УДК 541.124.16:541.126.2:541.128

ВЛИЯНИЕ МАССОВОЙ ДОЛИ ОКСИДА В НАНОЧАСТИЦАХ АЛЮМИНИЯ НА ПОРОГ ВЗРЫВНОГО РАЗЛОЖЕНИЯ И ЭФФЕКТИВНОСТЬ ПОГЛОЩЕНИЯ СВЕТА В КОМПАУНДЕ НА ОСНОВЕ ТЭНА

Б. П. Адуев, Д. Р. Нурмухаметов, А. А. Звеков, Н. В. Нелюбина

Институт углехимии и химического материаловедения СО РАН, 650000 Кемерово, lesinko-iuxm@yandex.ru

С помощью импульсного лазерного инициирования экспериментально исследованы пороги взрывчатого разложения компаундов на основе тэна с включением наночастиц алюминия в зависимости от массового соотношения ядро — оболочка (Al/Al₂O₃) в частице. Установлено, что при уменьшении массовой доли Al от 74 до 13 %, порог взрывчатого разложения возрастает в 12.5 раза. Расчеты эффективности поглощения света для системы ядро — оболочка, проведенные методом Адена — Керкера для включений Al/Al₂O₃ в тэне, показали ее уменьшение со снижением массы металла в частице. Полученные экспериментальные и теоретические результаты можно рассматривать как дополнительное подтверждение микроочаговой концепции лазерного инициирования тэна, содержащего наноразмерные включения металлов.

Ключевые слова: лазер, тэн, наночастицы, коэффициент экстинкции.

ВВЕДЕНИЕ

Регулирование чувствительности бризантных взрывчатых веществ (ВВ) к лазерному воздействию имеет практическое значение при создании светодетонаторов на основе штатных ВВ [1, 2].

При использовании компаунда на основе тэна с содержанием 0.1 % (по массе) включений Al с максимумом распределения частиц по размерам при 100÷120 нм и плотностью $\rho = 1.73$ г/см³ получена 50%-я вероятность подрыва образцов при плотности энергии E =1.15 Дж/см², тогда как образцы без добавок указанной плотности не взрываются при E >100 Дж/см² [3, 4]. При этом чувствительность к удару данного компаунда уменьшается по сравнению с образцами тэна, не содержащими включений [5].

Известно, что наночастицы алюминия химически весьма активны и сразу после изготовления являются пироформами. Поэтому их получают в инертной среде при медленном напуске воздуха. В результате наночастицы покрываются оксидной оболочкой, что делает их безопасными в дальнейшей работе.

Влияние этой оболочки на взрывчатые характеристики компаундов, содержащих включения Al, до сих пор не исследовано, хотя при длительном хранении процесс окисления продолжается и массовое соотношение оксид/металл меняется, что может отразиться на физико-химических свойствах частиц.

В настоящей работе использовался порошок алюминия, полученный методом газофазного синтеза в Институте металлофизики УрО РАН. Методом рентгеновской дифракции на установке ДРОН-4 установлено, что частицы содержат металлический алюминий и оксид алюминия α -Al₂O₃. Примесей других металлов и соединений в пределах чувствительности аппаратуры не обнаружено.

Цель работы — экспериментальное исследование порогов взрывчатого разложения компаундов на основе тэна и наночастиц Al при лазерном инициировании в зависимости от массового соотношения ядро — оболочка (Al/Al₂O₃) в отдельной наночастице и установление влияния оксидной оболочки на чувствительность компаундов к инициирующему лазерному импульсу. Кроме того, проведены теоретические расчеты эффективности поглощения для таких систем, свидетельствующие в пользу микроочаговой модели лазерного зажигания.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 13-03-98032 р_сибирь_а, 11-03-00897).

[©] Адуев Б. П., Нурмухаметов Д. Р., Звеков А. А., Нелюбина Н. В., 2014.

МЕТОДИКА И ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

В исходном порошке содержание Al в наночастице (74 %) определяли с помощью приставки JEOL JED 2400 к электронному микроскопу JEOL JSM63901A (порошок хранился в течение 5 лет). Для модификации содержания Al в системе ядро — оболочка порошок Al помещали в дериватограф и нагревали со скоростью 10 °C/мин. При этом отслеживали увеличение массы за счет окисления Al. При достижении заданной величины нагрев прекращали. Далее процедуру повторяли с новой партией порошка с нагревом до более высокой температуры и т. д.

Таким образом, путем частичного отжига получили наночастицы с содержанием металла 60, 47, 30 и 13 %. Причем последнее значение (13 %) получено при температуре 1 000 °C, т. е. полного превращения частиц в Al_2O_3 достичь не удалось. Распределение частиц по размерам определяли по снимкам, сделанным на электронном микроскопе. Установлено, что в пределах погрешности измерения оно практически не изменяется.

Методики изготовления образцов из полученных порошков и проведение эксперимента аналогичны описанным в [3–5].

Смесь состояла из тэна и 0.1 % (по массе) частиц алюминия с различной массовой долей оксида в них. Смесь помещали в гексан и перемешивали в ультразвуковой ванне для равномерного распределения частиц в объеме смеси. Затем гексан испаряли, смесь и навеску образца сушили. Образцы прессовали до расчетной плотности $1.65 \div 1.76$ г/см³ в специальной пресс-форме, представляющей собой отверстие диаметром 3 мм в центре медной пластины толщиной 1 мм. Для эксперимента отбирали образцы плотностью $\rho = 1.73 \pm 0.03$ г/см³.

В качестве источника инициирования использовался YAG:Nd³⁺-лазер, работающий в режиме модуляции добротности на основной частоте ($\lambda = 1064$ нм) с длительностью импульса на половине амплитуды 14 нс. Излучение фокусировалось на образец с помощью линзы. Диаметр облучаемого пятна 2.5 мм. Пластину с образцом прижимали к алюминиевой подложке, которая являлась пластиной-свидетелем. Облучаемая поверхность экранировалась оптическим стеклом толщиной 1 мм, затрудняющим газодинамическую разгрузку зоны повышенного давления.

При фиксированной плотности энергии последовательно облучали 10 образцов одиночным импульсом и определяли вероятность взрыва. За факт взрывчатого превращения образца принимали наличие отпечатка на пластине-свидетеле диаметром, равным диаметру образца.

Соответствующие зависимости вероятности взрыва образцов от плотности энергии инициирующего импульса представлены на рис. 1. По ним определяли критическую плотность энергии импульса H_{cr} , соответствующую 50 %-й вероятности взрыва, которая пред-

Рис. 1. Зависимость вероятности взрыва от плотности энергии лазерного излучения при различных концентрациях алюминия в наночастице:

Аl: 1 — 13 %, 2 — 30 %, 3 — 47 %, 4 — 60 %, 5 — 74 % (исходный порошок)

Рис. 2. Пороги инициирования взрывчатого разложения и коэффициент эффективности поглощения света при различных концентрациях алюминия в наночастице

ставлена на рис. 2 в зависимости от содержания металла в наночастице. Видно, что уменьшение содержания металла ведет к увеличению порога взрывчатого разложения. В частности, при снижении содержания Al с 74 до 13 % порог взрывчатого разложения вырос в 12.5 раз.

ТЕОРЕТИЧЕСКИЕ РАСЧЕТЫ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Рассматриваемые в настоящей работе включения с различной толщиной оксидной пленки относятся к типу ядро — оболочка. Для описания процессов поглощения и рассеяния электромагнитных волн такими системами в [6] была разработана соответствующая модификация теории Ми. Поскольку в области высоких частот излучения магнитная восприимчивость металлов стремится к единице, нами были сделаны соответствующие упрощения. В рамках теории коэффициент эффективности поглощения (Q_{abs}) сферическим включением находят как разность коэффициентов эффективности экстинкции (Q_{ext}) и рассеяния (Q_{sca}) [7]:

$$Q_{abs} = Q_{ext} - Q_{sca}.$$

Последние рассчитываются как сумма бесконечного ряда от коэффициентов разложения амплитуды электрического и магнитного поля рассеянной световой волны по специальным функциям Риккати — Бесселя [6]:

$$Q_{sca} = \frac{2}{\nu^2} \sum_{l=1}^{\infty} (2l+1)(|c_l|^2 + |b_l|^2),$$

 $Q_{ext} = -\frac{2}{\nu^2} \operatorname{Im} \sum_{l=1}^{N} (2l+1)(c_l+b_l),$ где $\nu = 2\pi m_3 R/\lambda, m_3$ — показатель преломления среды. Коэффициенты c_l и b_l определяются

ния среды. Коэффициенты сі и ої определяются из граничных условий на поверхностях оболочка — среда и ядро — оболочка [6]. В результате выражения для коэффициентов принимают следующий вид: $c_l = i \times$

$$\times \frac{\begin{vmatrix} 0 & k\psi_l(N_1a) & \psi_l(N_2a) & \zeta_l(N_2a) \\ 0 & -\psi_l(N_1a) & \psi_l'(N_2a) & \zeta_l'(N_2a) \\ N_2\psi_l(\nu) & 0 & \psi_l(N_2\nu) & \zeta_l(N_2\nu) \\ \psi_l'(\nu) & 0 & \psi_l'(N_2\nu) & \zeta_l'(N_2\nu) \end{vmatrix}}{\begin{vmatrix} 0 & k\psi_l(N_1a) & \psi_l(N_2a) & \zeta_l(N_2a) \\ 0 & -\psi_l(N_1a) & \psi_l'(N_2a) & \zeta_l'(N_2a) \\ -N_2\zeta_l(\nu) & 0 & \psi_l(N_2\nu) & \zeta_l(N_2\nu) \\ -\zeta_l'(\nu) & 0 & \psi_l'(N_2\nu) & \zeta_l'(N_2\nu) \end{vmatrix}},$$

	0	$k\psi'_l(N_1a)$	$\psi_l'(N_2a)$	$\zeta_l'(N_2a)$	
	0	$-\psi_l(N_1a)$	$\psi_l(N_2a)$	$\zeta_l(N_2a)$	
	$N_2\psi'_l(\nu)$	0	$\psi_l'(N_2\nu)$	$\zeta_l'(N_2\nu)$	
	$\psi_l(u)$	0	$\psi_l(N_2\nu)$	$\zeta_l(N_2\nu)$	
^ [0	$k\psi'_l(N_1a)$	$\psi_l'(N_2a)$	$\zeta_l'(N_2 a)$	<u> </u>
	0	$-\psi_l(N_1a)$	$\psi_l(N_2a)$	$\zeta_l(N_2 a)$	
	$-N_2\zeta_l'(\nu)$	0	$\psi_l'(N_2\nu)$	$\zeta_l'(N_2\nu)$	
	$-\zeta_l(u)$	0	$\psi_l(N_2\nu)$	$\zeta_l(N_2\nu)$	

где штрихом обозначены производные функции по аргументу, $k = -N_2/N_1$, $N_{1,2} = m_{1,2}/m_z$ комплексные показатели преломления материалов ядра и оболочки относительно среды, $a = q\nu$ — радиус ядра включения, умноженный на волновой вектор излучения в среде. Отношение радиусов q вычисляли по формуле

$$q = \left[\frac{\omega\rho_{\mathrm{Al}_2\mathrm{O}_3}}{\omega\rho_{\mathrm{Al}_2\mathrm{O}_3} + (1-\omega)\rho_{\mathrm{Al}}}\right]^{1/3},$$

где $\rho_{\rm Al} = 2.698 \ {\rm г/cm}^3, \ \rho_{\rm Al_2O_3} = 3.97 \ {\rm r/cm}^3$ — плотности алюминия и его оксида соответственно.

Выражения (1) несколько отличаются обозначениями от классической работы [6], так как переписаны с использованием специальных функций из [7, 8], выражаемых через функции Бесселя $J_{l+0.5}$ и Ганкеля $H_{l+0.5}^{(2)}$ дробного порядка следующим образом [7]:

$$\psi_l(\nu) = \sqrt{\pi\nu/2} J_{l+0.5}(\nu),$$

$$\zeta_l(\nu) = \sqrt{\pi\nu/2} H_{l+0.5}^{(2)}(\nu).$$

Согласно данным электронной микроскопии в расчетах предполагалось, что радиус включения не изменяется в ходе окисления, в отличие

от соотношения толщины оболочки и радиуса ядра.

На рис. 3 приведены результаты расчета зависимости коэффициента эффективности поглощения света с длиной волны 1064 нм от радиуса включения при различных массовых долях свободного металла в частице. Использованы те же параметры, что и в [8]. Принципиального изменения формы зависимости не наблюдается. В то же время первый максимум сдвигается в сторону больших радиусов, а его амплитуда уменьшается. То есть по мере увеличения доли окисленного алюминия в наночастице ее способность к поглощению света ухудшается. Этот результат следовало ожидать, поскольку оксидная оболочка прозрачна для излучения. На границе оболочки отражается часть света, что приводит к уменьшению Qabs. В рассматриваемой области размеров частиц производная коэффициента эффективности поглощения по радиусу включения положительна, поэтому при росте массовой доли оксида коэффициент Q_{abs} уменьшается. Указанные качественные изменения на количественном уровне отслеживаются в расчетах с использованием теории рассеяния и поглощения света на двухслойной сфере.

Зависимость коэффициента эффективности поглощения включений Q_{abs} радиусом 60 нм от массовой доли металла представлена на рис. 2, из которого следует, что уменьшение Q_{abs} сопровождается увеличением H_{cr} . Энергия, поглощаемая включением, обратно пропорциональна коэффициенту эффективности поглощения. Соответственно, чем выше коэффициент эффективности поглощения, тем выше предполагаемая температура первичного очага реакции при одинаковых плотности энергии излучения и радиусе включения. Поэтому наблюдаемый ход экспериментальных и теоретических зависимостей можно рассматривать как дополнительный довод в пользу микроочаговой концепции лазерного инициирования тэна, содержащего наноразмерные включения металлов.

ЛИТЕРАТУРА

- Илюшин М. А., Целинский И. В., Чернай А. В. Светочувствительные взрывчатые вещества и составы и их инициирование лазерным импульсом // Рос. хим. журн. — 1997. — Т. 41, вып. 2. — С. 81–85.
- Krupa T. J. Optical R&D at the army research laboratory // Optics & Photonics News. — 2000. — P. 17–25.
- 3. Адуев Б. П., Нурмухаметов Д. Р., Фурега Р. И. Исследование порога взрывчатого разложения тэна с добавками наночастиц алюминия при воздействии различных длин волн лазерного излучения // Изв. вузов. Физика. — 2012. — № 11/3. — С. 137–138.
- Адуев Б. П., Нурмухаметов Д. Р. Влияние добавок наночастиц алюминия на чувствительность тетранитропентаэритрита к лазерному воздействию // Хим. физика. 2011. Т. 30, № 3. С. 63–65.
- 5. Адуев Б. П., Белокуров Г. М., Нурмухаметов Д. Р., Нелюбина Н. В. Светочувствительный материал на основе смеси тэна и наночастиц алюминия // Физика горения и взрыва. — 2012. — Т. 48, № 3. — С. 127–132.
- Aden A. L., Kerker M. Scattering of electromagnetic waves from two concentric spheres // J. Appl. Phys. — 1951. — V. 22, N 10. — P. 1242–1246.
- Шифрин К. С. Рассеяние света в мутной среде. — М.; Л.: Гос. изд-во техн.-теорет. лит., 1951.
- Кригер В. Г., Каленский А. В., Звеков А. А., Зыков И. Ю., Адуев Б. П. Влияние эффективности поглощения лазерного излучения на температуру разогрева включений в прозрачных средах // Физика горения и взрыва. — 2012. — Т. 48, № 6. — С. 54–58.

Поступила в редакцию 5/IV 2013 г., в окончательном варианте — 5/IX 2013 г.

