УДК 536.46

АНАЛИТИЧЕСКИЙ РАСЧЕТ СКОРОСТИ ГОРЕНИЯ ПРИ ОТРИЦАТЕЛЬНОМ ЭРОЗИОННОМ ЭФФЕКТЕ

К. О. Сабденов, М. Ерзада

Евразийский национальный университет им. Л. Н. Гумилёва, 010008 Астана, Казахстан sabdenovko@yandex.kz

Проведен расчет скорости горения при отрицательном эффекте эрозии с использованием аналитических методов и в рамках простой модели химической реакции в газовой фазе A \rightarrow B. В модели учитывается переход части тепловой энергии в кинетическую энергию движения газовых продуктов горения вдоль поверхности газификации топлива. Решения получены для случаев, когда толщина ламинарного подслоя больше и меньше ширины зоны горения в газовой фазе. Результаты расчета подтверждают ранее сделанный авторами вывод: слабое проявление отрицательного эрозионного эффекта при снижении начальной температуры топлива вызвано сужением области его возникновения.

Ключевые слова: отрицательный эрозионный эффект, критическое число Вилюнова, число Булгакова — Липанова, кинетическая энергия движения газа, начальная температура горения твердого топлива.

ВВЕДЕНИЕ

Для успешного проектирования твердотопливных ракетных двигателей необходимо предсказывание скорости горения топлива и. Эта скорость зависит от физических и химических свойств топлива, внешних условий и конструкции двигателя. Может показаться, что общая функциональная зависимость скорости горения от перечисленных факторов должна включать большое число параметров. Но в действительности эти параметры связаны между собой. Достаточно выделить те физические величины, которые являются определяющими для скорости горения твердого ракетного топлива. Как показывают многочисленные теоретические и экспериментальные исследования, такими величинами могут быть давление р и температура поверхности газификации T_s. Зависимость $u = u(p, T_s)$ является специфической для каждого вида топлива. Установить поведение скорости горения при изменении давления относительно легко. Иначе обстоит дело с температурой T_s , поскольку дать ей строгое определение оказывается не так просто. Кроме того, при расчете Т_s аналитическими методами возникают большие трудности, главным образом из-за отсутствия прямой связи между этой температурой и факторами, влияющими на нее. Исключение составляют единичные случаи, когда удается установить зависимость температуры поверхности газификации от условий горения. Это те ситуации, когда относительно легко вычислить зависимость T_s от теплового потока q_g из газовой в твердую фазу топлива: $T_s = T_s(q_q)$.

ПРИЧИНЫ ПОЯВЛЕНИЯ ЭРОЗИОННОГО ГОРЕНИЯ

Эрозионное горение твердых ракетных топлив [1-5] проявляется в изменении скорости горения и при движении газовых продуктов вдоль горящей поверхности топлива с характерной скоростью w_{∞} , равной скорости в ядре потока. Иначе говоря, при наличии обдува. Независимо от того, уменьшается или увеличивается при этом скорость горения, речь идет об изменении теплового потока $q_q = q_q(w_{\infty})$. При этом различают положительный и отрицательный эффекты эрозионного горения. Положительный эффект эрозионного горения наблюдается, когда скорость обдува w_{∞} превышает некоторое пороговое значение w_* . В этом случае новое значение скорости горения u_w может быть представлено степенной зависимостью [6]

$$u_w = u \left(\frac{w_\infty}{w_*}\right)^n, \quad w_\infty \ge w_*, \tag{1}$$

где u — скорость горения, когда обдув отсутствует, n — числовой параметр, $0 < n \leq 1$.

[©] Сабденов К. О., Ерзада М., 2013.

Коэффициент эрозии, определяемый как отношение $u_w/u = \varepsilon$, может достигать значения $1.7 \div 1.8$ [7].

Отрицательный эффект эрозионного горения имеет место при $w_{\infty} < w_*$. Он проявляется слабо, и коэффициент эрозии находится в интервале 0.7 ÷ 1.0 [10]. Причина тому кроется в конкурирующем действии факторов, вызывающих положительный и отрицательный эрозионные эффекты. Каждый из этих эффектов имеет характерную масштабную скорость: положительный —

$$w_* = \frac{32.5}{\sqrt{C_f}} \frac{\nu_g}{\delta_b},$$

где ν_g — кинематическая вязкость, δ_b — ширина зоны горения при отсутствии обдува, C_f — коэффициент гидродинамического сопротивления поверхности твердой фазы топлива; отрицательный [8] —

$$w_0 = \sqrt{\frac{c_p R T_b^2}{E}},$$

где c_p — теплоемкость газа (продуктов горения) при постоянном давлении, T_b — температура пламени, E — эффективная энергия активации химических реакций в газовой фазе, R — универсальная газовая постоянная. Если скорость w_{∞} не слишком велика, то отрицательный коэффициент эрозии можно рассчитывать по формуле [8]

$$\varepsilon = \exp\left[\frac{E}{2RT_b} \left(1 - \frac{1}{1 - w_\infty^2/2w_0^2}\right)\right].$$
 (2)

Положительный эрозионный эффект связан с возникновением и развитием турбулентного пламени в газовой фазе [6, 9–11]. Решающее влияние турбулентности сохраняется и при скоростях обдува, превышающих скорость звука [12].

Отрицательный эрозионный эффект связан с переходом части внутренней энергии газовых продуктов горения в их кинетическую энергию движения вдоль поверхности топлива [8, 13–16], что ведет к снижению температуры пламени и, тем самым, скорости горения.

Один из возможных механизмов [17] отрицательного эффекта эрозионного горения связывают с двумерной по пространству неустойчивостью горения.

К снижению скорости горения также может привести появление дополнительной составляющей к скорости оттока газа от поверхности топлива вследствие формирования пограничного слоя при обдуве [6]. Но оценки показывают, что уменьшение скорости горения при этом очень мало и не согласуется с экспериментальными данными. Поэтому наиболее приемлемым объяснением возникновения отрицательного эрозионного эффекта остается газодинамический механизм [8, 16] ввиду своей универсальности и непротиворечивости экспериментальным данным. Этот механизм позволяет не только описать снижение скорости горения, но и объяснить ослабление отрицательного эрозионного эффекта при снижении начальной температуры топлива T_0 [18]. Кроме того, газодинамический механизм предсказывает возможность возникновения акустической неустойчивости при увеличении скорости обдувающего потока [8].

При моделировании [14] процессов горения в ракетном двигателе предсказана возможность возникновения высокочастотных колебаний. В этой работе учитывается возможность проявления положительного и отрицательного эффектов эрозионного горения. Не исключено, что обнаруженная акустическая неустойчивость вызвана понижением температуры пламени при увеличении кинетической энергии движения газовых продуктов горения.

Расчет скорости горения с учетом эрозионного эффекта выполнен также в работах [19, 20]. В них проведено не только детальное моделирование турбулентного горения, но еще и учтены геометрические формы топлива. Однако множество физических и геометрических параметров в сложных моделях [3, 9, 12, 14, 19, 20] не позволяют выделить главные факторы, определяющие скорость горения.

В настоящей работе представлен расчет скорости горения при отрицательном эффекте эрозии на основе простейшей модели горения твердого топлива.

ОСНОВНЫЕ УРАВНЕНИЯ ГОРЕНИЯ ТВЕРДОГО РАКЕТНОГО ТОПЛИВА ПРИ НАЛИЧИИ ОБДУВА

Горение топлива характеризуется масштабами порядка $10 \div 100$ мкм. Поэтому для выяснения основных параметров, определяющих скорость горения, необходимо рассматривать физические и химические процессы, протекающие в этих масштабах.

При исследовании горения твердого ракетного топлива воспользуемся следующим модельным представлением: если обдув отсутствует, то горючая смесь оттекает с поверхности газификации $x_s(t)$ со скоростью v_s . Эта смесь в дальнейшем сгорает в точке $x_f(t)$ с тепловым эффектом Q, где расположен фронт горения, что предполагает бесконечно большую скорость химической реакции или ее бесконечно большую энергию активации. Реакция представляется протекающей по брутто-схеме $A \rightarrow B$, где A — горючая смесь, B — продукт химической реакции. Относительное расположение поверхностей x_s и x_f показано на рис. 1.

Топливо имеет переменную температуру $T_c(x,t)$. Его теплоемкость c_c считается постоянной. Газификация материала топлива происходит в бесконечно узкой зоне с тепловым эффектом L. В интервале $x_f \div x_s$, называемом зоной горения, газовая смесь характеризуется температурой T(x, t), относительной концентрацией $Y(x,t), 0 \leq Y \leq 1$, плотностью ρ и теплоемкостью при постоянном давлении $c_p =$ сопят. Область $x > x_f$ (зона пламени) занята продуктами горения. Здесь температура T_b , плотность ρ_b .

Массовая скорость горения при стационарном режиме — $m = \rho_c u$, причем $u = dx_s/dt = dx_f/dt$.

Пусть теперь обдув плоской поверхности топлива со скоростью w(x) происходит вдоль направления координаты y (см. рис. 1). Это приводит к появлению пограничного слоя. На достаточно большом удалении $x \to \infty$ за пре-

Рис. 1. Структура зоны горения при отсутствии (штриховые линии) и наличии (пунктирные линии) обдува, $v_{sw} = v_w (x = x_{sw})$

делами пограничного слоя устанавливается постоянное значение этой скорости: $w = w_{\infty} =$ const. Поверхности газификации и сгорания газовой смеси имеют координаты x_{fw} и x_{sw} .

Картина течения и структура зоны горения при обдуве поверхности горящего топлива показаны на рис. 1. Здесь и далее значения параметров при наличии обдува по мере необходимости будем снабжать нижним индексом w, а значения параметров на поверхности газификации — нижним индексом s.

Скорость газа до фронта горения $V = iv_w + jw$ — вектор с проекциями v_w , w на оси декартовых координат x, y и единичными векторами i, j. Непосредственно за фронтом горения, в зоне пламени, скорость газа $V_{bw} = iv_{bw} + jw_b$.

Представим пограничный слой состоящим из двух областей: ламинарного подслоя и зоны развитого турбулентного течения. Структура ламинарного подслоя такова [21], что гидродинамические параметры в нем сильно меняются по направлению координаты x и слабо по направлению y и последними можно пренебречь.

Примем следующие предположения: — при относительно малых скоростях обдува толщина ламинарного подслоя δ_g больше толщины зоны горения $\delta_b = x_{fw} - x_{sw}$ в газовой фазе;

— теплоемкости газовой (c_p) и твердой (c_c) фаз топлива одинаковы;

 кинетической энергией движения газа по направлению нормали к поверхности топлива можно пренебречь;

— диссипация кинетической энергии газа за счет сил трения не учитывается.

Сначала необходимо найти основные соотношения для фронта горения. Воспользуемся подходом, принятым в теории пограничного слоя.

В пределах ламинарного подслоя скорости v_w, w, v_{bw}, w_b будем полагать зависящими только от координаты x:

$$v_w = v_w(x), \quad w = w(x),$$

 $v_{bw} = v_{bw}(x), \quad w_b = w_b(x)$

Изложенная выше физическая картина установившегося режима горения гомогенного ракетного топлива при обдуве может быть описана системой уравнений:

$$-\infty < x < x_{sw}(t): \quad \frac{\partial T_c}{\partial t} = \frac{1}{\rho_c c_c} \frac{\partial}{\partial x} \left(\lambda_c \frac{\partial T_c}{\partial x} \right);$$

$$x_{sw}(t) < x < x_{fw}(t): \quad \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}\rho v_w = 0,$$

$$\frac{\partial Y}{\partial t} + v_w \frac{\partial Y}{\partial x} = \frac{1}{\rho} \frac{\partial}{\partial x} \left(D\rho \frac{\partial Y}{\partial x} \right),$$

$$\frac{\partial T}{\partial t} + v_w \frac{\partial T}{\partial x} =$$

$$= \frac{1}{\rho c_p} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) - \frac{1}{2c_p} \left(\frac{\partial w^2}{\partial t} + v_w \frac{\partial w^2}{\partial x} \right);$$

$$x_{fw}(t) < x < \delta_g: \quad \frac{\partial \rho_{b1}}{\partial t} + \frac{\partial}{\partial x} \rho_{b1} v_{bw} = 0,$$
 (3)

$$\frac{\partial T_{b1}}{\partial t} + v_{bw} \frac{\partial T_{b1}}{\partial x} =$$

$$= \frac{1}{\rho_{b2}c_p} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T_{b1}}{\partial x} \right) - \frac{1}{2c_p} \left(\frac{\partial w^2}{\partial t} + v_{bw} \frac{\partial w^2}{\partial x} \right)$$

$$\delta_g < x < +\infty; \quad \frac{\partial \rho_{b2}}{\partial t} + \frac{\partial}{\partial x} \rho_{b2} v_{bw} = 0,$$

$$\frac{\partial T_{b2}}{\partial t} + v_{bw} \frac{\partial T_{b2}}{\partial x} = \frac{1}{\rho_{b2} c_p} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T_{b2}}{\partial x} \right).$$

Система дополняется уравнением состояния идеального газа (для горючей смеси и продуктов горения) $p = \rho R_q T$, где p — давление, R_q — газовая постоянная рассматриваемой смеси. Скорость обдува возьмем в виде кусочно-линейной зависимости:

$$w = \frac{c_f}{2} \frac{\rho_{bw} w_{\infty}^2}{\mu} (x - x_{sw}), \quad x < \delta_g;$$

$$w = w_{\infty}, \quad x \ge \delta_g.$$
 (4)

Используются следующие граничные условия:

m

 π

$$x \to -\infty; \quad T_c = T_0;$$

$$x = x_{sw}(t); \quad -\rho_c \frac{dx_{sw}}{dt} = -\rho \frac{dx_{sw}}{dt} + \rho v_w,$$

$$-\rho_c \frac{dx_{sw}}{dt} = -\rho Y \frac{dx_{sw}}{dt} + \rho v_w Y - D\rho \frac{\partial Y}{\partial x},$$

$$-\rho_c \frac{dx_{sw}}{dt} = m_w(T), \quad T = T_c,$$

$$\lambda_c \frac{\partial T_c}{\partial x} = \lambda \frac{\partial T}{\partial x} + L\rho_c \frac{dx_{sw}}{dt}; \quad (5)$$

$$\begin{aligned} x &= x_{fw}(t): \quad Y = 0, \ v_w = v_{bw}, \ T = T_{b1}, \\ \rho &= \rho_{b1}, \quad \lambda \frac{\partial T}{\partial x} = \lambda \frac{\partial T_{b1}}{\partial x} - D\rho Q \frac{\partial Y}{\partial x}, \\ -D\rho \frac{\partial Y}{\partial x} &= m_{bw}(T_b); \\ x &= \delta_g: \quad T_{b1} = T_{b2}; \ \frac{\partial T_{b1}}{\partial x} = \frac{\partial T_{b2}}{\partial x}; \\ x &\to +\infty: \quad \frac{\partial T_{b2}}{\partial x} = 0. \end{aligned}$$

Принятому в (5) знаку *L* соответствует эндотермическая реакция. Массовые скорости горения m_w, m_{bw} равны между собой только в случае стационарного горения.

Зависимости коэффициентов диффузии D, теплопроводности λ и вязкости μ газа от температуры примем в виде

$$D \sim T^2, \quad \lambda \sim T, \quad \mu \approx \text{const};$$
 (6)

по форме они близки экспериментально наблюдаемым [22] и, как мы покажем ниже, позволяют получить точные аналитические решения.

РАСПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ И КОНЦЕНТРАЦИИ. СТАЦИОНАРНОЕ ГОРЕНИЕ

Перейдем в системе уравнений (3) при граничных условиях (5) к безразмерным величинам и лагранжевой координате ξ согласно выражениям:

$$-\infty < x < x_{sw}(t): \quad \xi = \frac{u}{\varpi_c} \left[x - x_{sw}(t) \right];$$

$$x_{sw}(t) < x < +\infty: \quad \xi = \frac{u}{\sigma \bigotimes_c \rho_c} \int_{x_{sw}(t)}^x \rho(x', t) dx',$$

$$\mathfrak{E}_c = \frac{\lambda_c}{c_c \rho_c}, \ \theta_c = \frac{T_c}{T_s}, \ \theta = \frac{T}{T_s}, \ \theta_b = \frac{T_b}{T_s},$$
(7)

$$\theta_0 = \frac{T_0}{T_s}, \ q = \frac{Q}{c_p T_s}, \ \varepsilon = -\frac{\rho_c}{m} \frac{dx_{sw}}{dt},$$

$$l = \frac{L}{c_c T_s}, \ \sigma = \frac{D\rho^2}{\varpi_c \rho_c^2}, \ m_w = m_{bw}, \ \omega = \frac{w}{w_{\infty}}.$$

Переход к лагранжевой координате позволяет отделить гидродинамическую часть задачи от диффузионно-тепловой, что существенно облегчает аналитическое решение задачи. Переход к новым координатам выполним только для уравнения теплопроводности. Тогда для остальных уравнений переход к лагранжевым координатам не вызовет трудностей.

Частные производные в (3), (4) определены в эйлеровой системе координат. Переопределим их в новой, лагранжевой системе координат. Для различия производных по времени в указанных системах координат обозначим эйлерову производную индексом Eu. Необходимые же расчеты подробно приводятся только для температуры *T*. Таким образом,

$$\frac{\partial T}{\partial t}\Big|_{\mathrm{Eu}} = \frac{\partial T}{\partial t} + \frac{\partial \xi}{\partial t}\frac{\partial T}{\partial \xi},$$
$$\frac{\partial \xi}{\partial t} = -\frac{u\rho}{\sigma \mathfrak{A}_c \rho_c}\frac{d\,x_{sw}}{d\,t} + \frac{u}{\sigma \mathfrak{A}_c \rho_c}\int_{x_{sw}(t)}^x \frac{\partial \rho}{\partial t}\,dx'.$$

В условиях рассматриваемого здесь стационарного горения $\partial T/\partial t = 0$.

Подстановка в выражение для производной от ξ значения $\partial \rho / \partial t$ из второго уравнения в (3) и последующее вычисление интеграла дают

$$\frac{\partial \xi}{\partial t} = -\frac{u}{\sigma \varepsilon_c \rho_c} \left(\rho \frac{dx_{sw}}{dt} + \rho v_w - \rho v_w |_{x=x_{sw}(t)} \right).$$

Из второго граничного условия определяем

$$-\rho v_w|_{x=x_{sw}(t)} = -\rho \frac{dx_{sw}}{dt} + \rho_c \frac{dx_{sw}}{dt}.$$

Используя это выражение в формуле для $\partial \xi / \partial t$, получаем

$$\frac{\partial\xi}{\partial t} = -\frac{u}{\sigma \varkappa_c \rho_c} \bigg(\rho_c \frac{dx_{sw}}{dt} + \rho v_w \bigg).$$

Вычислив производную от ξ по x,

$$\frac{\partial\xi}{\partial x} = \frac{u\rho}{\sigma \varpi_c \rho_c},\tag{8}$$

легко преобразовать левую часть уравнения для Tк виду

$$\left. \frac{\partial T}{\partial t} \right|_{\mathrm{Eu}} + v_w \frac{\partial T}{\partial x} =$$

$$= -\frac{u}{\sigma \varpi_c \rho_c} \left(\rho_c \frac{dx_{sw}}{dt} + \rho v_w \right) \frac{\partial T}{\partial \xi} + v_w \frac{\partial \xi}{\partial x} \frac{\partial T}{\partial \xi} =$$
$$= -\frac{u}{\sigma \varpi_c} \frac{dx_{sw}}{dt} \frac{\partial T}{\partial \xi} = \frac{u^2}{\sigma \varpi_c} \left(-\frac{1}{u} \frac{dx_{sw}}{dt} \frac{\partial T}{\partial \xi} \right) =$$
$$= \frac{u^2}{\sigma \varpi_c} \varepsilon \frac{\partial T}{\partial \xi}.$$

Несколько проще осуществляется переход к лагранжевой координате ξ в члене, отвечающем за кондуктивный перенос тепла:

$$\frac{1}{\rho c_p} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) =$$
$$= \frac{\lambda \rho}{c_p} \left(\frac{u}{\sigma \alpha_c \rho_c} \right)^2 \frac{\partial^2 T}{\partial \xi^2} = \frac{u^2}{\sigma \alpha_c} \frac{\partial^2 T}{\partial \xi^2}$$

Здесь использованы формула (8), выписанное для параметра σ выражение из (7) и принятое выше допущение равенства теплоемкостей ($c_c = c_p$). По аналогии с левой частью уравнения теплопроводности можно записать

$$\frac{\partial w^2}{\partial t} + v_w \frac{\partial w^2}{\partial x} = \frac{u^2}{\sigma \varpi_c} \varepsilon \frac{dw^2}{d\xi},$$

где частная производная в лагранжевых координатах принята равной нулю:

$$\left. \frac{\partial w^2}{\partial t} \right|_{\rm La} = 0.$$

Дальнейший переход к лагранжевой координате и безразмерным величинам в оставшихся уравнениях не вызывает затруднений. При преобразовании уравнения диффузии необходимо учесть, что в силу зависимостей (6) для Dи λ справедливы равенства

$$\frac{D\rho^2}{\sigma \varpi_c \rho_c^2} = \frac{D\rho^2 c_p}{\lambda \rho} = \text{Le}, \quad \text{Le} = \frac{D\rho c_p}{\lambda} = \text{const.}$$

РЕШЕНИЕ ПРИ $\xi_g > \xi_{fw}$

Для случая, когда ширина зоны химических реакций ξ_{fw} меньше толщины ламинарного подслоя ξ_g , математическая формулировка стационарной диффузионно-тепловой задачи в новых переменных имеет вид:

$$-\infty < \xi < 0; \quad \varepsilon \frac{d\theta_c}{d\xi} - \frac{d^2\theta_c}{d\xi^2} = 0;$$

$$0 < \xi < \xi_{fw}; \quad \varepsilon \frac{d\theta}{d\xi} - \frac{d^2\theta}{d\xi^2} = -\delta\varepsilon \frac{d\omega^2}{d\xi},$$

$$\varepsilon \frac{dY}{d\xi} - \operatorname{Le} \frac{d^2Y}{d\xi^2} = 0;$$

$$\xi_{fw} < \xi < \xi_g; \quad \varepsilon \frac{d\theta_{b1}}{d\xi} - \frac{d^2\theta_{b1}}{d\xi^2} = -\delta\varepsilon \frac{d\omega^2}{d\xi},$$

(9)

$$\begin{split} \delta &= \frac{w_\infty^2}{2c_pT_s};\\ \xi_g &< \xi < +\infty: \qquad \varepsilon \frac{d\theta_{b2}}{d\xi} - \frac{d^2\theta_{b2}}{d\xi^2} = 0. \end{split}$$

Запишем граничные условия для уравнений (9):

$$\begin{split} \xi \to -\infty \colon & \theta_c = \theta_0; \\ \xi = 0 \colon & \theta_c = \theta, \ \frac{d\theta_c}{d\xi} = \frac{d\theta}{d\xi} - l\varepsilon, \\ & \varepsilon(1 - Y) + \operatorname{Le} \frac{dY}{d\xi} = 0; \\ \xi = \xi_{fw} \colon & \theta = \theta_{b1}, \ \frac{d\theta}{d\xi} = \frac{d\theta_{b1}}{d\xi} - q\operatorname{Le} \frac{dY}{d\xi}, \\ & -\operatorname{Le} \frac{dY}{d\xi} = \varepsilon, \ Y = 0; \\ \xi = \xi_g \colon & \theta_{b1} = \theta_{b2}, \ \frac{d\theta_{b1}}{d\xi} = \frac{d\theta_{b2}}{d\xi}; \\ \xi \to +\infty \colon \quad \frac{d\theta_{b2}}{d\xi} = 0. \end{split}$$
(10)

Принятое выше предположение независимости вязкости μ от температуры приводит к линейной зависимости скорости ω от лагранжевой координаты ξ :

$$\omega = \frac{\xi}{\xi_g}, \quad 0 < \xi < \xi_g;$$

$$\omega = 1, \quad \xi \ge \xi_g; \tag{11}$$

$$\xi_g = \frac{2\mu u}{C_f w_\infty \mathfrak{A}_c \rho_c \sigma} = \frac{2v_s}{C_f w_\infty} \operatorname{Sc} = \frac{2}{\sqrt{C_f}} \frac{\operatorname{Sc}}{J},$$

где Sc = ν/D — число Шмидта, ν — кинематическая вязкость, ξ_g — толщина ламинарного подслоя в лагранжевых координатах, J — число Вилюнова:

$$J = \sqrt{C_f} \frac{w_{\infty}}{v_s}.$$

Дополнительно к граничным условиям (10) должно выполняться балансное соотношение

$$\varepsilon = \frac{m_w(T_{sw})}{m} = \frac{m_{bw}(T_{fw})}{m_b},\qquad(12)$$

где T_{sw} — температура на поверхности топлива, T_{fw} — температура горения, которая в силу принятого предположения бесконечно тонкой зоны горения в газовой фазе совпадает с температурой пламени T_{bw} ($T_{fw} = T_{bw}$).

Решения системы (9) с граничными условиями (10) даются выражениями:

$$-\infty < \xi < 0; \quad \theta_c = \theta_0 + (\theta_{sw} - \theta_0) \exp(\varepsilon\xi);$$

$$0 < \xi < \xi_{fw}; \quad \theta = \theta_0 - l + (\theta_{sw} - \theta_0 + l + l_w) \times$$

$$\times \exp(\varepsilon\xi) - l_w \left(1 + \varepsilon\xi + \frac{\varepsilon^2\xi^2}{2}\right),$$

$$Y = 1 - (1 - Y_{sw}) \exp\frac{\varepsilon\xi}{\text{Le}}; \quad (13)$$

$$\xi_{fw} < \xi < \xi_g; \quad Y = 0,$$

$$\theta_{b1} = \theta_0 - l + q + l_w (1 + \varepsilon\xi_g) \exp(-\varepsilon\xi_g) \times$$

$$\begin{split} & \times \exp(\varepsilon\xi) - l_w \bigg(1 + \varepsilon\xi + \frac{\varepsilon^2\xi^2}{2}\bigg); \\ \xi_g < \xi < +\infty: \quad \theta_{b2} = \theta_0 - l + q - \delta = \theta_{bw}. \end{split}$$

Здесь для сокращения записи и удобства пред-

ложено использовать безразмерный параметр

$$l_w = \frac{2\delta}{\xi_g^2 \varepsilon^2}$$

Он имеет смысл фиктивного теплового эффекта газификации твердой фазы топлива. Его появление вызвано потерей тепла в зоне горения газовой фазы вследствие перехода внутренней энергии газа в его кинетическую энергию движения.

Ширина зоны горения определяется формулой

$$\xi_{fw} = -\frac{\text{Le}}{\varepsilon} \ln(1 - Y_{sw}) =$$

$$= \frac{1}{\varepsilon} \ln \left[\frac{q}{\theta_{sw} + l - \theta_0 + l_w (1 - (1 + \varepsilon \xi_g) \exp(-\varepsilon \xi_g))} \right],$$
(14)

где Y_{sw} — массовая концентрация горючего газа вблизи поверхности разложения топлива, $\theta_{sw} = T_{sw}/T_s$ — безразмерная температура на поверхности газификации топлива, $\theta_{bw} = T_{bw}/T_s$ — безразмерная температура пламени.

РЕШЕНИЕ ПРИ $\xi_g < \xi_{fw}$

В случае, когда ширина зоны горения больше толщины ламинарного подслоя, влияние турбулентности на горение становится достаточно существенным. Но в турбулентном пограничном слое ламинарный подслой от зоны развитой турбулентности отделен буферным слоем, толщина которого сравнима с толщиной ламинарного подслоя [21]. В буферном слое по мере удаления от твердой поверхности интенсивность турбулентности постепенно нарастает. Поэтому при $\xi_g < \xi_{fw}$, но $\xi_g \approx \xi_{fw}$ влиянием турбулентности на горение можно пренебречь. При этом решения уравнений горения оказываются полезными при общем анализе процессов горения. Поэтому рассмотрим уравнения:

$$-\infty < \xi < 0; \quad \varepsilon \frac{d\theta_c}{d\xi} - \frac{d^2\theta_c}{d\xi^2} = 0;$$
$$0 < \xi < \xi_g; \quad \varepsilon \frac{d\theta}{d\xi} - \frac{d^2\theta}{d\xi^2} = -\delta \varepsilon \frac{d\omega^2}{d\xi},$$
$$\varepsilon \frac{dY}{d\xi} - \operatorname{Le} \frac{d^2Y}{d\xi^2} = 0; \quad (15)$$

$$\xi_g < \xi < \xi_{fw}: \quad \varepsilon \frac{d\theta_{b1}}{d\xi} - \frac{d^2\theta_{b1}}{d\xi^2} = 0;$$
$$\varepsilon \frac{dY_1}{d\xi} - \operatorname{Le} \frac{d^2Y_1}{d\xi^2} = 0;$$
$$d\theta_{12} = d^2\theta_{12}$$

$$\xi_{fw} < \xi < +\infty$$
: $\varepsilon \frac{d\theta_{b2}}{d\xi} - \frac{d^2\theta_{b2}}{d\xi^2} = 0.$

Граничные условия:

$$\xi \to -\infty$$
: $\theta_c = \theta_0;$

$$\begin{split} \xi &= 0; \quad \theta_c = \theta, \quad \frac{d\theta_c}{d\xi} = \frac{d\theta}{d\xi} - l\varepsilon, \\ & \varepsilon(1 - Y) + \operatorname{Le} \frac{dY}{d\xi} = 0; \\ \xi &= \xi_g; \quad \theta = \theta_{b1}, \quad \frac{d\theta}{d\xi} = \frac{d\theta_{b1}}{d\xi}, \quad Y = Y_1, \\ & \frac{dY}{d\xi} = \frac{dY_1}{d\xi}; \\ \xi &= \xi_{fw}; \quad \theta_{b1} = \theta_{b2}, \quad \frac{d\theta_{b1}}{d\xi} = \frac{d\theta_{b2}}{d\xi} - q\operatorname{Le} \frac{dY_1}{d\xi}, \\ & -\operatorname{Le} \frac{dY_1}{d\xi} = \varepsilon, \quad Y_1 = 0; \\ \xi \to +\infty; \quad \frac{d\theta_{b2}}{d\xi} = 0. \end{split}$$

Решение задачи (15) с приведенными граничными условиями не вызывает трудностей и дается следующими формулами:

$$-\infty < \xi < 0: \quad \theta_c = \theta_0 + (\theta_{sw} - \theta_0) \exp(\varepsilon\xi);$$

$$0 < \xi < \xi_g: \quad \theta = \theta_0 - l + (\theta_{sw} - \theta_0 + l + l_w) \times$$

$$\times \exp(\varepsilon\xi) - l_w \left(1 + \varepsilon\xi + \frac{\varepsilon^2\xi^2}{2}\right),$$

$$Y = 1 - (1 - Y_{sw}) \exp\frac{\varepsilon\xi}{Le}; \quad (16)$$

$$\xi_g < \xi < \xi_{fw}: \quad Y_1 = 1 - (1 - Y_{sw}) \exp\frac{\varepsilon\xi}{Le},$$

$$\theta_{b1} = \theta_0 - l - \delta + [\theta_{sw} - \theta_0 + l + l_w]$$

$$+ l_w [1 - (1 + \varepsilon\xi_g) \exp(-\varepsilon\xi_g)] \exp(\varepsilon\xi);$$

$$\xi_{fw} < \xi < +\infty: \quad \theta_{b2} = \theta_0 - l + q - \delta, \quad Y_{b2} = 0.$$

Ширина зоны горения по-прежнему определяется формулой (14).

В формулах (10)–(14), (16) остаются неопределенными температура пламени θ_{bw} в газовой фазе и температура θ_{sw} на поверхности газификации твердой фазы топлива. Они необходимы для расчета коэффициента эрозии ε . Вычислению этих величин посвящен следующий параграф.

ВЫРАЖЕНИЕ ДЛЯ КОЭФФИЦИЕНТА ЭРОЗИИ

При отсутствии обдува ($\delta = 0$) $\varepsilon = 1$, $\theta_{sw} = 1$, $\theta_{bw} = \theta_b = \theta_0 + q - l$, а безразмерная ширина зоны горения определяется как

$$\xi_{fw} = \xi_f = \ln \frac{q}{1+l-\theta_0}.$$

Второе равенство в (12) определяет коэффициент эрозии через скорость горения в газовой фазе [23]:

$$\varepsilon = \frac{m_{fw}}{m_b} = \exp\left[\frac{E}{2R}\left(\frac{1}{T_b} - \frac{1}{T_{fw}}\right)\right] =$$
$$= \exp\left[\frac{E}{2RT_b}\left(1 - \frac{T_b}{T_{fw}}\right)\right],$$

где *E* — эффективная энергия активации химических реакций. Перепишем эту формулу с учетом введенных безразмерных величин:

$$\varepsilon = \exp\left[\frac{1}{2\beta\theta_b}\left(1 - \frac{\theta_b}{\theta_{fw}}\right)\right], \quad \beta = \frac{RT_s}{E}.$$
(17)

Коэффициент эрозии можно также рассчитать через скорость газификации твердой фазы топлива [6]:

$$\varepsilon = \exp\left[\frac{1}{2\beta_c}\left(1 - \frac{1}{\theta_{sw}}\right)\right], \quad \beta_c = \frac{E_c}{RT_s}, \quad (18)$$

где E_c — энергия активации реакции, приводящей к газификации твердой фазы топлива.

Приравнивая выражения под экспонентой в (17) и (18), находим связь между температурой в бесконечно узкой зоне химических реакций и температурой поверхности газификации:

$$\theta_{sw} = \left[1 - \frac{\beta_c}{\beta\theta_b} \left(1 - \frac{\theta_b}{\theta_{fw}}\right)\right]^{-1}.$$
 (19)

Рассмотрим случай, когда ширина зоны горения меньше и больше толщины ламинарного подслоя. Если $\xi_g > \xi_{fw}$, то температуру θ_{fw} можно рассчитывать, используя формулу для θ_{b1} из (13). Следовательно,

$$\theta_{fw} = \theta_b - l_w \left[1 + \varepsilon \xi_{fw} + \frac{1}{2} \varepsilon^2 \xi_{fw}^2 - (1 + \varepsilon \xi_g) \exp(-\varepsilon \xi_g) \exp(\varepsilon \xi_{fw}) \right].$$

Отсюда

$$\frac{\theta_{fw}}{\theta_b} = 1 - \frac{2\delta}{\varepsilon^2 \xi_g^2 \theta_b} \Phi,$$

$$= 1 + \varepsilon \xi_{fw} + \frac{1}{2} \varepsilon^2 \xi_{fw}^2 - (20)$$

$$- (1 + \varepsilon \xi_g) \exp(-\varepsilon \xi_g) \exp(\varepsilon \xi_{fw}).$$

Если $\xi_g < \xi_{fw}$, то температура θ_{fw} рассчитывается по формуле

$$\theta_{fw} = \theta_0 - l + q - \delta = \theta_b - \delta$$

или

 Φ

$$\frac{\theta_{fw}}{\theta_b} = 1 - \frac{\delta}{\theta_b}.$$
(21)

В первом случае расчет усложняется тем, что правая часть (20) неявно зависит от температуры θ_{fw} . Поэтому приходится решать трансцендентное алгебраическое уравнение.

Уравнения (18)–(21), дополненные формулой (14), являются полной системой, позволяющей найти температуру поверхности газификации и зоны химических реакций, а также коэффициент эрозии [16]. Приведенные математические соотношения достаточно сложны, получить на их основе простые аналитические формулы, подобные (1) и (2), не представляется возможным.

РЕЗУЛЬТАТЫ ЧИСЛЕННОГО РЕШЕНИЯ

Система алгебраических уравнений (18)-(21), (14) с неизвестными величинами ε , θ_{sw} , $heta_{fw}, \xi_{fw}$ решалась применением итерационного процесса по следующему алгоритму. Вначале задается стартовое значение θ_{sw} . После этого вычисляются эрозионный коэффициент по формуле (18), а также ξ_g и ξ_{fw} — по формулам (11) и (14). Далее проверяется, какое выбрать условие: $\xi_g < \xi_{fw}$ или $\xi_g > \xi_{fw},$ и в зависимости от этого для расчета температуры θ_{fw} применяется либо формула (20), либо (21). По найденному значению этой температуры проводится вторичное вычисление θ_{sw} . Если это значение температуры сильно отличается от стартового, вся процедура расчета повторяется. Причем вычисленное значение θ_{sw} принимается как стартовое для последующих итераций.

Скорость горения вычислялась по формуле Хаггиса [24]

$$u \sim \frac{p^{\nu}}{T_s - T_0}.$$

Она приводилась к безразмерной форме относительно базовых значений давления p_0 и начальной температуры T_0 :

$$u = \left(\frac{p}{p_0}\right)^{\nu} K_T, \quad K_T = \frac{1-\theta_0}{1-\theta_{0v}},$$

где θ_{0v} — варьируемая начальная температура.

Скорость оттока газа от поверхности топлива при обдуве рассчитывалась по формуле

$$v_{sw} = v_s u \, \frac{p_0}{p} \frac{T_{sw}}{T_s}$$

Эта формула следует из закона сохранения массы при исключении плотности газа с помощью уравнения состояния идеального газа.

Результаты расчета характеристик эрозионного горения, приведенные на рис. 2, 3, выполнены при следующих значениях параметров: $w_{\infty} = 5 \div 200 \text{ м/c}$ ($J = 0.4 \div 17.4$), $p/p_0 =$ 10, $\nu = 0.6$, $c_p = 800 \text{ Дж/(кг \cdot K)}$, $T_s = 600 \text{ K}$, $\beta = 0.01$, $\beta_c = 0.1$, $\theta_0 = \theta_{0v} = 0.35$, l = 0.2, q =3.5, Sc = 0.8, $C_f = 0.03$.

Критическому значению числа Вилюнова J_* , при превышении которого наблюдается положительный эрозионный эффект, можно дать два определения. Согласно первому определению [6]

Рис. 2. Параметры ε (кривая 1), θ_{sw} (2)
и θ_{fw} (3) как функции числа J

Рис. 3. Графическое определение второго критического числа Вилюнова J_{*2}

Эта формула получена при условии отсутствия отрицательного эрозионного эффекта и достижения числом Булгакова — Липанова Θ [6] критического значения $\Theta = 1$,

$$\Theta = \frac{x_{fw} - x_{sw}}{\delta_g},$$

где δ_g — толщина вязкого подслоя турбулентного пограничного слоя. Например, в представленных расчетах первое критическое число Вилюнова $J_{*1} = 9.08$.

Число Булгакова — Липанова в лагранжевых координатах записывается в виде $\Theta = \xi_{fw}/\xi_g$. При учете отрицательного эрозионного эффекта, который имеет место всегда, второе определение критического числа Вилюнова J_{*2} тоже получается из равенства $\Theta = 1$. Но второму определению соответствует точка пересечения кривых $\xi_{fw}(J)$ и $\xi_g(J)$ (см. рис. 3). Эта точка характеризуется равным по модулю вкладом отрицательного и положительного эрозионных эффектов [16], и в ней эрозионный коэффициент как функция параметра J достигает минимума.

Как известно [18], проявление отрицательного эрозионного эффекта ослабевает со снижением начальной температуры. Результаты расчета показывают следующее: хотя с уменьшением θ_{0v} наблюдается (рис. 4) относительно слабое усиление отрицательного эрозионного эффекта, в действительности происходит снижение критической скорости w_* (рис. 5). Все три значения $\theta_{0v3} < \theta_{0v2} < \theta_{0v1}$, рассчитанные при различных начальных температурах, найдены из условия $\Theta = 1$.

Рис. 4. Эрозионный коэффициент при начальных температурах $\theta_{0v3}=0.25, \ \theta_{0v2}=0.35, \ \theta_{0v1}=0.45$

Рис. 5. Ширина ламинарного подслоя и ширина зоны горения в газовой фазе как функции скорости обдува w_{∞} при различных начальных температурах θ_{0vi} , i = 1, 2, 3 (см. рис. 4). Снижение критической скорости $w_{*3} < w_{*2} < w_{*1}$ с уменьшением начальной температуры

При $w_{\infty} > w_*$ ($\Theta > 1$) начинают сильнее действовать механизмы, ответственные за проявление положительного эрозионного эффекта. Снижение критической скорости с уменьшением начальной температуры означает, что область возникновения отрицательной эрозии сужается. Проявление положительного эрозионного эффекта начинается при более низких начальных температурах, что в целом приводит к подавлению отрицательного эрозионного эффекта [16].

ЗАКЛЮЧЕНИЕ

Проведенный расчет скорости горения при проявлении отрицательного эрозионного эффекта аналитическими методами подтверждает основные выводы работы [16]. Совместное рассмотрение механизмов, ответственных за проявление отрицательного и положительного эрозионных эффектов, приводит к тому, что принимается второе определение критического числа Вилюнова: число определяет границу, где действия отрицательного и положительного эрозионных эффектов уравновешиваются. При этом использование числа Булгакова — Липанова оказывается универсальным средством для определения области доминирования положительной или отрицательной эрозии.

Переход части тепловой энергии, выделяющейся при химических реакциях, в кинетическую энергию движения газа вдоль поверхности горении твердого топлива проявляется в виде кажущегося теплового эффекта газификации l_w твердой фазы топлива.

ЛИТЕРАТУРА

- 1. Алемасов В. Е., Дрегалин А. Ф., Тишин А. П. Теория ракетных двигателей. М.: Машиностроение, 1969.
- Орлов Б. В., Мазинг Г. Ю. Термодинамика и баллистические основы проектирования ракетных двигателей на твердом топливе. — М.: Машиностроение, 1968.
- 3. Булгаков В. К., Липанов А. М. Теория эрозионного горения твердых ракетных топлив. — М.: Наука, 2001.
- Сабденов К. О. Теория нестационарного горения твердых ракетных топлив. — Томск: Издво ТПУ, 2006.
- Mukunda H. S. A comprehensive theory of erosive burning in solid rocket propellants // Combust. Sci. Technol. — 1978. — V. 18, is. 3–4. — P. 105–118.
- 6. Сабденов К. О. К вопросу о пороговом характере эрозионного горения // Физика горения и взрыва. — 2008. — Т. 44, № 3. — С. 61–71.
- 7. Nakka's R. Experimental Rocketry Web Site. http://www.nakka-rocketry.net/burnrate.html.
- Сабденов К. О., Ерзада М. Скорость горения твердого ракетного топлива при отрицательной эрозии // Вестн. ЕНУ им. Л. Н. Гумилева. — 2012. — № 4. — С. 478–489.
- Булгаков В. К., Липанов А. М., Камалетдинов А. Ш. Численные исследования эрозионного горения конденсированных веществ // Физика горения и взрыва. — 1986. — Т. 22, № 6. — С. 83–88.

- Булгаков В. К., Липанов А. М. К теории горения конденсированного вещества при обдуве // Физика горения и взрыва. — 1983. — Т. 19, № 3. — С. 32–41.
- 11. McDonald B. A. The Development of an Erosive Burning Model for Solid Rocket Motors Using Direct Numerical Simulation. — Georgia Inst. of Technology, 2004.
- Krishnan S., Rajesh K. K. Erosive burning of ammonium perchlorate/hydroxyl-terminatedpolybutadiene propellants under supersonic crossflows // J. Propuls. Power. — 2003. — V. 19, N 4. — P. 623–631.
- Greatrix D. R. Scale effects on quasi-steady solid rocket internal ballistic behavior // Energies. — 2011. — N 3. — P. 1790–1804.
- Greatrix D. R. Simulation of axial combustion instability development and suppression in solid rocket motors // Intern. J. Spray and Combust. Dynamics. — 2009. — V. 1, N 1. — P. 143–168.
- Greatrix D. R. Model for prediction of negative and positive erosive burning // Can. Aeronaut. Space J. — 2007. — V. 53, N 1. — P. 13–21.
- Сабденов К. О., Ерзада М. Механизм возникновения отрицательного эрозионного эффекта // Физика горения и взрыва. 2013. Т. 49, № 3. — С. 22–33.
- 17. Гусаченко Л. К., Зарко В. Е. Эрозионное горение. Проблемы моделирования // Физика горения и взрыва. 2007. Т. 43, № 3. С. 47–58.

- Вилюнов В. Н., Дворяшин А. А. О влиянии начальной температуры конденсированного вещества на величину отрицательной эрозии // Физика горения и взрыва. 1973. Т. 9, № 4. С. 602.
- Willcox M. A., Brewster M. Q., Tang K. C., Stewart D. S., Kuznetzov I. Solid rocket motor internal ballistics simulation using threedimensional grain burnback // J. Propuls. Power. — 2007. — V. 23, N 3. — P. 575–584.
- Srinivasan K., Narayanan S., Sharma O. P. Numerical studies on erosive burning in cylindrical solid propellant grain // Heat Mass Transfer. — 2008. — V. 44. — P. 579–585.
- 21. **Лойцянский Л. Г.** Механика жидкости и газа. М.: Наука, 1987.
- Гирифельдер Дж., Кертисс Ч., Берд Р. Молекулярная теория газов и жидкостей: пер. с англ. — М.: Изд-во иностр. лит., 1961.
- Зельдович Я. Б., Либрович В. Б., Баренблатт Γ. И., Махвиладзе Γ. М. Математическая теория горения и взрыва. — М.: Наука, 1980.
- Жидкие и твердые ракетные топлива: сб. переводов с англ. / под ред. Ю. Х. Шаулова. — М.: Изд-во иностр. лит., 1959.

Поступила в редакцию 4/XI 2012 г.