilon \ \mathbf{M} \ |u_2 - u_{\mathbf{k}}| \leqslant \varepsilon,$ где $\varepsilon = 10^{-6}$. Как видно из рис. 2 и табл. 1, ширина зоны релаксации по скоростям компонентов зависит от объемной доли инертной фазы и скорости падающей УВ. Полученные данные позволяют сделать вывод о том, что а) ширина зоны релаксации увеличивается с ростом объемной концентрации тяжелых кристаллов (с уменьшением содержания жидкого железа) и б) ширина зоны релаксации уменьшается с ростом скорости падающей УВ.

На карте решений (см. рис. 1) нанесены некоторые рассчитанные варианты переходов между начальными и конечными равновесными состояниями перед фронтом падающей и отраженной УВ, стрелка указывает на-

ширина зоны релаксации скоростей компонентов смеси							
m_{10}	D = -1,3	D = -1,6	D = -2,0				
0,01	—	22,1	12,9				
0,2		17,2	8,9				
0,4	41,35	14,0	7,5				
0,6	21,6	10,8	7,0				
0,7	17,1	9,2	6,5				
0.8	13.9	6.8	6.0				

6.2

10.9

...

0.9

правление перехода. Переход 1 показывает изменение начальных данных для падающей и отраженной волн разрежения, не существующих в стационарном течении. Переход 2 показывает, что при отражении дисперсионной УВ ее тип сохраняется. Переход 3 связывает падающую дисперсионную УВ и отраженную дисперсионно-замороженную УВ. Переход 4 показывает, что падающая замороженнодисперсионная УВ отражается УВ того же типа, переход 6 — что падающая дисперсионнозамороженная УВ, отражаясь, сохраняет свою ударно-волновую конфигурацию. Переход 5 связывает падающую и отраженную замороженную УВ двухфронтовой конфигурации. Переход 7 показывает, что падающая замороженная УВ двухфронтовой конфигурации может отражаться УВ дисперсионно-замороженного типа. Представленные переходы показывают, что начальные данные для отраженных УВ сжатия смещаются в область с меньшими объемными концентрациями легкого компонента (m_{10}) и с большими относительными скоростями (|D|), а для волн разрежения, наоборот, — в область с большими m_{10} и меньшими значениями |D|. При этом длина отрезка (характеризующая силу волны), связывающего начальные данные перед фронтом падающей и отраженной УВ, увеличивается с ростом скорости падающей УВ для волн сжатия.

3. ВЕРИФИКАЦИЯ МАТЕМАТИЧЕСКОЙ МОДЕЛИ

Рассматриваемая математическая модель была верифицирована в работе [6] для смеси воды и кварцевого песка по зависимости скорости дисперсионной УВ от равновесного давления за ее фронтом. Ниже представлено сравнение с экспериментальными данными [10] для смеси воздуха и кварцевого песка со следующими начальными данными: $\rho_{11,0} = 1,2$ кг/м³, $a_1 =$

Таблица 1

5,3

Рис. 3. Сравнение расчетов (сплошная линия) с экспериментами [10] (точки)

330 м/с и $\rho_{22,0} = 2650$ кг/м³, $a_2 = 4500$ м/с. На рис. 3 представлена зависимость равновеснозамороженной скорости звука от начального давления в смеси при $m_{10} = 0,4$ — результаты теоретических расчетов и экспериментальные данные работы [10]. Расчет равновеснозамороженной скорости звука проводился по формуле

$$C_{ef} = a_1 \sqrt{\frac{\rho_{11}}{m_1 m_2 \rho_{22}}},$$

где истинная плотность легкого компонента определялась из уравнения состояния для идеального газа в виде $\rho_{11} = p_0 \mu/RT$. Здесь p_0 начальное давление, μ — молекулярная масса воздуха, R — универсальная газовая постоянная, T — температура, соответствующая нормальным условиям. Так как начальные давления небольшие, то с достаточно высокой степенью точности можно считать, что $\rho_{22} = \rho_{22,0}$. Как видно из представленного рисунка, результаты, полученные по теоретической модели, достаточно точно описывают экспериментальные данные.

4. РАСЧЕТ ПАРАМЕТРОВ ОТРАЖЕННОЙ УВ В РАВНОВЕСНОМ ПРИБЛИЖЕНИИ

Начальное равновесное состояние характеризуется параметрами $m_i = m_{i,0}, u_i = u_0 = 0,$ $P_i = P_0 = 0$ перед фронтом падающей УВ.

Рис. 4. Поведение характерных скоростей смеси при отражении УВ при D = -1,2

За ее фронтом параметры смеси принимают конечные равновесные значения $m_i = m_{i,\kappa}$, $u_i = u_{\kappa}$, $P_i = P_{\kappa}$, которые представлены в табл. 2–4 для различных значений m_{10} , D. Равновесное состояние за фронтом отраженной УВ описывается параметрами $m_i = m_{i,r}$, $u_i = u_r = 0$ и $P_i = P_r$, значения которых сведены в табл. 2–4. В [11] аналитически получены условия для определения скорости отраженной УВ, а в [12] численно показано, что после некоторого периода нестационарности формируется течение, соответствующее данным условиям.

Характер поведения скорости отраженной УВ, относительных скоростей фаз за фронтом падающей $(u_{\kappa} - D)$ и перед отраженной $(|u_{\kappa} - D_r|)$ УВ, а также равновесных скоростей звука в зависимости от параметра m_{10} при D = -1,2 показан на рис. 4 (а в табл. 2-4 — для D = -1,4; -1,6 и -2,0 соответственно). Здесь видна область неустойчивого течения (расположенная ниже точки сборки $(m_*, 1, 2)$), параметры которого не удовлетворяют теореме Цемплена. Выше этой точки движение смеси как в падающей, так и в отраженной УВ устойчиво. При этом $|D| > C_{e,0}$, $|u_{\kappa} - D| < C_{e,\kappa}, |u_{\kappa} - D_r| > C_{e,\kappa}$ и $|D_r| < C_{e,r},$ для всех $m_{10} > m_*$. Отметим, что увеличение скорости отраженной УВ относительно скорости падающей УВ наблюдалось в смеси воды и кварцевого песка (см. [11]), для изучаемой

Т	\mathbf{a}	б	л	и	ц	а	2
---	--------------	---	---	---	---	---	---

m_{10}	$u_{ m K}$	$m_{1,\kappa}$	$P_{\mathbf{K}}$	D_r	$m_{1,r}$	P_r	$ u_{\rm K} - D_r $	k
0,1	-0,014	0,099	0,025	1,389	0,097	0,050	1,403	2,012
0,2	-0,143	0,179	0,245	1,287	0,162	0,524	1,430	2,137
0,3	-0,242	0,258	0,406	1,204	0,228	0,913	1,446	2,249
0,4	-0,326	0,340	0,534	1,129	0,298	1,256	1,455	2,354
0,5	-0,400	0,427	$0,\!638$	1,058	0,375	1,568	1,457	2,456
$0,\!6$	-0,466	0,521	0,726	0,989	0,463	1,855	$1,\!454$	2,557
0,7	-0,527	$0,\!623$	0,800	0,920	0,565	2,124	1,447	$2,\!657$
0,8	-0,583	0,736	0,862	0,852	$0,\!684$	2,377	$1,\!435$	2,757
0,9	$-0,\!610$	0,797	0,890	0,818	0,751	$2,\!498$	1,428	2,807

Равновесные параметры смеси за падающей и отраженной УВ при $D=-1,\!4$

Таблица З

Равновесные параметры смеси за падающей и отраженной УВ при $D=-1,\!6$

m_{10}	$u_{\mathbf{K}}$	$m_{1,\kappa}$	$P_{\mathbf{K}}$	D_r	$m_{1,r}$	P_r	$ u_{\mathbf{K}} - D_r $	k
0,1	-0,341	0,075	0,684	1,286	0,063	1,569	$1,\!627$	2,293
$_{0,2}$	-0,450	0,148	0,882	1,196	0,122	2,143	1,646	$2,\!431$
0,3	-0,539	0,223	1,033	1,118	0,184	$2,\!648$	$1,\!657$	2,563
0,4	$-0,\!618$	0,302	$1,\!156$	1,045	0,252	3,111	1,663	2,693
$_{0,5}$	$-0,\!688$	0,389	1,256	0,975	0,329	$3,\!548$	1,664	2,824
$0,\!6$	-0,753	0,484	1,341	0,907	0,418	3,967	1,660	2,959
0,7	-0,813	$0,\!590$	1,411	0,838	0,522	4,372	$1,\!651$	3,098
0,8	-0,870	0,710	$1,\!470$	0,768	$0,\!648$	4,770	$1,\!638$	3,244
0,9	-0,924	0,845	1,520	$0,\!698$	0,803	5,162	$1,\!621$	3,397

Таблица 4

гавновесные параметры смеси за падающей и отраженной 3D при $D = -2$	Рав	вновесные	параметры	смеси за	падающей	и отраженной	УВ при	$D = \cdot$	-2,
--	-----	-----------	-----------	----------	----------	--------------	--------	-------------	-----

m_{10}	$u_{\mathbf{K}}$	$m_{1,\kappa}$	$P_{\mathbf{K}}$	D_r	$m_{1,r}$	P_r	$ u_{\mathbf{K}} - D_r $	k
0,1	-0,960	0,056	2,408	1,060	0,045	7,087	2,020	2,943
0,2	-1,036	0,117	2,540	0,998	0,095	$7,\!901$	2,034	3,111
0,3	-1,106	$0,\!184$	$2,\!648$	0,938	$0,\!151$	8,696	2,044	3,285
0,4	$-1,\!170$	0,258	2,736	0,879	0,214	$9,\!490$	2,049	3,468
$_{0,5}$	-1,231	0,341	2,809	0,819	0,288	10,294	$2,\!050$	3,665
$0,\!6$	-1,289	0,436	2,868	0,759	0,375	11,123	2,048	$3,\!878$
0,7	-1,344	0,545	2,916	$0,\!698$	$0,\!481$	$11,\!990$	2,042	4,113
0,8	-1,398	$0,\!672$	2,953	$0,\!634$	$0,\!612$	12,911	2,032	4,373
0,9	-1,450	0,821	2,981	0,569	0,778	13,906	2,018	4,666

смеси в области ударных волн сжатия оно отсутствует и, естественно, не реализуется при $m_{10} < m_*$. В табл. 2–4 также представлен коэффициент усиления отраженной волны $k = (P_r - P_0)/(P_\kappa - P_0)$, который характеризует избыточное давление за отраженной УВ, отнесенное к приросту давления в падающей волне. Видно, что:

 а) при постоянной скорости падающей УВ давление за падающей и отраженной УВ, а также коэффициент усиления возрастают с ростом начальной объемной концентрации легкого компонента;

б) повышение скорости УВ при постоянной начальной объемной концентрации легкого компонента, приводит как к росту давлений в равновесных состояниях (P_{κ}, P_r) , так и к увеличению коэффициента усиления отраженной УВ.

5. ОБСУЖДЕНИЕ ЧИСЛЕННЫХ РЕЗУЛЬТАТОВ ДЛЯ НЕРАВНОВЕСНОГО ТЕЧЕНИЯ

Расчеты задачи (1), (2), проведенные модифицированным методом «крупных частиц», в общем случае неравновесного течения показали, что все четыре типа УВ устойчиво распространяются по смеси (см. [13]).

Рассмотрим поведение параметров компонентов смеси при отражении различных типов УВ от жесткой стенки. В численных расчетах проводился контроль за соблюдением условий Гюгонио в начальном и конечных равновесных состояниях смеси за падающей и отраженной УВ.

В областях I₁₁ и I₁₂ существуют решения краевой задачи для обыкновенных дифференциальных уравнений, описывающих бегущие волны в виде неустойчивых ударных волн разрежения. При инициировании течения из соответствующих начальных данных ступенчатого вида реализуется волна разрежения (рис. 5). Передний фронт этой волны распространяется по смеси с постоянной скоростью, а задний постепенно замедляется (см. табл. 5). Волна разрежения от жесткой границы отражается волной разрежения. На рис. 5 показан этот процесс при распространении и отражении волны разрежения по гетерогенной смеси при D = -1,2и $m_{10} = 0.2$. Как видно, в смеси формируется волна разрежения. При этом градиенты давления компонентов смеси уменьшаются, причем уменьшение давления во втором компоненте немного опережает понижение давления в первом компоненте как для падающей, так

Рис. 5. Отражение ударной волны разрежения при D=-1,2 и $m_{10}=0,2$

и для отраженной УВ разрежения. Отметим, что передний фронт волны разрежения распространяется с переменной скоростью, которая убывает от равновесно-замороженной (C_{ef} = 1,4304) до равновесной ($C_{e,0} = 1,3074$) скорости звука. На x-t-диаграмме (рис. 6) показана динамика переднего и заднего фронта волны разрежения. Здесь также нанесены траектории точки движущейся с равновесной, равновеснозамороженной скоростями звука и скоростью звука легкого компонента (a_1) . По диаграмме видно, что в начальные моменты времени (до $t \approx 300 \div 400$) передний фронт волны разрежения перемещается со скоростью C_{ef} , затем он замедляется и постепенно приближается к C_{e,0}. Эти результаты согласуются с общей теорией распространения возмущений в неравновесных средах. Действительно, передний фронт должен двигаться в покоящуюся среду с замороженной скоростью звука. С ростом времени основной пакет возмущений распространяется

Таблица 5

Зона релаксации волны разрежения при D=-1,2 и $m_{10}=0,2$

t	x_0	$x_{\mathbf{K}}$	$H = x_{\rm K} - x_0$	УВ
$50 \\ 100 \\ 150 \\ 200 \\ 250$	$287 \\ 216,5 \\ 147 \\ 78 \\ 9$	$327 \\ 279,5 \\ 230 \\ 180 \\ 129$	$ \begin{array}{r} 40 \\ 63 \\ 83 \\ 102 \\ 120 \end{array} $	Падающая
$400 \\ 450 \\ 500$	206 279 352	$16,5 \\ 69,5 \\ 123,5$	189,5 209,5 228,5	Отраженная

Рис. 6. *х*-*t*-Диаграмма ударной волны разрежения

с равновесной скоростью звука. При этом задний фронт волны разрежения движется со скоростью звука в легком компоненте $(a_1 = 1)$. Он распространяется с наименьшей из возможных скоростей распространения малых возмущений $(C_{e,0}, a_i, C_{ef}, C_{fe})$, поскольку все прочие возмущения распространяются вверх по потоку с большей скоростью. Таким образом, зона разгона смеси в падающей волне разрежения постепенно расширяется, а градиент скорости убывает. Качественно аналогичное поведение имеет, естественно, и отраженная волна разрежения. Отметим, что скорость переднего фронта отраженной волны разрежения превышает скорость переднего фронта падающей, как это и было показано ранее на рис. 4, в силу изменения начальных параметров смеси перед отраженной волной разрежения.

Исследуем отражение полностью дисперсионных УВ от жесткой границы с начальными параметрами смеси в областях I_{21} и I_{31} (см. рис. 1). В [12] для смеси воды и кварцевого песка было показано, что при отражении дисперсионной УВ с небольшими начальными объемными концентрациями легкого компонента и малыми скоростями падающих УВ ее тип сохраняется. Расчет, проведенный для изучаемой смеси при D = -1.4 и $m_{10} = 0.2$, показал, что течение смеси как для падающей, так и для отраженной УВ является практически односкоростным с сохранением типа. При увеличении скорости падающей УВ и начальной объемной концентрации первого компонента (например,

Рис. 7. Относительная массовая концентрация тяжелого компонента

при D = -1,48 и $m_{10} = 0,4$) падающая дисперсионная УВ имеет различающиеся скорости компонентов (см. рис. 2), при отражении происходит смена ударно-волновой конфигурации дисперсионно-замороженной, при этом процесс перехода аналогичен рассмотренному в [12].

Важной характеристикой смеси является относительная массовая концентрация тяжелого компонента ξ_2 . Ее поведение при отражении представлено на рис. 7, штриховой линией показан профиль ξ_2 для падающей УВ в момент времени t = 0. Видно, что в зоне релаксации скоростей изменение ξ_2 немонотонно. В первой области зоны релаксации значение ξ_2 возрастает, затем резко убывает до минимального значения. Во второй зоне, примыкающей к «квазифронту» резкого изменения, параметр ξ_2 вновь возрастает до конечного состояния. Отметим, что внутренняя точка пересечения ξ₂ с линией равновесных состояний, на которой значение ξ_2 постоянно и равно $\xi_{2,0} = 0,83682$ при D = -1,4и $m_{10} = 0.2$, соответствует точке промежуточного равновесия по скоростям компонентов смеси на профилях скоростей (см. рис. 2). Зависимость ξ_2 от разницы скоростей компонентов смеси получается из законов сохранения массы в системе координат, связанной с фронтом УВ, вида

$$\xi_2 = \frac{C_1 + C_2 - \rho U_1}{\rho (U_2 - U_1)}$$

где $C_i = \rho_{i,0}v_i, v_i$ — относительная скорость *i*го компонента. Здесь особенность при $U_1 = U_2$ раскрываема. В первые моменты времени поТаблица б

Амплитула	Ез-импульса
- Пиплипуда	С2-импульса

t	$\xi_{2,\min}$	$\xi_{2,\max}$	$\Delta A = \xi_{2,\max} - \xi_{2,\min}, \\ 10^{-6}$
$\begin{array}{c} 0 \\ 10 \\ 30 \\ 50 \\ 70 \\ 100 \\ 120 \\ 150 \\ 190 \end{array}$	$\begin{array}{c} 0,836641\\ 0,836778\\ 0,836674\\ 0,836656\\ 0,836643\\ 0,836628\\ 0,836621\\ 0,836614\\ 0,836608\\ \end{array}$	$\begin{array}{c} 0,836955\\ 0,836877\\ 0,837024\\ 0,837062\\ 0,837100\\ 0,837149\\ 0,837173\\ 0,837198\\ 0,837219\end{array}$	314 99 350 406 457 521 552 584 611

сле контакта падающей УВ с жесткой стенкой образуется слой с пониженной концентрацией тяжелых частиц. Так, при t = 0 на жесткой границе достигается минимальное значение $\xi_2 = 0.836398$. Далее, при t > 10 УВ продолжает движение в обратном направлении со скоростью D_r , при этом значение ξ_2 на границе жесткой стенки возрастает до $\xi_2 = 0.836622$. Амплитуда ξ_2 -импульса зависит от местоположения внутренней точки равновесия по скоростям компонентов смеси. В табл. 6 представлены максимальное ($\xi_{2,\max}$) и минимальное $(\xi_{2,\min})$ значения ξ_2 -импульса, которые количественно демонстрируют процесс установления течения. Так, за один и тот же интервал времени $\Delta t = 40$, полученный как разность значений $\Delta t = 70 \div 30$ и $\Delta t = 190 \div 150$, увеличение амплитуды составило $\Delta A/A_0 = (457 - 100)$ (350)/457 = 23~% и $\Delta A/A_0 = (611 - 584)/611 =$ 4 % соответственно. Отметим, что относительная массовая концентрация тяжелого компонента как в начальном равновесном состоянии перед фронтом падающей УВ, так и в конечных равновесных состояниях за падающей и отраженной УВ остается постоянной. Это обстоятельство обусловлено соблюдением законов сохранения в смеси.

Исследуем принципиальную возможность возникновения стационарной неоднородности объемной концентрации компонентов смеси в окрестности жесткой границы на основе анализа исходной системы уравнений (1). Поскольку в конечном равновесном состоянии, далеко за фронтом отраженной УВ, смесь находится в покое, то при $u_{1,r} = u_{2,r} = 0$ из законов сохранения массы получаем, что $\rho_{1,r}$ и $\rho_{2,r}$ могут быть произвольными функциями x. Законы сохранения количества движения эквивалентны при этом условиям $m_{1,r} \partial P_{1,r}/\partial x = 0$ и $m_{2,r} \partial P_{2,r} / \partial x = 0$. Отсюда $P_{1,r} = \text{const}$ и $P_{2,r} = \text{const}$. Эти константы в конечном равновесном состоянии на стенке, за отраженной УВ, равны: $P_{1,r} = P_{2,r} = P_r = \text{const}$. Дифференциальное уравнение переноса тяжелого компонента из системы уравнений (1) при условии равенства давлений показывает, что $m_{2,r}$ может быть произвольной функцией x. Уравнения состояния накладывают ограничения на отношение плотности и объемной концентрации соответствующих компонентов смеси в виде

$$\frac{\rho_{1,r}(x)}{m_{1,r}(x)} = P_{1,r} + 1 = \text{const},$$
$$\frac{\rho_{2,r}(x)}{m_{2,r}(x)} = \frac{P_{1,r}}{a^2} + \bar{\rho} = \text{const}.$$

Таким образом, профили плотностей и объемных концентраций компонентов смеси могут быть, вообще говоря, функциями x, при этом любое изменение плотности компонента прямо пропорционально изменению объемной концентрации. Произвол в подобном односкоростном течении (с одинаковыми давлениями) устраняется при расчете на установление течения в задаче об отражении УВ от жесткой стенки. При этом профили средних плотностей фаз вблизи стенки неоднородны по пространству.

Механизм отражения УВ от жесткой границы для областей I_{22} , I_{32} и I_{41} , I_{51} (см. рис. 1) подобен разобранному и проиллюстрированному в [12] для смеси воды и кварцевого песка. Поэтому укажем лишь возникающие при этом типы падающих и отраженных УВ.

В областях I_{22} и I_{32} падающая УВ замороженно-дисперсионного типа с монотонно убывающим профилем скорости компонента в тяжелом компоненте и с убывающим профилем скорости легкого компонента с внутренним разрывом. Например, при D = -1,6 и $m_{10} = 0,9$ отражается УВ с сохранением типа, но профиль скорости легкого компонента становится немонотонным, появляется область торможения тяжелого компонента за фронтом внутреннего скачка уплотнения.

При отражении от стенки дисперсионнозамороженных УВ в областях I_{41} и I_{51} , где падающая УВ имеет монотонный непрерывно убывающий профиль скорости в легком компоненте и монотонно убывающий профиль скорости за головным скачком уплотнения в тяжелом компоненте (см. рис. 2), ее тип сохра-

Рис. 8. Отражение УВ двухволновой конфигурации с сохранением типа при D = -1.6 и $m_{10} = 0.8$

няется. Однако профиль скорости легкого компонента становится немонотонным, появляется локальный максимум, превышающий конечное равновесное значение скорости $u_0 = 0$.

Более подробно опишем результаты расчетов, не представленные в [12], т. е. изучим отражение УВ двухфронтовой конфигурации из областей I_{42} и I_{52} (см. рис. 1) при D = -1.6и $m_{10} = 0.8$. Падающая УВ при t = 0 (см. рис. 2) включает: (а) головной скачок уплотнения в тяжелом компоненте, дополненный зоной релаксации до конечного равновесного состояния с изломом в месте возникновения внутреннего разрыва по легкому компоненту; (б) область непрерывного течения по легкому компоненту в головной части (около начального равновесного состояния) с внутренней ударной волной, за которой течение продолжает тормозиться до $u_{1,\min} = -0.876$, а затем разгоняется до конечного равновесного состояния. На рис. 8 показано, что данная конфигурация устойчиво распространяется по смеси при t = 10, 20. Взаимодействуя с жесткой границей, она отражается УВ того же типа. Отметим, что у отраженной УВ за головным скачком уплотнения тяжелые частицы продолжают тормозиться до $u_{2,\max} = 0,006$. Это состояние достигается в точке положения внутренней УВ по легкому компоненту, и $u_{2,\max}$ превышает значение скорости в конечном равновесном состоянии смеси, соответствующем состоянию покоя. Затем частицы релаксируют по скоростям до

Рис. 9. Отражение двухфронтовой УВ с изменением волновой конфигурации при D = -2,0 и $m_{10} = 0,2$

равновесия. Легкий компонент в отраженной УВ непрерывно тормозится как перед фронтом внутренней УВ, так и за ним вниз по потоку. При этом давление тяжелого компонента скачком возрастает в головной УВ и плавно продолжает расти до места излома производных, где находится внутренняя УВ по легкому компоненту, и далее (с меньшим градиентом) продолжает расти до конечного равновесного состояния. Давление в легком компоненте плавно нарастает до внутреннего скачка уплотнения, в котором вещество, непрерывно занимающее весь объем, сжимается до значения $P_{1,\max} = 4,779$, превышающего расчетное значение давления в конечном равновесном состоянии ($P_{\kappa} = 4,7697$), после чего происходит разгрузка легкого компонента до давления P_{κ} .

Как было отмечено выше, особенностью отражения данной конфигурации является смена характера поведения профилей скоростей и давлений компонентов смеси.

Изучим отражение замороженной УВ двухфронтовой конфигурации с начальными параметрами D = -2,0 и $m_{10} = 0,2,$ принадлежащими области I_{52} (см. рис. 1). Стационарная ударно-волновая конфигурация качественно аналогична рассмотренной ранее при D = -1,6 и $m_{10} = 0,8$ (см. рис. 8 при t = 0), отличие лишь в увеличении амплитуды головного и внутреннего скачков уплотнения. Данная УВ (рис. 9) устойчиво распространяется по смеси в моменты времени t = 3 и 6, взаимодействует с жесткой стенкой и отража-

Рис. 10. Изменение относительной массовой концентрации тяжелого компонента при отражении замороженной УВ со сменой типа

ется УВ дисперсионно-замороженного типа. Параметры отраженной УВ соответствуют эквивалентной падающей УВ с начальными данными $D = -2,0342, m_{10} = 0,117$ и $P_0 = 2,54$, принадлежащими области I_{51} (см. рис. 1). Профиль скорости отраженной УВ также включает головной скачок уплотнения в тяжелом компоненте, дополненный зоной релаксации с небольшим максимумом, и является монотонно возрастающим в легком компоненте. Давление в тяжелом компоненте скачком увеличивается на головной УВ и продолжает возрастать в зоне релаксации до конечного равновесного состояния. В легком компоненте давление вначале непрерывно возрастает до $P_{1,\max} = 8,174$, а затем убывает до конечного равновесного значения.

На рис. 10 видно, что для падающей УВ относительная массовая концентрация тяжелого компонента скачком возрастает до $\xi_{2,\max} =$ 0,9008 за счет головного скачка уплотнения, затем убывает до $\xi_{2,\min} = 0.1862$, пересекая линию равновесия $\xi_{2,0} = 0,8368$, и на заключительном этапе плавно увеличивается до $\xi_{2,0}$. При отражении УВ от жесткой границы в окрестности стенки образуется устойчивый стационарный слой с пониженным содержанием тяжелых частиц ($\xi_2 = 0,7083$ на стенке). Как видно из рис. 10, профиль отраженной УВ также включает головной скачок, где значение ξ_2 возрастает до 0,9007, что практически совпадает с $\xi_{2,\max}$ в падающей УВ, и затем плавно убывает до равновесного значения $\xi_{2,0}$.

Таким образом, в отраженной УВ внутренняя точка пересечения профиля ξ_2 и линии равновесия $\xi_{2,0}$ отсутствует, так как профили скоростей компонентов смеси в отраженной УВ не имеют внутренней точки равновесия.

6. ВЫВОДЫ

В рамках математической модели механики гетерогенных сред с различными давлениями и скоростями численно решена проблема отражения УВ и волн разрежения от жесткой стенки в смеси жидкого железа и кристаллов молибдена:

• проведена верификация математической модели с помощью экспериментальных данных по зависимости равновесно-замороженной скорости звука от начального давления в смеси двух конденсированных материалов;

• в плоскости (m_{10}, D) построена карта решений, позволяющая определить тип отраженной волны по типу падающей;

• показано, что относительная массовая концентрация тяжелой фазы возрастает в зоне релаксации при отражении и найдена область неоднородности их объемных концентраций;

• найдено, что передний фронт волны разрежения распространяется в начальный момент времени с равновесно-замороженной скоростью звука, а при больших временах — с равновесной. Задний фронт движется со скоростью звука в жидком железе.

Авторы благодарны В. В. Митрофанову и В. Ф. Анисичкину за обсуждение некоторых аспектов работы.

Работа выполнена в рамках интеграционного проекта N^o 97-24 Сибирского отделения РАН.

ЛИТЕРАТУРА

- Анисичкин В. Ф. Взрываются ли планеты? // Физика горения и взрыва. 1997. Т. 33, № 1. С. 138–142.
- Физические величины: Справочник / А. П. Бабичев и др. / Под. ред. И. С. Григорьева, Е. З. Мейлихова. М.: Энергоатомиздат, 1991.
- Краткая химическая энциклопедия / Ред. кол. (отв. ред.) И. Л. Кнунянц и др. М.: Сов. энцикл., 1965. Т. 4. 1182 стб.
- Федоров А. В. Математическое описание течения смеси конденсированных материалов при высоких давлениях // Физическая газодинамика реагирующих сред. Новосибирск: Наука, 1990. С. 119–128.

- Федоров А. В. Структура ударной волны в гетерогенной смеси двух твердых тел с одинаковыми давлениями компонент // Численные методы решения задач теории упругости и пластичности / Под ред. В. М. Фомина. Новосибирск: Ин-т теор. и прикл. математики СО РАН, 1992. С. 235–249.
- Жилин А. А., Федоров А. В. Структура ударных волн в двухскоростной смеси сжимаемых сред с различными давлениями // ПМТФ. 1998. Т. 39, № 2. С. 10–19.
- 7. Zhilin A. A. and Fedorov A. V. The shock wave structure in a two-velocity mixture of compressible media with two pressures // Preprints of the 8th Intern. Conf. on Methods of Aerophysical Research. Novosibirsk, ITAM, 1996. V. 2. P. 237–242.
- Жилин А. А., Федоров А. В., Фомин В. М. Бегущая волна в двухскоростной смеси сжимаемых сред с различными давлениями // Докл. РАН. 1996. Т. 350, N^o 2. C. 201–205.
- Кошкин Н. И., Ширкевич М. Г. Справочник по элементарной физике. М.: Наука, 1965.

- Любарский С. Д., Иванов А. С. Движение сжатой двухфазной среды насыпной плотности при внезапном расширении // Физика горения и взрыва. 1989. Т. 25, № 3. С. 78–81.
 Жилин А. А., Федоров А. В. Отраже-
- Жилин А. А., Федоров А. В. Отражение ударных волн от жесткой границы в смеси конденсированных материалов. 1. Равновесное приближение // ПМТФ. 1999. Т. 40, № 5. С. 73–78.
- Жилин А. А., Федоров А. В. Отражение ударных волн от жесткой границы в смеси конденсированных материалов. 2. Неравновесное приближение // ПМТФ. 1999. Т. 40, № 6. С. 3–10.
- Жилин А. А., Федоров А. В. Распространение ударных волн в двухфазной смеси с различными давлениями компонентов // ПМТФ. 1999. Т. 40, № 1. С. 55–63.

Поступила в редакцию 29/XII 1998 г., в окончательном варианте — 25/XII 1999 г.