УДК 539.3

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ИЗМЕНЕНИЯ РЕЖИМА ФИЛЬТРАЦИИ В ПРОДУКТИВНОМ ПЛАСТЕ ПРИ НЕСТАЦИОНАРНОМ ВОЗДЕЙСТВИИ НА ВМЕЩАЮЩИЙ БЛОЧНЫЙ МАССИВ ГОРНЫХ ПОРОД

Л. А. Назаров, Л. А. Назарова, В. М. Фомин^{*}, [Н. П. Ряшенцев^{*}], А. Н. Ряшенцев^{*}, А. В. Соловьев

Институт горного дела СО РАН, 630091 Новосибирск

* Институт теоретической и прикладной механики СО РАН, 630090 Новосибирск E-mail: naz@misd.nsc.ru

С соблюдением критериев подобия в лабораторных условиях выполнено физическое моделирование процессов фильтрации в пористых пластах. Показано, что слабые динамические воздействия на вмещающий напряженный блочный массив горных пород могут инициировать переупаковку системы блоков, ведущую к увеличению давления в продуктивном пласте и повышению флюидоотдачи.

Ключевые слова: повышение флюидоотдачи, фильтрация, нестационарное воздействие, лабораторный эксперимент, критерии подобия.

Введение. В основе методов интенсификации добычи и повышения коэффициента извлечения углеводородов лежат, как правило, процессы, происходящие в продуктивном пласте (внутрипластовое горение, воздействие электрическими полями, вытеснение, закачка поверхностно-активных веществ, механическая очистка призабойной зоны, гидроразрыв, георыхление и т. д.) [1-6]. В [7] теоретически показано, что низкочастотные вибровоздействия могут генерировать в гетерогенных многофазных средах высокочастотные поля, которые являются причиной повышения флюидоотдачи пластов. При моделировании нестационарной обработки блочного коллектора предполагалось [8], что воздействия с амплитудой порядка сотен ангстрем могут вызвать повороты блоков, ведущие к изменению проницаемости среды, структуры потока флюида и как следствие к повышению дебита. Необходимо заметить, что вмещающая среда — породный массив — также имеет блочное строение [9]. При нестационарном воздействии с поверхности смещения в покрывающей толще больше, чем в пласте. Поэтому и во вмещающей среде под действием внешних нагрузок могут возникнуть необратимые процессы — микроподвижки блоков, которые при определенных условиях оказываются причиной изменения дебита добычных скважин [10, 11]. В [12] приведен вариант оценки длительности вибровоздействия, необходимой для реализации такого механизма в структурированном массиве горных пород.

В данной работе на основе предложенной в [11] теоретической модели выполнено экспериментальное обоснование механизма повышения флюидоотдачи, заключающегося в целенаправленном изменении давления в пласте, обусловленном перераспределением напря-

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 03-05-65350); Schlumberger Oilfield Services, an international company in the oil and gas industry.

Обозначения	Ед. измерения	Реальные значения	Соотношения между реальными и модельными параметрами	Значения в модели	Выполнение (+) или невыполнение (-) критерия
1	2	3	4	5	6
Пласт и флюид					
t	с		$t^m = \sqrt{\delta} t^r$		+
h	м	10-50	$h^m = \delta h^r$	0,05	+
L	м	400-500	$L^m = \delta L^r$	0,4	+
m	%	20	$m^m = m^r$	20	+
Δp	МПа	20-30	$\Delta p^m = \delta \Delta p^r$	0,03	+
μ	$\Pi \mathbf{a} \cdot \mathbf{c}$	0,85-0,90	$\mu^m = \delta^{3/2} \mu^r$	0,001	—
$ ho_f$	$\kappa\Gamma/M^3$	850	$\rho_f^m = \rho_f^r$	1000	+
\dot{Q}	м ³ /с	$7 \cdot 10^{-4}$	$\dot{Q}^m = \delta^{5/2} \dot{Q}^r$	10^{-11}	+
χ	$M^2/(\Pi a \cdot c)$	$7 \cdot 10^{-12}$	$\chi^m = \sqrt{\delta} \chi^r$	$3 \cdot 10^{-13}$	+
Вмещающая среда					
σ_V	МПа	40	$\sigma_V^m = \delta \sigma_V^r$	$0\!-\!0,\!05$	+
E	ГПа	25-40	$E^m = \delta E^r$	12	—
ho	$\kappa\Gamma/M^3$	2000	$\rho^m = \rho^r$	1800	+
ε	%	0,10-0,16	$\varepsilon^m = \varepsilon^r$	10^{-4}	—
w	м	10^{-5}	$w^m = \delta w^r$	$\geq 2 \cdot 10^{-8}$	+
d	м	50-500	$d^m = \delta d^r$	$0,\!05$	+
f	Гц	1 - 20	$f^m = f^r / \sqrt{\delta}$	30 - 600	+
Контакты					
φ	град	5-35	$\varphi^m = \varphi^r$	7,3	+
C	МПа	0-0,5	$C^m = \delta C^r$	$2\cdot 10^{-5}$	+

жений во вмещающем блочном массиве, которое, в свою очередь, вызвано внешним нестационарным воздействием.

1. Параметры экспериментального стенда. В качестве прообраза лабораторной модели (рис. 1) взята часть типичного вертикального сечения (проходящего через добычную скважину) в окрестности одного из нефтеносных пластов Правдинского месторождения. В таблице для рассматриваемого объекта приведены основные параметры и их числовые значения (графы 1 и 3 соответственно): t — время; L — расстояние до нагнетательной скважины, или размер контура питания; h — мощность пласта; m — пористость; $\Delta p = p_c - p_0$, где p_c и p_0 — начальное пластовое и атмосферное давления; μ и ρ_f — вязкость и плотность флюида; K — проницаемость; $\chi = K/\mu$; Q — дебит скважины; E и ρ — модуль Юнга и плотность вмещающих пород; $\sigma_V = \rho g(z_1 - h_1)$ — литостатическое напряжение на верхней границе рассматриваемого объекта; z_1 — глубина залегания пласта; g — ускорение свободного падения; ε — деформация; d — толщина блоков; φ и C — угол внутреннего трения и сцепление межблочных контактов; w — амплитуда смещения, создаваемого в окрестности залежи внешним воздействием; f — частота внешнего воздействия.

Для определения параметров лабораторной модели и конструкции экспериментальной установки были приняты критерии подобия [13, 14]: геометрический

$$L^m/L^r = a_g,\tag{1}$$

кинематический

$$t^m/t^r = a_k \tag{2}$$

Рис. 1

и динамический

$$\rho^m / \rho^r = a_d. \tag{3}$$

На основе этих критериев можно получить соотношения между всеми модельными (верхний индекс m) и реальными (индекс r) параметрами, например:

$$E^{m} = \frac{E^{r} a_{d} a_{g}^{2}}{a_{k}^{2}}, \quad f^{m} = \frac{f^{r}}{a_{k}}, \quad g^{m} = \frac{g^{r} a_{g}}{a_{k}^{2}}, \quad \mu^{m} = \frac{\mu^{r} a_{d} a_{g}^{2}}{a_{k}}, \quad \varepsilon^{m} = \varepsilon^{r}, \quad K^{m} = K^{r} a_{g}^{2}.$$
(4)

Числовые значения коэффициентов подобия a_g , a_k и a_d выбирались по следующим соображениям. Вес блоков B_i (см. рис. 1) должен быть сравнительно небольшим, а датчики смещений D_j способны регистрировать величину $a_g w^r$. Поскольку в натурных условиях при $w \approx 10^{-5}$ м достигался положительный эффект при вибровоздействии на пласт [15], а порог чувствительности D_j составлял 10^{-8} м, принято $a_g = \delta = 0,001$.

В лабораторных условиях невозможно добиться одновременно выполнения условий соответствия по напряжениям и деформациям. Существующие искусственные материалы с очень низким модулем Юнга не позволяют осуществить нестационарное воздействие непосредственно на блочную модель. Поэтому было принято компромиссное решение: отказаться от выполнения первого условия в (4) и изготавливать блоки из бетона ($E^m = 12 \ \Gamma\Pi a$), тогда $a_d = 1$. Это не оказывает влияния на количественные результаты, поскольку необратимые деформации в структурированном породном массиве локализованы в разломных зонах [9], а свойства межблочных контактов модели соответствовали реальным (см. п. 2).

Из очевидного условия $g^m = g^r$ и третьего соотношения в (4) следует $a_g/a_k^2 = 1$, значит, $a_k = \sqrt{\delta}$.

В графе 4 таблицы приведены полученные с помощью критериев (1)–(3) окончательные соотношения между реальными и модельными параметрами, в графе 5 — числовые значения последних, а в графе 6 указано, выполнено ли условие соответствия по этим параметрам.

2. Оценка свойств межблочных контактов. При экспериментальном определении деформационных и прочностных характеристик нарушений сплошности свойства контактирующих поверхностей изменяются, особенно при высоких напряжениях. Поэтому для

Рис. 2

повторяемости опытов на одну из граней блоков B_i (i = 1, ..., 4) наклеивалось полированное стекло. Количественная оценка φ и C осуществлялась во вспомогательном эксперименте (рис. 2). На поворотную платформу устанавливались соседние блоки B_i и B_{i+1} (нижний — неподвижный; W_i^1 — вес B_i , S — площадь поверхности контакта), угол наклона платформы плавно увеличивался от $\beta = 0$ до $\beta = \beta_i^1$, соответствующего моменту начала скатывания B_i . Аналогичную процедуру повторяли при увеличенном до W_i^2 весе блока B_i — фиксировали угол β_i^2 .

Примем, что предельное касательное напряжение au_i на контакте B_i с B_{i+1} связано с нормальным σ_i по закону Кулона — Мора: $\tau_i = \sigma_i \operatorname{tg} \varphi_i + C_i$ [16]. Тогда имеют место очевидные соотношения (см. рис. 2)

$$\tau_i^l = W_i^l \sin \beta_i^l / S, \quad \sigma_i^l = W_i^l \cos \beta_i^l / S, \quad \tau_i^l = \sigma_i^l \operatorname{tg} \varphi_i + C_i$$

(l = 1, 2), из которых следует

$$\varphi_i = \operatorname{arctg}\left(\frac{\sin\beta_i^1 - p\sin\beta_i^2}{\cos\beta_i^1 - p\cos\beta_i^2}\right), \qquad C_i = \frac{W_i^2}{S} \frac{\sin\left(\beta_i^1 - \beta_i^2\right)}{\cos\beta_i^1 - p\cos\beta_i^2},$$

где $p = W_i^2/W_i^1$. Средние значения φ^m и C^m , приведенные в графе 5 таблицы для всех пар блоков $\{B_i, B_{i+1}\}_{i=1,2,3}$, свидетельствуют о том, что требуемые по критериям подобия соотношения между модельными и реальными величинами угла внутреннего трения и сцепления выполнены.

3. Фильтрационные характеристики пласта. В качестве прообраза выбрана добычная скважина со сравнительно небольшим суточным дебитом $Q^r = 60 \text{ м}^3$, тогда средняя скорость расхода $\dot{Q}^r = 0,0007 \text{ м}^3/\text{с}.$

Определим массу M_s сухого песка плотности $\rho_s = 1750 \text{ кг/м}^3$, которым нужно заполнить емкость Т (см. рис. 1) для моделирования процесса фильтрации так, чтобы выполнялось условие $m^m = m^r$: $M_s = (1 - m^r)\rho_s V = 4,12$ кг, где V = 0,003 м³ — объем T.

Динамическая вязкость заполнителя (вода) на два порядка меньше таковой у нефти, и критерий по μ не выполняется (см. таблицу). Однако интерес представляет интегральная характеристика процесса — расход, который зависит от параметра χ . Числовое значение χ^m оценивалось эмпирически: в режиме стационарной фильтрации при заданном перепаде давления Δp^m замерялась постоянная скорость расхода Q_0 , тогда согласно закону Дарси $\chi^m = \dot{Q}_0 L^m / (s \Delta p^m)$, где s — площадь сечения выходного отверстия H_2 (см. рис. 1). Выполнение условия $\chi^m = \sqrt{\delta} \chi^r$ достигалось надлежащим выбором величины s.

4. Анализ результатов экспериментов. Каждый эксперимент проводился в три этапа.

1. Эмпирически подбирались вертикальное σ_V^m и горизонтальное σ_H^m статические напряжения так, чтобы в модели массива создавалось метастабильное состояние [11]: проскальзывание одного из межблочных контактов R близко́ к предельному R_* , т. е. $R = R_* - \Delta R$, $\Delta R \ll R_*$. При этом в емкости T входное H_1 и выходное H_2 отверстия открыты, давление в ней равно атмосферному.

2. Модель пласта герметизировали, на входе H_1 давление увеличивали до $p_c^m = p_0 + \Delta p^m$ и в дальнейшем поддерживали постоянным в течение всего эксперимента. Затем открывали отверстие H_2 и ожидали наступления стационарного ($\dot{Q} = \text{const}$) режима фильтрации, после чего фиксировались показания датчиков давления P_i^0 .

3. К одному из блоков B_2-B_4 прикладывали нестационарное воздействие очень малой амплитуды смещения A, недостаточной для нарушения равновесия системы. Потом амплитуду A плавно увеличивали до момента перехода модели в нестационарное состояние — скольжение блоков.

Аппаратура включалась перед началом увеличения амплитуды; регистрировались относительные смещения $R_i(t)$ блоков B_i и B_{i+1} , давление $P_n(t)$ (n = 1, 2, 3) и расход Q(t)на выходе H_2 .

На рис. 3 представлены графики относительных смещений блоков. Начальные статические напряжения $\sigma_V^m = 0.032$ МПа и $\sigma_H^m = 0.012$ МПа, дополнительное давление $\Delta p^m = 0.003$ МПа, при этом $P_1^0 = 0.103$ МПа, $P_2^0 = 0.102$ МПа, $P_3^0 = 0.1$ МПа. В момент времени t = 0 к блоку B_2 прикладывалось вибровоздействие с частотой $f^m = 50$ Гц, при t = 3 с его амплитуда достигала величины A = 0.05 мкм и происходило проскальзывание блоков, причем относительное смещение R_2 более чем на два порядка превосходит амплитуду A (на рис. 4 показан укрупненный фрагмент графика $R_2(t)$, выделенный на рис. 3 прямоугольником 1). С удалением от блока B_2 величина проскальзывания блоков уменьшается: $|R_2| > |R_3| > |R_4|$ (см. рис. 3). В соответствии с этим понижается и степень влияния блоков B_3 и B_4 на давление в пласте, что согласуется с теоретическим выводом [11] о целесообразности реализации механизма перераспределения напряжений путем переупаковки системы блоков в окрестности участков залежи с пониженным давлением.

Рис. 3

Рис. 5

Отметим, что подвижка носит скачкообразный характер: несмотря на то что вибрационное воздействие продолжается с той же амплитудой (см. рис. 4), после проскальзывания блоков величины R_i остаются практически неизменными. Это можно интерпретировать как выделение "порции" потенциальной энергии, запасенной в результате статического нагружения.

В момент t = 22 с начинался второй акт вибровоздействия: амплитуду A увеличивали и при A = 0,5 мкм (см. рис. 3) происходила новая подвижка блоков. Следует заметить, что если при первом акте воздействия отношение $\max_t |R_2(t)|/A \approx 440$, то при втором оно приблизительно равно 170 (на рис. 5 показан укрупненный фрагмент графика $R_2(t)$, выделенный прямоугольником 2 на рис. 3). Можно заключить, что в реальных условиях для получения положительного эффекта повторную нестационарную обработку одного и того же участка пласта следует проводить, либо существенно увеличив мощность внешнего воздействия, либо после того, как под влиянием природных и техногенных факторов в блочном массиве наступит такое метастабильное состояние, для нарушения равновесия которого достаточно мощности имеющихся в наличии источников.

На рис. 6 представлены графики относительного изменения давления $\Delta P_2(t) = P_2(t)/P_2^0 - 1$ и расхода $\Delta \bar{Q}(t) = Q(t)/(\dot{Q}_0 t) - 1$ (линии 1 и 2 соответственно) при выводе системы из равновесия (статические нагрузки те же) вибровоздействием с амплитудой

A = 0,5 мкм и частотой $f^m = 50$ Гц. Возрастание этих величин, хотя и незначительное (приблизительно 5 %), сохраняется и после прекращения вибрации.

На рис. 7 показано распределение $\Delta \bar{P}_2(t)$ и $\Delta \bar{Q}(t)$ (линии 1 и 2) при тех же условиях эксперимента, но к блоку B_2 прикладывалась вертикальная импульсная нагрузка, генерирующая сигналы с амплитудой A = 0,6 мкм длительностью $t_0 \approx 0,02$ с. Здесь явно выражен эффект последействия: время стабилизации давления в пласте после ударного нагружения по крайней мере на порядок больше t_0 . Для сравнения на том же рисунке линией 3 показана теоретическая зависимость $\Delta \bar{Q}(t)$ [11]. Она имеет те же качественные особенности, что и экспериментальная: повышенные значения в начале воздействия, уменьшение с течением времени до некоторой стационарной величины.

Заключение. Экспериментально показано, что в блочном массиве горных пород могут существовать метастабильные состояния, равновесие которых можно нарушить с помощью нестационарного внешнего воздействия малой амплитуды, в результате происходят переупаковка системы блоков и перераспределение напряжений и увеличивается флюидоотдача пласта.

Чтобы вызвать повторный процесс переупаковки, необходимо воздействие с амплитудой в несколько раз большей, чем первоначальная. Это открывает возможность принудительной разгрузки напряженных участков массивов для уменьшения опасности наступления динамических событий.

ЛИТЕРАТУРА

- 1. Вахитов Г. Г., Симкин Э. М. Использование физических полей для извлечения нефти из пластов. М.: Недра, 1985.
- 2. Кузнецов О. Л., Симкин Э. М., Чилингар Дж. Физические основы вибрационного и акустического воздействия на нефтегазовые пласты. М.: Мир, 2001.
- 3. Гадиев С. М. Применение вибрации для извлечения нефти. М.: Недра, 1977.
- 4. Войтенко Ю. И., Лысюк Н. А., Красько В. И., Митюк Л. А. Взрывные методы интенсификации добычи нефти и газа, опыт их промышленного использования на месторождениях России и Украины // Физ.-техн. пробл. разраб. полез. ископаемых. 2002. № 2. С. 66–73.
- 5. http://www.ees4.lanl.gov/stimulation/ngotp.
- Христианович С. А., Коваленко Ю. Ф., Кулинич Ю. В., Карев В. И. Увеличение продуктивности нефтяных скважин с помощью метода георыхления // Нефть и газ. 2001. № 2. С. 90–94.
- 7. Николаевский В. Н. Вибрации горных массивов и конечная нефтеотдача пласта // Изв. РАН. Механика жидкости и газа. 1992. № 5. С. 110–119.
- Алексеев А. С., Цецохо В. А., Белоносова А. В. и др. Вынужденные колебания трещиновато-блочных флюидонасыщенных слоев при вибросейсмических воздействиях // Физ.-техн. пробл. разраб. полез. ископаемых. 2001. № 6. С. 3–12.
- Садовский М. А., Болховитинов Л. Г., Писаренко В. Ф. Деформирование среды и сейсмический процесс. М.: Наука, 1987.
- 10. Назаров Л. А., Назарова Л. А., Ряшенцев А. Н. и др. Экспериментальное исследование изменения режима фильтрации в пласте, вызванного перераспределением напряжений во вмещающем массиве // Докл. РАН. 2003. Т. 388, № 5. С. 1–4.
- Назаров Л. А., Назарова Л. А., Фомин В. М. и др. Изменение режима фильтрации в пласте при перераспределении напряжений во вмещающем массиве горных пород // ПМТФ. 2004. Т. 45, № 5. С. 94–101.
- Кочарян Г. Г., Спивак А. А. Динамика деформирования блочных массивов горных пород. М.: Изд.-книготорг. центр "Академкнига", 2003.
- 13. Седов Л. И. Методы подобия и размерности в механике. М.: Наука, 1987.
- 14. **Турчанинов И. А., Иофис М. А., Каспарьян Э. В.** Основы механики горных пород. Л.: Недра, 1977.
- 15. **Ряшенцев Н. П., Ащепков Ю. С., Назаров Л. А. и др.** Управляемое сейсмическое воздействие на нефтяные залежи. Новосибирск, 1989 (Препр. / АН СССР. Сиб. отд-ние. Ин-т горн. дела; № 31).
- Barton N. R. Deformation phenomena in jointed rock // Geotechnique. 1986. V. 36, N 2. P. 147–167.

Поступила в редакцию 25/X 2004 г., в окончательном варианте — 14/III 2005 г.