# ГЕОХИМИЯ, SM-ND-, RB-SR-, LU-HF-ИЗОТОПИЯ, ИСТОЧНИКИ И УСЛОВИЯ ФОРМИРОВАНИЯ РАННЕПАЛЕОЗОЙСКИХ ПЛАГИОГРАНИТОИДОВ ЮЖНОЙ ЧАСТИ ОЗЕРНОЙ ЗОНЫ ЗАПАДНОЙ МОНГОЛИИ

Руднев С. Н., Мальковец В. Г., Белоусова Е. А., Третьякова И. Г., Серов П. А., Киселева В. Ю., Гибшер А. А., Николаева И. В.

# Аннотация

В работе приведены результаты геохимических и изотопных (Rb-Sr, Sm-Nd и Lu-Hf методы) исследований раннепалеозойских плагиогранитоидных ассоциаций южной части Озерной зоны Западной Монголии, формировавшихся на островодужной и аккреционно-коллизионной стадиях развития региона.

По петрогеохимическому составу раннепалеозойские плагиогранитоидные ассоциации островодужного (Тугрикский, Хатан-Хунгинский, Удзур-Хунгинский и Баясгалантский массивы, 531–517 млн лет) и аккреционно-коллизионного (Тугрикский, Мандалт и Дутулинский массивы, 504–481 млн лет) этапов развития регионп относятся к породам высокоглиноземистого и низкоглиноземистого типов. Выделенные типы плагиогранитоидов, с учетом их редкоэлементного состава, указывают, что формирование исходных дл них расплавов связано с плавлением метабазитов МОRB-типа при P ≥ 10–12 в кбар в равновесии с гранатсодержащим реститом и P ≤ 8 кбар в равновесии с плагиоклазсодержащим реститом кбар.

Sr-Nd-изотопные исследования пород и Lu-Hf изотопные исследования магматического циркона вышеупомянутых плагиогранитоидных массивов, позволяют выделить среди них две группы, отражающие различные источники исходных для них расплавов. В первую группу попадают плагиогранитоидные ассоциации Тугрикского, Удзур-Хунгинского, Хатан-Хунгинского, Баясгалантского и Дутулинского массивов с изотопными параметрами єNd = +8.5 – +4.6 и 87Sr/86Sr0 = 0.7034–0.7036, єHf = +14.7 – +11.9), указывающие на ювенильную природу их источников. Во вторую группу попадают плагиогранитоиды массива Мандалт с изотопными параметрами єNd = +1.4 – +0.2, 87Sr/86Sr0 = 0.7053 и єHf(T) = +7.2 – +5.4, указывающие, что при формировании исходных для них расплавов, основная роль принадлежала метабазитам, образованных из обогащенных мантийных источников Hf-изотопные исследования унаследованных и ксеногенных цирконов (664–519 млн лет) из раннепалеозойских плагиогранитоидных ассоциаций южной части Озерной зоны, позволяют условно выделить среди них три группы по значению єНf (+14.5 – +12.8, +2.9 и +10.6 – +6.7). Нf-изотопные характеристики магматических и унаследованных цирконов, с учетом их возраста, указывают на отсутствие в источнике расплавов, пород с более длительной коровой предысторией (Дзабханский микроконтинент).

# Ключевые слова:

Центрально-Азиатский складчатый пояс, Озерная зона Западной Монголии, гранитоидный магматизм, геохимия

# ГЕОХИМИЯ, Sm-Nd-, Rb-Sr-, Lu-Hf-ИЗОТОПИЯ, ИСТОЧНИКИ И УСЛОВИЯ ФОРМИРОВАНИЯ РАННЕПАЛЕОЗОЙСКИХ ПЛАГИОГРАНИТОИДОВ ЮЖНОЙ ЧАСТИ ОЗЕРНОЙ ЗОНЫ ЗАПАДНОЙ МОНГОЛИИ

# С.Н. Руднев<sup>1</sup>, В.Г. Мальковец<sup>1</sup>, Е.А. Белоусова<sup>2</sup>, И.Г. Третьякова<sup>3</sup>, П.А. Серов<sup>4</sup>, В.Ю. Киселева<sup>1</sup>, А.А. Гибшер<sup>1</sup>, И.В. Николаева<sup>1</sup>

<sup>1</sup> Институт геологии и минералогии им. В.С. Соболева СО РАН, 630090, Новосибирск, просп. Академика Коптюга, 3, Россия

<sup>2</sup> Australian Research Council Centre of Excellence for Core toCrust Fluid Systems / GEMOC, Department of Earth and Planetary Science, Macquarie University, Sydney, NSW 2109, Australia <sup>3</sup> Центральный научно-исследовательский геологоразведочный институт цветных и благородных металлов, 117545, Москва, Варшавское шоссе, 129, Россия

<sup>4</sup> Институт геологии Кольского научного центра РАН, 184209, Мурманская область, Апатиты, ул. Ферсмана, 14, Россия

## АННОТАЦИЯ

В работе приведены результаты геохимических и изотопных (Rb-Sr, Sm-Nd и Lu-Hf методы) исследований раннепалеозойских плагиогранитоидных ассоциаций южной части Озерной зоны Западной Монголии, формировавшихся на островодужной и аккреционно-коллизионной стадиях развития региона.

По петрогеохимическому составу раннепалеозойские плагиогранитоидные ассоциации островодужного (Тугрикский, Хатан-Хунгинский, Удзур-Хунгинский и Баясгалантский массивы, 531–517 млн лет) и аккреционно-коллизионного (Тугрикский, Мандалт и Дутулинский массивы, 504–481 млн лет) этапов развития региона относятся к породам высокоглиноземистого и низкоглиноземистого типов. Выделенные типы плагиогранитоидов, с учетом их редкоэлементного состава, указывают, что формирование исходных для них расплавов связано с плавлением метабазитов МОRВ-типа при  $P \ge 10-12$  в кбар в равновесии с гранатсодержащим реститом и  $P \le 8$  кбар в равновесии с плагиоклазсодержащим реститом.

Sr-Nd изотопные данные для пород и Lu-Hf изотопные характеристики магматического циркона из плагиогранитоидов, позволяют выделить среди них две группы, с различными источниками расплавов. В первую группу попадают плагиогранитоидные ассоциации большинства массивов (Тугрикского, Удзур-Хунгинского, Хатан-Хунгинского, Баясгалантского и Дутулинского) с изотопными параметрами ( $\epsilon_{Nd}$  = +8.5 – +4.6 и  ${}^{87}Sr/{}^{86}Sr_0$  = 0.7034-0.7036,  $\varepsilon_{Hf} = +14.7 - +11.9$ ), указывающими на ювенильную природу их источников. Во вторую группу попадают плагиогранитоиды массива Мандалт, их изотопные параметры  $(\varepsilon_{Nd} = +1.4 - +0.2, {}^{87}Sr/{}^{86}Sr_0 = 0.7053$  и  $\varepsilon_{Hf}(T) = +7.2 - +5.4$ ) позволяют предположить, что при формировании исходных расплавов, основная роль принадлежала метабазитам, связанным с обогащенным мантийным источником. Hf-изотопные данные для унаследованных и ксеногенных цирконов (664–519 млн лет) из раннепалеозойских плагиогранитоидных ассоциаций южной части Озерной зоны, позволяют условно выделить среди них три группы по значению  $\varepsilon_{\rm Hf}$  (+14.5 – +12.8, +2.9 и +10.6 – +6.7). Нf-изотопные характеристики магматических и унаследованных цирконов, с учетом их возраста, указывают на отсутствие в источнике расплавов, пород с длительной коровой предысторией, таких как раннедокембрийские ассоциации Дзабханского микроконтинента.

*Ключевые слова:* Центрально-Азиатский складчатый пояс, Озерная зона Западной Монголии, гранитоидный магматизм, геохимия, Nd-Sr-Hf изотопия.

#### **ВВЕДЕНИЕ**

Озерная зона ранних каледонид Западной Монголии рассматривается как островодужный поздненеопротерозой-раннекембрийский террейн [Dergunov et al., 1989; 2001; Badarch et al., 2002], являющийся составной частью каледонского супертеррейна ЦАСП. Nd-изотопные данные по поздненеопротерозойским и раннекембрийским вулканическим комплексам Озерной зоны с учетом их геологического строения, возраста и геохимических характеристик [Jahn et al., 2000a, 2000b; Jahn, 2004; Ярмолюк и др., 2011, 2012; Ковач и др., 2011] позволили сделать заключение, что ювенильная кора Озерной зоны была образована в поздненеопротерозойское-кембрийское время (570–490 млн лет) в обстановке внутриокеанических островных дуг и океанических плато из деплетированных мантийных источников с вовлечением в зоны субдукции древнего корового материала в форме осадков. В последующие аккреционно-коллизионные процессы были вовлечены палеоокеанические и островодужные комплексы и докембрийские микроконтиненты (Дзабзанский).

В пределах островодужных комплексов Озерной зоны широкое развитие имеют интрузивные ассоциации поздненеопротерозойского-раннепалеозойского возраста, среди которых основной объем слагают гранитоиды при подчиненной роли габброидов (рис. 1). Эти интрузивные ассоциации формировались в островодужной и аккреционноколлизионной геодинамических обстановках, имеют различный возраст (от позднего неопротерозоя до среднего-позднего ордовика), а также петрогеохимические и изотопные характеристики [Коваленко и др., 2004; Руднев и др., 2009, 2012, 2016; Ярмолюк и др., 2011]. Как уже установлено, габброидные и гранитоидные ассоциации северной и центральной части Озерной зоны формировались в возрастном диапазоне от 551 до 449 млн лет, характеризуются положительными значениями  $\varepsilon_{Nd}$  (+9.0 – +5.2) и низкими отношениями изотопов стронция ( $^{87}$ Sr/ $^{86}$ Sr<sub>0</sub> = 0.7034–0.7048) [Коваленко и др., 2004; Руднев и др., 2009, 2012, 2013; Ковач и др., 2011].

Информация о геологическом строении, возрасте и петрохимическом составе гранитоидных и габброидных ассоциаций южной части Озерной зоны (Тугурукский, Тугрикский, Удзур-Хунгинский, Хатан-Хунгинский, Мандалт, Баясгалантский и Дутулинский массивы, см. рис. 1), более подробно представлена <del>ранее</del> в работе [Руднев и др., 2019]. Формирование плагиогранитоидов и габброидов в этом сегменте Озерной зоны происходило в диапазоне от 531 до 481 млн лет и связано с двумя геодинамическими этапами развития региона: островодужным – 531–517 млн лет (Тугурукский, Тугрикский, Удзур-Хунгинский, Хатан-Хунгинский, Баясгалантский массивы) и аккреционно-

коллизионным – 504–481 млн лет (Тугрикский, Мандпалт и Дутулинский массивы). По петрохимическому составу плагиогранитоидные (тоналит-трондъемитовые) ассоциации относятся к известково-щелочной серии и, в этом отношении, они сопоставляются с плагиогранитидами северной и центральной частей этого же пояса. Наряду с магматическими цирконами с возрастом от 531 до 481 млн лет в изученных плагиогранитоидах установлены ксеногенные и унаследованные цирконы\* [Руднев и др., 2018, 2019]. Выделяются четыре возрастные группы ксеногенных и унаследованных цирконов (~664, 570-560, 545-531 и 530-519 млн лет). Эти четыре группы цирконов, в целом, отвечают ОСНОВНЫМ рубежам проявления магматизма островодужного (вулканогенные, интрузивные) И офиолитового типов И вероятно отвечают магмообразующим субстратам, вовлекаемые плавление при формировании R плагиогранитоидов. Отсутствие в раннепалеозойских плагиогранитоидах южной части Озерной зоны (осевая часть) ксеногенного и унаследованного цирконов древнее 664 млн лет, предполагает удаленность островной дуги Озерной зоны от раннедокембрийских блоков (Дзабханский микроконтинент).

Целью и задачей настоящей работы является выяснение условий формирования исходных расплавов и характера магмообразующих источников для раннепалеозойских плагиогранитоидных ассоциаций южной части Озерной зоны, формировавшихся в течении двух этапов в разных геодинамических обстановках. В настоящей работе, на основе ранее проведенных геологических, геохронологических и петрохимических исследований [Руднев и др., 2019], приведены новые данные по геохимии и изотопному (Sm-Nd и Sr-Nd) составу плагиогранитоидных ассоциаций южной части Озерной зоны Монголии (Тугрикский, Удзур-Хунгинский, Хатан-Хунгинский, Мандалт, Баясгалантский и Дутулинский массивы), а также изотопному Hf составу разновозрастных генераций цирконов. Полученная информация дает возможность определить не только условия образования исходных расплавов для плагиогранитоидов, но и их магмообразующие источники. Использование изотопных Hf характеристик цирконов магматического, ксеногенного и унаследованного типов позволяет также оценить вклад древних коровых

<sup>\*</sup> К<u>сеногенный циркон</u> ("xenogenic zircon") – циркон заимстовованный гранитным расплавом из вмещающих пород. Он имеет более древний возраст, чем магматический циркон, характеризуется, как правило, хорошей огранкой и не несет на еебе каких-либо признаков растворения ребер и граней кристаллов и может иметь каймы новообразованного (магматического) циркона, отвечающего стадии кристаллизации гранитного расплава. Присутствие таких цирконов не отражается на изотопном составе гранитного расплава. Унаследованный циркон ("inherited zircon") – это генерация циркона унаследована от источника гранитного расплава. Цирконы в этом случае также имеют более древние возрасты, чем магматические, и представляют собой овальной формы ядра, что вероятно является следствием их частичного расплове. Вокруг таких ядер образуются каймы магматического циркона, отвечающие стадии кристаллизации гранитного расплава, отвечающие стадии кристаллизации гранитного является следствием их частичного растворения в гранитном расплаве. Вокруг таких ядер образуются каймы магматического циркона, отвечающие стадии кристаллизации гранитного расплава. Между ядрами и магматическими обрастаниями иногда присутствуют тонкие светлые каймы, которые могут указывать на взаимодействие расплава с унаследованным цирконом. Такие светлые каймы и магматические обрастания могут иметь имеют промежуточный изотопный состав. Присутствие унаследованных цирконов не только фиксирует возраст и изотопный (Lu-Hf) состав магмообразующих источников (субстратов), но также, в той или иной степени влияет на изотопные составы расплава и магматического циркона.

субстратов в генезис гранитоидов на различных геодинамических этапах развития региона.

### МЕТОДЫ ИССЛЕДОВАНИЯ

Содержания петрогенных элементов определены рентгенофлюоресцентным методом в ЦКП многоэлементных и изотопных исследований СО РАН (Новосибирск, Россия) с использованием установки СРМ-25 (аналитики – Н.Г. Карманова, А.Н. Торяник). Содержания редких и редкоземельных элементов выполнены методом ICP-MS на установке Finnigan Element в ЦКП многоэлементных и изотопных исследований ИГМ СО РАН (Новосибирск, Россия) по методике [Николаева и др., 2008]. Погрешности определения содержаний редких и редкоземельных элементов составили менее 10%.

Sm-Nd изотопные исследования выполнены по валовым пробам в Геологическом институте Кольского научного центра РАН (Апатиты, Россия) на семиканальном массспектрометре Finnigan-MAT-262 (RPQ). Нормирование изотопных отношений Nd осуществляли по отношению <sup>146</sup>Nd/<sup>144</sup>Nd=0.7219. Ошибка в <sup>147</sup>Sm/<sup>144</sup>Nd отношениях составляет 0.3% (20). Холостое загрязнение на период измерений составило 0.06 нг для Sm и 0.3 нг для Nd. Среднее значение отношения <sup>143</sup>Nd/<sup>144</sup>Nd в стандарте JNd<sub>i</sub>-1 за период измерений составило 0.512090±13 (N=15). Значение параметра ε<sub>Nd</sub>(T) рассчитано относительно однородного хондритового резервуара (CHUR) С современными характеристиками <sup>143</sup>Nd/<sup>144</sup>Nd=0.512638; <sup>147</sup>Sm/<sup>144</sup>Nd=0.1967 [Jacobsen, Wasserburg, 1984]. Модельные возрасты T<sub>Nd</sub>(DM) вычислены по данным [Goldstein, Jacobsen, 1988] для резервуара деплетированной мантии с (<sup>143</sup>Nd/<sup>144</sup>Nd)<sub>0</sub>=0.513151 и <sup>147</sup>Sm/<sup>144</sup>Nd=0.21365. При расчете модельных возрастов по двухстадийной модели [Liew, Hofmann, 1988] среднекоровое значение <sup>147</sup>Sm/<sup>144</sup>Nd отношения принято равным 0.12 [Taylor, McLennan, 1985].

Rb-Sr изотопные исследования проведены по валовым пробам в ЦКП многоэлементных и изотопных исследований СО РАН (Новосибирск, Россия) на массспектрометре MI-1201AT Погрешность определения отношений <sup>87</sup>Rb/<sup>86</sup>Sr не превышает 1 %. Средние значения отношений <sup>87</sup>Sr/<sup>86</sup>Sr в стандартах составило: VNIIM (0.70800 $\pm$ 7, N = 30) и ISG-1 (0.71732 $\pm$ 10, N = 30).

Изотопный состав Hf в цирконе определялся с использованием лазерного пробоотборника Photon Machines Eximer 193 nm на мультиколлекторном масс-спектрометре Nu Plasma в Аналитическом Центре GEMOC Macquarie University (Sydney Australia). Измерения проводились в гелиевой атмосфере, диаметр пучка лазера 40–65 мкм, частота – 5 Гц, с плотностью энергии лазерного излучения 8.44 мДж/пульс. Процедура коррекции и используемые значения описаны в работах [Griffin et al., 2004; Pearson et al., 2008; Belousova

et al., 2009]. Для контроля воспроизводимости результатов и стабильности работы прибора стандартные образцы цирконов TEMORA-II и Mud Tank. Расчет значений єНf проводился с использованием константы распада <sup>176</sup>Lu из работы [Scherer et al., 2001]. Для расчета модельного возраста  $T_{DM}$  (относительно линии эволюции деплетированной мантии) использовались следующие изотопные отношения: (<sup>176</sup>Hf/<sup>177</sup>Hf)<sub>i</sub> = 0.279718 на 4.56 млрд лет и <sup>176</sup>Lu/<sup>177</sup>Hf = 0.0384). При использовании этих значений современное отношение <sup>176</sup>Hf/<sup>177</sup>Hf составляет 0.28325, что близко к среднему значению для БСОХ [Griffin et al., 2000, 2004]. Модельные возрасты  $T_{DM}$  являются минимальными значениями возраста источника магмы, из которой кристаллизовался циркон. Вследствие этого, для каждого образца циркона также рассчитывали модельные возрасты  $T_{DM}$ <sup>Crust</sup>, при расчете которых предполагается, что магма выплавлялась из средней континентальной коры с изотопным отношением <sup>176</sup>Lu/<sup>177</sup>Hf = 0.015, которая в свою очередь также выплавлялась из деплетированной мантии [Griffin et al., 2000].

#### ПЕТРОХИМИЯ И ГЕОХИМИЯ ГРАНИТОИДОВ

Для петрохимической и геохимической характеристик плагиогранитоидных ассоциаций Тугрикского, Удзур-Хунгинского, Хатан-Хунгинского, Мандалт, Баясгалантского и Дутулинского массивов южной части Озерной зоны использованы более 90 силикатных анализов и 35 анализов редких и редкоземельных элементов. В табл. 1 приведены представительные анализы изученных пород.

Плагиогранитоидные ассоциации по петрохимическим характеристикам отвечают гранитоидам известково-щелочной серии, нормального ряда с низкими до умеренных содержаниями K<sub>2</sub>O и индексом Шенда 0.8–1.27 [Руднев и др., 2019]. На основании редкоэлементного состава выделены породные ассоциации различных геохимических типов.

Плагиогранитоиды островодужного этапа. На этом геодинамическом этапе развития Озерной зоны формировались породы Тугрикского, Удзур-Хунгинского, Хатан-Хунгинского И Баясгалантского массивов. По содержанию микроэлементов плагиогранитоидные ассоциации этих массивов существенно отличаются друг от друга, что позволяет разделить их на два типа. К первому типу относятся породы диорит-тоналитплагиогранитной ассоциации Тугрикского, Удзур-Хунгинского и плагиогранитной ассоциации Хатан-Хүнгинского массивов. Они характеризуются *УМЕ*ренными содержаниями Rb, Sr, Ba, Nb, Ta, Th и U (табл. 1, рис. 2), низкими суммарными содержаниями редкоземельных элементов (15.1–63.5 г/т), преобладанием легких лантаноидов над тяжелыми (La/Yb<sub>N</sub> = 3–11 до 35), высокими значениями отношений Sr/Y (>

70), низкими концентрациями Y (1.6–12.2 г/т), а также присутствием положительных и отрицательных аномалий по Eu (Eu/Eu\*<sub>N</sub> = 0.8–1.7), минимумов по Nb, Ta, Ti и максимумов по Sr на мультиэлементных спектрах (рис. 3). Содержания редкоземельных и редких элементов, их индикаторные отношения, а также положение точек состава на диаграмме  $Al_2O_3 - Yb$  (рис. 2), позволяет сопоставлять породы этих массивов с высокоглиноземистыми тоналит-трондъемит-гранодиоритовыми (TTГ) комплексами [Arth, 1983]. На бинарных диаграммах  $SiO_2 - MgO$ , CaO+Na<sub>2</sub>O – Sr, Y – Sr/Y и TiO2 – Cr/Ni, согласно классификации [Martin et al., 2005; Castillo, 2006], породы исследуемых ассоциаций располагаются в поле высококремнистых адакитов. В Озерной зоне плагиогранитоиды с такими геохимическими характеристиками отмечаются также в составе Западно-Баян-Хаирханского массива [Ярмолюк и др., 2011], Бумбат-Хаирханского и Харанурского плутонов (см. рис. 2) [Руднев и др., 2009, 2012, 2016].

Ко второму типу относятся островодужные плагиогранитоидные ассоциации Баясгалантского массива (тоналит-плагиогранитная и плагиогранитная, 524–523 млн лет [Руднев и др., 2019]). В отличие от породных ассоциаций первого типа, для них отмечаются более низкие содержания  $Al_2O_3$  и Sr, повышенные Y, Yb, Nb, Hf, Zr и, на бинарных диаграммах (см. табл. 1, рис. 2) они образуют самостоятельные поля. Эти породы характеризуются умеренным содержанием редкоземельных элементов ( $\Sigma P33 = 48-66$  г/т), низкими значениями отношений La/Yb<sub>N</sub> (1.7–3.1), главным образом, за счет повышенных концентраций тяжелых лантаноидов (см. рис. 3), а также низкими значения Sr/Y отношений (5–11), отсутствием максимумов по Sr и наличием минимумов по Nb, Ta и Ti. По содержанию  $Al_2O_3$ , редких и редкоземельных элементов и их индикаторным отношениям, а также положению точек состава на диаграмме  $Al_2O_3 - Yb$  (рис. 2) породы Баясгалантского массива сопоставляются с низкоглиноземистыми плагиогранитоидами. В Озерной зоне, плагиогранитоидные ассоциации близкого возраста и аналогичного состава также отмечаются в составе Шаратологойского и Харанурского плутонов и в массиве Дарби [Руднев и др., 2009, 2016].

Плагиогранитоидные ассоциации аккреционно-коллизионного этапа. На этом геодинамическом этапе развития южной части Озерной зоны формировались плагиогранитоиды в составе Тугрикского, Дутулинского и Мандалт массивов. Мусковит– биотитовые и биотитовые плагиограниты Тугрикского (поздний ритм, ~ 504 млн лет) и Дутулинского (~ 481 млн лет) массивов по петрохимическому составу, содержанию редких и редких элементов и индикаторным отношениям практически не отличаются от плагиогранитоидов Хатан-Хунгинского массива островодужного этапа и также относятся к плагиогранитам высокоглиноземистого типа (см. рис. 2). На бинарных диаграммах SiO<sub>2</sub>O –

MgO, CaO+Na<sub>2</sub>O – Sr, Y – Sr/Y и TiO<sub>2</sub> – Cr/Ni точки их состава попадают в поле высококремнистых адакитов. В Озерной зоне высокоглиноземистые плагиограниты близкого редкоэлементного состава (см. рис. 3), также описаны в составе Бумбат-Хаирханского и Харанурского плутонов (см. рис. 1) [Руднев и др., 2009, 2012, 2016].

Кварцевые диориты и тоналиты массива Мандалт (~ 495 млн лет), в отличие от всех выше описанных плагиогранитоидных ассоциаций южной части Озерной зоны, обнаруживают повышенные концентрации MgO, P<sub>2</sub>O<sub>5</sub>, Rb, Nb, Ta, Th, U, Zr, Hf, V, Cr, Co, Ni (см. табл. 1) и на диаграммах SiO<sub>2</sub>–Rb, Y–Nb, Ta/Yb–Th/Yb и Y/Nb–Yb/Ta (см. рис. 2), образуют самостоятельное поле состава. По содержанию редких и редкоземельных элементов породы этого массива также сопоставляются с высокоглиноземистыми TTTкомплексами.

#### РЕЗУЛЬТАТЫ ИЗОТОПНОГО ИССЛЕДОВАНИЯ

#### Sm-Nd и Rb-Sr изотопная характеристика пород

Результаты исследования свидетельствуют о различных Sr-Nd изотопных характеристиках плагиогранитоидов (табл. 2, рис. 4).

Высокоглиноземистые плагиогранитоидные ассоциации раннего и позднего ритма Тугрикского, Удзур-Хунгинского, Хатан-Хунгинского и Дутулинского массивов, в целом, характеризуются высокими положительными значениями  $\varepsilon_{Nd}(T)$ , варьирующими в диапазоне от +8.5 до +6.1, Nd-модельными возрастами ( $T_{Nd}(DM) = 0.74-0.58$  млрд лет) и низкими значениями отношений изотопов стронция ( ${}^{87}Sr/{}^{86}Sr_0 = 0.7034-0.7037$ ). На диаграмме  $\varepsilon_{Nd}$  – возраст (рис. 4), точки их изотопного состава попадают в поле островодужных комплексов (вулканиты и гранитоиды) Озерной зоны [Коваленко и др., 2004; Руднев и др., 2009; Ковач и др., 2011; Kröner at al., 2014].

Низкоглиноземистые плагиогранитоидные ассоциации в составе Баясгалантского массива (тоналит-плагиогранитная и плагиогранитная) по своим изотопным характеристикам отличаются от высокоглиноземистых более низкими значениями  $\varepsilon_{
m Nd}$  (+6.8 – +4.6), хотя и отчасти перекрываются.

Высокоглиноземистые плагиогранитоиды массива Мандалт отличаются от всех выше описанных плагиогранитоидных ассоциаций южной части Озерной зоны. Они характеризуются низкими значениями  $\varepsilon_{Nd}$  (+0.2 – +1.4), более древними Nd-модельными возрастами ( $T_{Nd}$ (DM) = 1.23–1.12 млрд лет) и высокими отношениями изотопов стронция ( $^{87}$ Sr/ $^{86}$ Sr<sub>0</sub> = 0.70527). На рис. 4 точки их составов располагаются между областью Nd-изотопного составов островодужных вулканитов Озерной зоны и раннедокембрийских пород Дзабханского микроконтинента

#### Нf-изотопная систематика магматического циркона

Аналитические исследования, проведенные по магматическим цирконам (табл. 3, рис. 5, 6) из островодужных пплагиогранитоидных ассоциаций Тугрикского (проба PM-26-11), Хатан-Хунгинского (проба PM-34-13) и Баясгалантского (пробы PM-31-14 и PM-28-14) массивов, показали, что они характеризуются узким диапазоном значений  $\varepsilon_{\rm Hf}$  (+14.6 – +11.9) и модельными возрастами ( $T_{\rm DM}^{\rm Crustal} = 0.7$ –0.5 млрд лет). На диаграмме  $\varepsilon_{\rm Hf}$  – возраст (см. рис. 6) они образуют компактное поле состава, расположенное в близи линии деплетированной мантии.

Магматические цирконы из плагиогранитоидных ассоциаций аккреционноколлизионного этапа развития Озерной зоны имеют более широкий диапазон Hf-изотопных параметров, которые позволяют выделить среди них две группы. В первую группу попадают цирконы из плагиогранитов позднего ритма Тугрикского (проба PM-34-13) и Дутулинского (проба PM-62-08) массивов, характеризующиеся высокими положительными значениями  $\varepsilon_{\rm Hf}$  от +14.2 до +9.3 и  $T_{\rm DM}^{\rm Crustal} = 0.8-0.5$  млрд лет. По этим изотопным характеристикам они практически не отличаются от цирконов из плагиогранитоидов островодужного типа. Во вторую группу попадают магматические цирконы из плагиогранитоидов массива Мандалт, с более низкими значения  $\varepsilon_{\rm Hf}$  (+7.2 – + 5.4) и  $T_{\rm DM}^{\rm Crustal} =$ 1.0 млрд лет. Как видно на диаграмме  $\varepsilon_{\rm Hf}$  – возраст (см. рис. 6), изученная популяция магматических цирконов из этого массива образуют поле, обособленное от изотопного состава цирконов всех других массивов.

#### Hf-изотопная систематика унаследованного и ксеногенного цирконов

Унаследованные и ксеногенные цирконы из плагиогранитоидов островодужного и аккреционно-коллизионного этапов развития региона имеют широкий диапазон возрастов от 664 до 519 млн лет [Руднев и др., 2019]. Lu-Hf изотопные исследования этих цирконов указывают на значительные вариации их изотопных параметров (см. табл.3, рис. 5, 6).

Унаследованные цирконы из островодужных плагиогранитоидов раннего и позднего ритма Баясгалантского массива (539–535 млн лет) характеризуются узким диапазоном значений  $\varepsilon_{\rm Hf}(T) = +12.8 - +14.7$ ,  $T_{\rm DM}^{\rm Crustal} = 0.7-0.5$  млрд лет. По этим изотопным параметрам они не отличаются от магматических цирконов обрастающих их, а также от магматического циркона из островодужных плагиогранитоидов Тугрикского и Хатан-Хунгинского массивов, на рис. 6, они образуют единое поле составов, близкое к деплетированной мантии. В отличие от них, унаследованные цирконы с возрастами 664 и 545 млн лет из островодужных плагиогранитов Хатан-Хунгинского массива имеют более

низкие значения  $\varepsilon_{\text{Hf}}$  ( $\varepsilon_{\text{Hf}}(664) = 10.6$  и  $\varepsilon_{\text{Hf}}(545) = 6.7$ ), в сравнении с обрастаниями магматических цирконов ( $\varepsilon_{\text{Hf}}(T) = 14.0-12.8$ ).

Для унаследованных цирконов из плагиогранитоидов аккреционно-коллизионного этапа развития региона установлен более широкий диапазон значений  $\varepsilon_{\rm Hf}(T)$ , и по изотопным параметрам их можно разделить на две группы. В первую группу попадают цирконы с возрастом 540–524 млн лет из плагиогранитов позднего ритма Тугрикского и Дутулинского массива. Они характеризуются узким диапазоном значений  $\varepsilon_{\rm Hf}(T) = +14.0 -$ +13.8 (табл. 3, рис. 6), не отличающийся от унаследованных и магматических цирконов из плагиогранитоидов островодужного этапа (Баясгалантского, Тугрикского и Хатан-Хунгинского массива). В эту же группу можно отнести цирконы, имеющие ксеногенную природу и возраст 530–519 млн лет. Они представлены в массиве Мандалт и, как отмечалось ранее [Руднев и др., 2019], представляют собой цирконы, заимствованные из вмещающих пород на уровне становления массива. Тем не менее, по изотопным параметрам ( $\varepsilon_{\rm Hf}(T) = +13.9 - +13.5$ ) они не отличаются от выше описанных унаследованных цирконов этой же группы.

Во вторую группу попадают унаследованные цирконы с возрастом 563 млн лет, наблюдаемые также в составе плагиогранитов позднего ритма Тугрикского массива. В отличие от всех унаследованных цирконов первой группы они характеризуются низкими значениями  $\varepsilon_{\rm Hf}(T) = +2.9$  и более древним модельным возрастом ( $T_{\rm DM}^{\rm Crustal} = 1.3$  млрд лет) (см. рис. 6).

#### ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

#### Редкоэлементный состав плагиогранитоидов и условия формирования исходных расплавов

Результаты изучения петрохимического состава раннепалеозойских плагиогранитоидных ассоциаций южной части Озерной зоны Монголии показали, что они относятся к гранитоидам известково-щелочной тоналит-трондьемитовой серии [Руднев и др., 2019]. В соответствии с вещественными характеристиками эти породы разделяются на низкоглиноземистые и высокоглиноземистые типы.

На *островодужном этапе* развития южной части Озерной зоны (531–517 млн лет) происходило формирование плагиогранитоидов высоко- и низкоглиноземистого типа. К доминирующим плагиогранитоидам высокоглиноземистого типа относятся породы диориттоналит-плагиогранитной ассоциации раннего ритма в составе Тугрикского (531±4 млн лет) и Удзур-Хунгинского (517±4 млн лет) массивов, а также породы плагиогранитной ассоциации Хатан-Хунгинского массива (521±3 млн лет). По геохимическим характеристикам, индикаторным отношениям, характеру распределения редких и редкоземельных элементов они обнаруживают сходство с составами высококремнистых адакитов (см. рис. 2, 3). Сходство этих породных ассоциаций с адакитами позволяет заключить, что формирование исходных расплавов могло быть связано с плавлением метавулканитов N-MORB-типа при погружении в зону субдукции океанической плиты при  $P \ge 10-12$  кбар и равновесии с Hbr+CPx+Pl±Gar реститом.

Островодужные плагиогранитоидные ассоциации низкоглиноземистого типа в южной части Озерной зоны наблюдаются только в составе Баясгалантского массива. Учитывая возраст (522–524 млн лет) и геодинамическую обстановку формирования пород массива, а также их редкоэлементный состав, можно предположить, что их формирование было связано с частичным плавлением метавулканитов MORB-типа в основании островодужной системы при  $P \leq 8$  кбар в равновесии с Hbr+Pl±CPx±OPx реститом (см. рис 2).

На аккреционно-коллизионном этапе развития южной части Озерной зоны (504–481 млн лет) формировались только плагиогранитоиды высокоглиноземистого типа. К ним относятся породы Тугрикского массива (504±3 млн лет), Дутулинского массива (481±3 млн лет) и массива Мандалт (495±8 млн лет). По редкоэлементному составу, индикаторным отношениям и положению точек их состава на диаграмме Yb – Eu (см. табл. 1, рис. 2), формирование расплавов происходило за счет плавления метабазитов в равновесии с Hbr+CPx+Pl±Gar реститом при  $P \ge 10-12$  кбар, то есть, вероятно, в основании утолщенной в результате коллизии коры. Плагиогранитоиды массива Мандат, в отличие от пород Тугрикского и Дутулинского массивов, имеют более высокое содержание MgO, P<sub>2</sub>O<sub>5</sub>, Rb, Nb, Ta, Th, U, Hf, V, Cr, Co, Ni, что вероятнее всего, указывает на иной состав их мафического магмообразующего источника, обогащенный некогерентными редкими элементами. Судя по положению точек на диаграмме Y/Nb – Yb/Ta (см. рис. 2), они тяготеют к области состава базальтов OIB типа, что косвенно указывает на связь их мафического источника с обогащенной мантией.

# Изотопная характеристика плагиогранитоидов и их магмообразующие источники

*Nd-Sr изотопные параметры пород.* Островодужные и аккреционно-коллизионные плагиогранитоиды южной части Озерной зоны имеют широкие вариации изотопных параметров (табл. 2, рис. 4), что позволяет выделить среди них две группы, вероятно связанные с различными источниками. В первую, доминирующую группу попадают высоко- и низкоглиноземистые плагиогранитоидные ассоциации со следующими

изотопными параметрами:  $\varepsilon_{Nd}$  = +8.5 – +4.6,  $T_{Nd}$ (DM) = 0.7–0.5 млрд лет и  ${}^{87}$ Sr/ ${}^{86}$ Sr<sub>0</sub> = 0.7034– 0.7036. Эти интрузивные ассоциации составляют основной объем и установлены в составе Тугрикского (ранний и поздний ритм), Удзур-Хунгинского, Хатан-Хунгинского и Дутулинского массивов, сложенных плагиогранитодами высокоглиноземистого типа (адакитоподобные). К этой же группе относятся плагиогранитоидные ассоциации низкоглиноземистого типа в Баясгалантском массиве (ранний и поздний ритмы). Несмотря, чуть более низкие значения ε<sub>Nd</sub>(T), по сравнению с плагиогранитоидами на высокоглиноземистого типа, оба типа перекрываются между собой (см. табл. 2, рис. 4). В целом, плагиогранитоидные ассоциации с такими изотопными характеристиками имеют ювенильные источники, которые могли быть представлены породами "каледонской" коры Озерной зоны и/или метабазитами субдуцирующей плиты. На это обстоятельство указывают не только сходство по составу плагиогранитоидов этой группы с адакитами и положение точек их изотопного состава на диаграммах  $\varepsilon_{Nd}$  – возраст в области эволюции вулканитов Озерной зоны, но и положение точек состава плагиогранитоидов на диаграмме ε<sub>Nd –</sub> ε<sub>Sr</sub> в близи мантийной последовательности. На это же обстоятельство указывает и сходство по изотопным параметрам плагиогранитоидов этой группы с островодужными и аккреционно-коллизионными плагиогранитоидами раннепалеозойского возраста северной и центральной части Озерной зоны ( $\varepsilon_{Nd}$  = +9.0 – +6.6;  ${}^{87}$ Sr/ ${}^{86}$ Sr<sub>0</sub> = 0.7034–0.7039), для которых обоснована природа мафических источников, уже ювенильная производных деплетированного мантийного резервуара [Коваленко и др., 2004; Ковач и др., 2011; Руднев и др., 2009, 2013].

Ко второй группе относятся только высокоглиноземистые плагиогранитоиды массива Мандалт с отчетливо пониженными значениями  $\varepsilon_{Nd}$  = +1.4 – +0.2, более древним Ndмодельный возраст(1.2–1.1 млрд лет) и повышенным <sup>87</sup>Sr/<sup>86</sup>Sr<sub>0</sub> = 0.7053. Среди плагиогранитоидов раннепалеозойского возраста в Озерной зоне плагиограниты с такими низкими значениями *ε*<sub>Nd</sub>(T) и, очевидно, иным источником, установлены впервые. Учитывая особенности геохимии этих гранитоидов, условия их выплавления, а также Sr-Ndизотопные характеристики, можно предположить, что при формировании плагиогранитоидных магм, основная роль принадлежала метабазитам, образованным из обогащенного мантийного источника (например, базальтам океанических островов, поднятий и плато).

Обращает на себя особое внимание, что раннепалеозойские плагиогранитоидные ассоциации с более низкими значениями  $\varepsilon_{Nd}(T)$  и древними модельными возрастами, отражающими вклад древних докембрийских коровых источников (например, пород Дзабханский микроконтинент) в генерацию гранитных расплавов, не обнаружены. На

отсутствие вклада раннедокембрийской коры в гранитообразование указывает также возраст унаследованных цирконов, ограниченный диапазоном 664–531 млн лет [Руднев и др., 2019] и отвечающий времени формирования раннекембрийских островодужных (~545– 520 млн лет) и неопротерозойских офиолитовых (хантайширский, баяннурский и баянхонгорский, ~670–560 млн лет) комплексов Озерной зоны и сопредельных территорий.

*Hf изотопная систематика магматического циркона*. По изотопному Hf составу магматических цирконов среди раннепалеозойских плагиогранитоидов южной части Озерной зоны Западной Монголии, формировавшихся на островодужном и аккреционно-коллизионном этапах обособляется две группы, которые полностью соответствуют группами, выделенным по Nd-Sr-изотопным характеристикам.

К первой (основной) группе относятся породы островодужных плагиогранитоидных ассоциаций (Тугрикский, Хатан-Хунгинский, Баясгалантский массивы), содержащие магматические цирконы с относительно узким диапазоном значений  $\varepsilon_{\rm Hf}$  (+14.7 – +11.9) и позненеопротерозойскими модельными возрастами (0.7–0.5 млрд лет; см. табл. 3, рис. 6). В эту группу отнесены плагиограниты Тугрикского (поздний ритм) и Дутулинского массивов, формировавшиеся на аккреционно-коллизионном этапе. Магматические цирконы из этих двух массивов имеют более широкий диапазон изотопных параметров ( $\varepsilon_{\rm Hf}$ (T) = +14.2 – +9.3 и T<sub>DM</sub><sup>Crustal</sup> = 0.9–0.5 млрд лет, см. табл. 3, рис. 6), но в значительной степени перекрываются с цирконами из островодужных плагиогранитоидов. Такое сходство по изотопным характеристикам магматических цирконов, также, как и по Nd изотопным параметрам плагиогранитоидов, различающихся по составу и условиям формирования (высоко- и низкоглиноземистые) позволяет предполагать, что они имели близкие по составу и возрасту метабазитовые источники, производные деплетированной мантии.

Ко второй группе относятся высокоглиноземистые плагиогранитоиды массива Мандалт. Цирконы из этого массива характеризуются значительно более низкими значениями  $\epsilon_{Hf}(T) = +7.2 - +5.4$  и более древними модельными возрастами (1.1–1.0 млрд лет), на диаграмме  $\epsilon_{Hf}(T)$  – возраст (см. рис 6), они образуют самостоятельное поле. Пониженные  $\epsilon_{Hf}(T)$  магматических цирконов коррелируют с более низкими  $\epsilon_{Nd}(T)$  и повышенными  $^{87}$ Sr/ $^{86}$ Sr<sub>0</sub> этих плагиогранитоидов, что в совокупности с особенностями состава пород (см. табл. 1, рис. 2, 3) позволяет предполагать, что при формировании исходных расплавов для массива Мандалт ведущая роль принадлежала метабазитам, образованным либо из слабо деплетированного по изотопным характеристикам мантийного источника, либо при участии как обогащенного, так и деплетированного источников.

По Hf-изотопным характеристикам изученные магматические цирконы из плагиогранитоидов перекрываются с цирконами из островодужных плагиогранитоидных

ассоциаций (560–510 млн лет) центральной и северной частей Озерной зоны ( $\epsilon_{\rm Hf}(T) = +16.5$  – +11.2,  $T_{\rm DM}^{\rm Crustal} = 0.9$ –0.5 млрд лет) [по Kovach et al., 2017], а также с магматическими цирконами из габброидных и гранитоидных ассоциаций (538–494 млн лет), наблюдаемые южнее аймака Алтай (хантайширский интрузивный ареал, см. рис. 1) на южных склонах хребта Хантайшири ( $\epsilon_{\rm Hf}(T) = +14.3 - +2.5$ ,  $T_{\rm DM}^{\rm Crustal} = 1.3$ –0.5 млрд) [по Janoušek et al., 2018].

*Нf изотопная систематика унаследованного и ксеногенного циркона.* Результаты U-Pb изотопных исследований унаследованного и ксеногенного циркона из плагиогранитоидов позволяют выделить среди них четыре возрастные группы (~664, 570–560, 545–531 и 530–519 млн лет) [Руднев и др., 2018, 2019]. По Lu-Hf-изотопным характеристикам эти цирконы условно разделяются на три группы.

В первую основную группу попадают преобладающие унаследованные цирконы с возрастом 540–524 млн лет и редкие ксеногенные цирконы с возрастного диапазона 530–519 млн лет. Унаследованные цирконы, наблюдаются в островодужных плагиогранитоидах Баясгалантского массива (539–535 млн лет), а также в аккреционно-коллизионных плагиогранитах позднего ритма Тугрикского (~524 млн лет; см. табл. 3, рис. 6) и Дутулинского (~540 млн лет) массивов. Они характеризуются узким диапазоном изотопных параметров:  $\epsilon_{\rm Hf}(T) = +14.5 - +12.8$  и поздненеопротерозойскими модельными возрастами (0.7-0.5 млрд лет) и не отличаются от магматических цирконов из этих же пород, отнесенных к первой группе ( $\epsilon_{Hf}(T) = +14.7 - +11.9$ ). Здесь следует отметить следующее. Во-первых, такое сходство по изотопным параметрам унаследованных и магматических цирконов, косвенно может указывать на то, что они были образованы из относительно близких по составу и возрасту источников. Во-вторых, судя по времени формирования унаследованного циркона и его катодолюминесценции, отражающей его магматическое происхождение, предположить, что магматические которых можно породы, В цирконы, представляли раннекембрийские островодужные кристаллизовались ЭТИ комплексы (гранитоиды, габброиды и вулканиты).

В эту же изотопную группу относятся ксеногенные цирконы из пород массива Мандалт (530–519 млн лет), имеющие близкие значения изотопных параметров ( $\epsilon_{\rm Hf}$ (T) = +13.9 – +13.6) с выше описанными унаследованными цирконами. Ранее было установлено, что ксеногенные цирконы из этого массива не несут на себе следов растворения и обрастания более поздней генерацией магматического циркона [Руднев и др., 2019]. В связи с чем, предполагается, что они были заимствованы гранитоидным расплавом из вмещающих пород (вулканогенные отложения раннего кембрия) приблизительно на уровне его становления. Поэтому, полученные по этим цирконам изотопные характеристики, вероятнее всего, отражают изотопный состав источника вмещающих вулканогенных пород.

Изотопные данные по унаследованным цирконам второй и третьей группы весьма не многочисленны, поэтому, сделанные по ним выводы имеют предварительный характер. Тем не менее, они отражают различные по возрасту и составу источники, дополнительно вовлекаемые в плавления при формировании исходных расплавов для плагиогранитоидов южной части Озерной зоны, которые формировались на островодужной и аккреционноколлизионой стадиях развития региона. Во вторую группу попадают унаследованный циркон (~563 млн лет) из плагиогранитоидов позднего ритма Тугрикского массива, характеризующийся низким значением  $\varepsilon_{\rm Hf}$  = +2.9 и модельным возрастом 1.3 млрд лет. Цирконы с такими изотопными характеристиками среди гранитоидов раннепалеозойского возраста встречаются впервые и, поэтому делать выводы об их источниках является пока преждевременным. Если учитывать магматическую природу этого унаследованного циркона и его возраст, а также геологическое строение прилегающих к Озерной зоне геоблоков (см. рис. 1), можно только предполагать, что в качестве их источника могли быть продукты разрушения и эрозии магматических пород (габброиды и плагиогранитоиды) офиолитовых комплексов, имеющие близкие возраста (хантайширский – 573–565 млн лет, баяннурский – 565–560 млн лет и баянхонгорский – 577–569 млн лет) [Гибшер и др., 2001; Козаков и др., 2002; Buchan et al., 2002; Терентьева и др., 2010; Ярмолюк и др., 2011; Jian et al., 2014]). Для выяснения этого предположения необходимо проведение дополнительных Lu-Hf изотопных исследований циркона из пород офиолитовых комплексов этого же возрастного уровня, расположенных в близи исследуемых раннепалеозойских плагиогранитоидных ассоциаций южной части Озерной зоны (в частости баянурского комплекса хребта Дариби и хантайширского комплекса хребта Хан-Тайшири).

В третью группу условно объединяются унаследованные цирконы с разными возрастами (~ 545 и 664 млн лет [Руднев и др., 2019]), наблюдаемые в составе островодужных высокоглиноземистых плагиогранитов Хатан-Хунгинского массива. По Hfизотопным характеристикам ( $\varepsilon_{Hf}(545) = +6.7$  и  $\varepsilon_{Hf}(664) = +10.6$ ) они занимает промежуточное положение между цирконами первой и второй групп. По этим изотопным параметрам унаследованные цирконы этих двух возрастных уровней, вероятнее всего, образовались за счет плавления метабазитов, имеющие деплетированную природу, но для окончательного решения об их происхождении, необходимо проведение дополнительных геохронологических и изотопных исследований. Можно лишь только предположить, что в качестве их источника, вероятнее всего, могли быть осадки образованные за счет разрушения и смыва пород островодужного типа поздненеопротерозойского возраста офиолитовых (гранитоиды, габброиды И вулканиты), а также комплексов неопротерозойского возраста (например, баянхонгоркий). Для окончательного решения этого предположения, необходимо проведение дополнительных геологических, геохронологических и изотопных исследований.

Следует также отметить, что унаследованные цирконы с более древними возрастами и низкими Hf-изотопными характеристиками, указывающих на присутствие древних коровых субстратов (например, Дзабханский микроконтинент) не установлены. Это обстоятельство, так же как и в случае Sr-Nd изотопных данных, вероятнее всего, свидетельствует об удаленности островной дуги Озерной зоны от древних докембрийских блоков (микроконтинентов), по крайней мере, в диапазоне возрастов 530–485 млн лет.

#### выводы

1. По петрохимическому и редкоэлементному составам раннепалеозойские плагиогранитоидные ассоциации островодужного (531–517 млн лет) и аккреционно-(504 - 481)этапов развития относятся коллизионного МЛН лет) к породам высокоглиноземистого И низкоглиноземистого типов. Среди плагиогранитоидных ассоциации островодужного этапа (531–517 млн лет) наиболее широкое развитие имеют породы высокоглиноземистого типа (Тугрикский, Хатан-Хунгинский и Удзур-Хунгинский массивы), которые по редкоэлементному составу проявляют сходство с высококремнитыми адакитами. Их формирование, вероятнее всего, связано с частичным плавлением метабазитов MORB-типа, при погружении в зону субдукции океанической плиты при *P* ≥ 10–12 кбар в равновесии с гранатсодержащим реститом. Породы Баясгалантского массива (524–522 млн лет) относятся к плагиогранитам низкоглиноземистого типа. Формирование исходных для них расплавов связано с плавлением метабазитов расположенные в основании островодужной системы при  $P \le 8$  кбар в равновесии с плагиоклазсодержащим реститом. Плагиогранитоидные ассоциации аккреционно-коллизионного этапа развития южной части Озерной зоны (Тугрикский, Мандалт и Дутулинский массивы) по петрогеохимическим характеристикам относятся к плагиогранитоидам высокоглиноземистого типа, формирование которых связано с плавленим метабазитов при  $P \geq 10{-}12$  кбар в равновесии с гранатсодержащим реститом в основании утолщенной коры при коллизии.

2. Sr-Nd-изотопные данные для плагиогранитоидных ассоциаций южной части Озерной зоны позволили выделить среди них две группы, отражающие различные источники исходных расплавов. В первую группу попадают большинство плагиогранитоидных ассоциаций островодужного (Тугрикский, Удзур-Хунгинский, Хатан-Хунгинский и Баясгалантский массивы) и аккреционно-коллизионного (Тугрикский и Дутулинский массивы) этапов развития региона с изотопными параметрами ε<sub>Nd</sub> = +8.5 – +4.6 и <sup>87</sup>Sr/<sup>86</sup>Sr<sub>0</sub> = 0.7034–0.7036. Такие изотопные характеристики указывают преимущественно на ювенильную природу их источников. На это обстоятельство указывают также сходство плагиогранитоидов этой группы с адакитами и положение точек их изотопного состава в области эволюции изотопного состава Nd вулканитов Озерной зоны. Во вторую группу попадают только плагиогранитоиды массива Мандалт с изотопными параметрами  $\varepsilon_{Nd}$  = +1.4 – +0.2 и <sup>87</sup>Sr/<sup>86</sup>Sr<sub>0</sub> = 0.7053. Sr-Nd-изотопные характеристики пород с учетом их редкоэлементного состава предполагают, что при формировании исходных расплавов для плагиогранитоиднов этого массива, ведущая роль принадлежала метабазитам, образованным из относительно обогащенного мантийного источника.

3. Нf-изотопные исследования магматических цирконов из пород изученных плагиогранитоидных ассоциаций позволяет выделить среди них две изотопные группы. В первую группу попадают магматические цирконы из плагиогранитоидов Тугрикского, Хатан-Хунгинского, Баясгалантского и Дутулинского массивов, имеющие высокие положительные значения  $\varepsilon_{\rm Hf}$  (+14.7 – +11.9), которые указыают на деплетированный состав их магмообразующих источников. Во вторую группу попадают цирконы из плагиогранитоидов массива Мандалт, с изотопными параметрами  $\varepsilon_{\rm Hf}(T) = +7.2 - +5.4$ , что предполагает плавление базитового субстрата (океанические поднятия, плато и острова), связанного с относительно обогащенным мантийным источником. Таким образом, Hf-изотопные характеристики магматических цирконов и Sm-Nd изотопные параметры пород указывают на нероднородный состав магмогенерирующих источников плагиогранитоидов и гетерогенный состав коры Озерной зоны Западной Монголии.

4. Результаты Hf-изотопных исследований унаследованных и ксеногенных цирконов (664–519 млн лет) из раннепалеозойских плагиогранитоидных ассоциаций южной части Озерной зоны, позволяют условно выделить среди них три группы. В первую группу попадают унаследованные и ксеногенные цирконы с возрастами 540–519 млн лет, наблюдаемые в породах Баясгалантского, Тугрикского, Дутулинского и Мандалт массивов, которые характеризуются значениями  $\varepsilon_{\rm Hf}$  = +14.5 – +12.8. По этим изотопным характеристикам они не отличаются от магматических цирконов из этих пород, что указывать на близкие по составу и возрасту преимущественно раннекембрийские магмообразующие источники. Во вторую и третью группы, относятся единичные зерна унаследованного циркона в породах Тугрикского и Хатан-Хунгиского массивов, имеющие более низкие значения изотопных параметров ( $\varepsilon_{\rm Hf}(563)$  = +2.9;  $\varepsilon_{\rm Hf}(545)$  = +6.7 и  $\varepsilon_{\rm Hf}(664)$  = +10.6), что может отражать менее деплетированный характер и/или более древний возраст их источников.

5. Формирование исходных расплавов для раннепалеозойских плагиогранитоидов южной части Озерной зоны, исходя из Rb-Sr, Sm-Nd и Lu-Hf изотопных данных, происходило на удалении от раннедокембрийских блоков, имеющие более длительную коровую предысторию (Дзабханский и другие микроконтиненты).

*Благодарности.* Авторы выражают глубокую благодарность О.М.Туркиной, А.Э. Изоху и Н.Н. Круку за плодотворные дискуссии, ценные советы и замечания в ходе работы над статьей, рецензенту Т.В. Донской и анонимному рецензенту за ряд ценных замечаний к статье, а также Е.А. Крук (ИГМ СО РАН, Новосибирск) за обработку каменного и графического материалов, С.В. Палесскому, Г.А. Докукиной, Н.Г. Кармановой, А.Н. Торянику и Н.М. Глуховой (ИГМ СО РАН, Новосибирск), принимавших участие в аналитических исследованиях.

Работа выполнена по государственному заданию ИГМ СО РАН и при финансовой поддержке РФФИ (гранты: № 18-05-00105а и 15-05-05615а).

#### ЛИТЕРАТУРА

Гибшер А.С., Хаин Е.В., Котов А.Б., Сальникова Е.Б., Козаков И.К., Ковач В.П., Яковлева С.З., Федосеенко А.М. Поздневендский возраст хантайширкого офиолитовогокомплекса Западной Монголии // Геология и геофизика, 2001, т. 42 (8), 1179– 1185.

Ковач В.П., Ярмолюк В.В., Коваленко В.И., Козловский А.М., Котов А.Б., Терентьева Л.Б. Состав, источники и механизмы формирования континентальной коры Озерной зоны каледонид Центральной Азии. II. Геохимические и Nd-изотопные данные // Петрология, 2011, т. 19, № 3, с. 1–29.

Коваленко В.И., Ярмолюк В.В., Сальникова Е.Б., Карташов П.М., Ковач В.П., Козаков И.К., Козловский А.М., Котов А.Б., Пономарчук В.А., Листратова Е.Н., Яковлева С.З. Халдзан-Бурегтейский массив щелочных и редкометальных магматических пород: строение, геохронология и геодинамическое положение в каледонидах Западной Монголии // Петрология, 2004, т. 12, № 5, с. 467–494.

Козаков И.К., Сальникова Е.Б., Хаин Е.В., Ковач В.П., Бережная Н.Г., Яковлева С.З., Плоткина Ю.В. Этапы и тектонические обстановки формирования комплексов ранних каледонид Озерной зоны Монголии: результаты U-Pb и Sm-Nd изотопных исследований // Геотектоника, 2002, № 2, с. 80–92.

**Николаева И.В., Палесский С.В., Козьменко О.А., Аношин Г.Н.** Определение редкоземельных и высокозарядных элементов в стандартных геологических образцах

методом масс-спектрометрии с индукционно-связанной плазмой // Геохимия, 2008, № 10, с. 1085–1091.

**Руднев С.Н., Изох А.Э., Ковач В.П., Шелепаев Р.А., Терентьева** Л.Б. Возраст, состав, источники и геодинамические условия формирования гранитоидов северной части Озерной зоны Западной Монголии: механизмы роста палеозойской континентальной коры // Петрология, 2009, т. 17, № 5, с. 470–508.

Руднев С.Н., Изох А.Э., Борисенко А.С., Шелепаев Р.А., Orihashi Y., Лобанов К.В., Вишневский А.В. Раннепалеозойский гранитоидный магматизм Бумбатхаирханского ареала Озерной зоны Западной Монголии (геологические, петрохимические и геохронологические данные) // Геология и геофизика, 2012, т. 53, № 5, с. 557–578.

**Руднев С.Н., Ковач В.П., Пономарчук В.А.** Венд-раннекембрийский островодужный плагиогранитоидный магматизм Алтае-Саянской складчатой области и Озерной зоны Западной Монголии (геохронологические, геохимические и изотопные данные) // Геология и геофизика, 2013, т. 54, № 10, с. 1628–1647.

**Руднев С.Н., Изох А.Э., Борисенко А.С., Гаськов И.В.** Гранитоидный магматизм и металлогения Озерной зоны Западной Монголии (на примере Бумбатхаирханского ареала) // Геология и геофизика, 2016, т. 57, № 2, с. 207–224.

Руднев С.Н., Мальковец В.Г., Булоусова Е.А., Третьякова И.Г., Гибшер А.А. U-PB изотопное датирование ксеногенного циркона из раннепалеозойских плагиогранитоидов южной части Озерной зоны Монголии // Материалы 7 Российской конференция по изотопной геохронологии «Методы и геологические результаты изучения изотопных геохронометрических систем минералов и пород». М.: ИГЕМ РАН, 2018, с. 294-296.

**Руднев С.Н., Мальковец В.Г., Белоусова Е.А., Третьякова И.Г., Гибшер А.А.** Кембро-ордовикский плагиогранитоидный магматизм южной части Озерной зоны Западной Монголии // Геология и геофизика, 2019 (в печати).

**Терентьева** Л.Б., Козаков И.К., Ярмолюк В.В., Анисимова Л.В., Козловский А.М., Кудряшова Е.А., Сальникова Е.Б., Яковлева С.З, ФедосеенкоА.М., Плоткина Ю.В. Конвергентные процессы в эволюции ранних каледонид Баян-Хонгорской зоны Центральной Азии: геологические и геохронологические исследования Хан-Улинского габброидного плутона // Доклады АН, 2010, т. 433 (2), с. 237–243.

**Туркина О.М.** Модельные геохимические типы тоналит-трондьемитовых расплавов и их природные эквиваленты // Геохимия, 2000, № 7, с. 704—717.

Ярмолюк В.В., Ковач В.П., Коваленко В.И., Сальникова Е.Б., Козловский А.М., Котов А.Б., Яковлева С.З., Федосеенко А.М. Состав, источники и механизмы формирования континентальной коры Озерной зоны каледонид Центральной Азии: I. Геологические и геохронологические данные // Петрология, 2011, т. 19, № 1, с. 83–107.

**Ярмолюк В.В., Ковач В.П., Козаков И.К., Козловский А.М., Котов А.Б., Рыцк Е.Ю.** Механизмы формирования континентальной коры Центрально-Азиатского складчатого пояса // Геотектоника, 2012, № 4, с. 3–27.

**Arth, J.G.** Some trace elements in trondhjemites. Their implications to magma genesis and paleotectonic setting, in: Barker, F. (Ed.), Trondhjemites, Dacites and Related Rocks. Elsevier, Amsterdam. 1979, p.123–132.

**Badarch G., Cunningham W.D., Windley B.F.** A New Terrane Subdivision for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia // Journal Asian Earth Science, 2002, 21, 87–104.

**Beard, J.S., Lofgren, G.E.** Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kbar // Journal of Petrology, 1991 32, p. 365–401.

**Belousova, E.A., Griffin, W.L., O'Reilly, S.Y.** 2006 Zircon crystalmorphology, trace element signature sand Hf isotope composition as a tool for petrogenetic modelling: examples from eastern Australian granitoids // Journal of Petrology, 2006, p. 47, 329–353.

**Belousova E.A., Reid A.J., Griffin W.L., O'Reilly S.Y.** Rejuvenation vs. recycling of Archean crust in the Gawler Craton, South Australia: evidence from U–Pb and Hf isotopes in detrital zircon // Lithos, 2009, 113, p. 570–582.

Buchan, C., Pfänder, J., Kröner, A., Brewer, T.S., Tomurtogoo, O., Tomurhuu, D., Cunningham, D., Windley, B.F. Timing of accretion and collisional deformation in the Central Asian Orogenic Belt: implications of granite geochronology in the Bayankhongor Ophiolite Zone // Chemical Geology, 2002, 192, p. 23–45.

**Castillo, P.R.** An overview of adakite petrogenesis // Chinese Sciences Bulluten, 2006 51 (3), p. 257–268.

**Dergunov A.B.** Caledonides of Central Asia // In Mossakovsky A.A. (Ed.), Transaction of the Geological Institute of the Academy of Sciences of the USSA, 1989, v. 447. Nauka, Moscow, p. 1–192 (in Russia).

**Dergunov A.B., Kovalenko V.I., Ruzhentsev S.V., Yarmolyuk V.V.** Tectonic, magmatism, and Metallogeny of Mongolia // (Routledge, London, New York), 2001.

**Drummond M.S., Defant M.J.,** A model for trondhjemite–tonalite–dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research, 1990, 5, 21, 503, 21, 521.

**Drummond M.S., Defant M.J., Kepezhinskas P.K.** Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Trans. R. Soc. Edinburgh. Earth Sciences, 1996, 87, p. 205–215.

**Eby G.N.** The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculation on Their Petrogenesis // Lithos, 1990, 26, p.115–134.

**Geological map of Mongolia.** (Ed.), O. Tomurtogoo. General Directorate of Min. Res and Explor. of Turkey, Ankara, 1999.

**Goldstein S.J., Jacobsen S.B.** Nd and Sr Isotopic Systematics of Rivers Water Suspended Material: Implications for Crustal Evolution // Earth Planet. Sci. Lett., 1988, 87, p. 249–265.

**GriffinW.L., Pearson N.J., Belousova E.A., Jackson S.R., van Achterbergh E., O'Reilly, S.Y., Shee S.R.** The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites // Geochimica et Cosmochimica Acta, 2000, 64, p. 133–147.

**Griffin W.L., Belousova E.A., Shee S.R., Pearson N.J., O'Reilly S.Y.** Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons // Precambrian Research, 2004, 131, p. 231–282.

**Jacobsen S.B., Wesserburg G.J.** Sm-Nd evolution of chondrites and achondrites // Earth Planet. Sci. Lett., 1984, 67, p. 137–150.

**Jahn B.M.** The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic // Aspects of the Tectonic Evolution of China // (Eds.) J. Malpas, C.J.N. Fletcher, J.C. Aitchison. Geological Society, London, Special Publications, 2004, 226, p. 73–100.

**Jahn B.M., Wu F., Chen B.** Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic // Transactions of the Royal Society of Edinburg., 2000a, 91, p. 181–193.

**Jahn B.M., Wu F., Chen B.** Млн летssive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic // Episodes, 2000b, 23, p. 82–92.

Jian P., Kröner A., Jahn B.-M., Windley B.F., Shi Y., Zhang W., Zhang F., Miao L., Tomurhuu D., Liu D. Zircon dating of Neoproterozoic and Cambrian ophiolites inWest Mongolia and implications for the timing of orogenic processes in the central part of the Central Asian Orogenic Belt // Earth-Science Reviews, 2014, 133, p. 62–93.

Janoušek V., Jiang Y., Buriánek D., Schulmann K., Hanžl P., Soejono I., Kröner A., Altanbaatar B., Erban V., Lexa O., Ganchuluun T., Košler J. Cambrian–Ordovician magmatism of the Ikh-Mongol Arc System exemplified by the Khantaishir Magmatic Complex (Lake Zone, south–central Mongolia) // Gondwana Research, 2018, v. 54, p.122–149. **Kovach V.P, Rudnev S.N., Kruk N., Yarmolyuk V., Wang K.L., Kotov A., Chung S.L.** Latest Neoproterozoic-early Paleozoic juvenile crust growth in the central part of the Central Asian Orogenic Belt: Insight from Nd-Hf isotopic data for the Altai-Sayan–Western Mongolia region // Asian Orogeny and Continental Evolution: New Advances from Geologic, Geophisical and Geochemical Perspectives International Conference in memory of Prof/ Bor-Ming Jahn/ Academia Sinica. Taipei. Taiwan, 2017, n. 6-7, p. 48-50

Kozlovsky A.M., Yarmolyuk V.V., Salnikova E.B., Travin A.V., Kotov A.B., Plotkina J.V., Kudryashova E.A., Savatenkov V.M. Late Paleozoic anorogenic magmatism of the Gobi Altai (SW Mongolia): Tectonic position, geochronology and correlation with igneous activity of the Central Asian Orogenic Belt // Journal of Asian Earth Sciences, 2015, 113 (1), p. 524–541.

Kröner A., Kovach V., Belousova E., Hegner E., Armstrong R., Dolgopolova A., Seltmann R., Alexeiev D.V., Hoffmann J.E., Wong J., Sun M., Cai K., Wang T., Tong Y., Wilde S.A., Degtyarev K.E., Rytsk E. Reassessment of continental growth during the accretionary history of theCentral Asian Orogenic Belt // Gondwana Research, 2014, 25, p. 103– 125.

**Liew T.C., Hofmann A.W.** Precambian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from a Nd and Sr isotopic study // Contributions to Mineralogy and Petrology, 1988, 98, p. 129–138.

**Martin H., Smithies R.H., Rapp R., Moyen J.F., Champion D.** An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implication for crustal evolution // Lithos, 2005, 79, p. 1–24.

**Pearce J.A., Harris N.B.W., Tindle A.G.** Trace nelement discrimination diagrams for the tectonic interpretation of granitic rocks // Journal of Petrology, 1984, 25, p. 956–983.

**Pearson N.J., Griffin W.L., O'Reilly S.Y.** Precision of in situ isotope ratio measurements by LAM-MC-ICPMS // Geochim. Cosmochim. Acta, 2008, 72, A732.

**Rapp R.P., Watson E.B.** Dehydratation melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling // Journal of Petrology, 1995, 36, p. 891–931.

**Rapp R.P., Watson E.B., Miller C.F.** Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalities // Precambrian Research, 1991, 151, p. 1–25.

Scherer E., Münker C., Mezger K. Calibration of the Lutetium-Hafnium clock // Science, 2001, 293 (5530), p. 683–687

**Sun, S.S., McDonough, W.F.** Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D., Norry, M. (Eds.), Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, v. 42, p. 313–345. **Taylor S.R., McLennan S.M.** The Continental Crust: Its Evolution and Composition. Blackwell, London, 1985. 312 p.

## Подписи к рисункам в статье С.Н. Руднева, В.Г. Мальковец, Е.А. Белоусовой, И.Г. Третьяковой, П.А. Серова, В.Ю. Киселевой, А.А. Гибшер, И.В. Николаевой

# ГЕОХИМИЯ, SM-ND, RB-SR, LU-НF ИЗОТОПИЯ, УСЛОВИЯ ФОРМИРОВАНИЯ И ИСТОЧНИКИ ПЛАГИОГРАНИТОИДОВ ЮЖНОЙ ЧАСТИ ОЗЕРНОЙ ЗОНЫ ЗАПАДНОЙ МОНГОЛИИ

Рис. 1. Схема геологического строения Озерной зоны (составлена с упрощениями, на основе данных [Geological..., 1999]. Массивы: 1 – Шаратологойский, 2 – Хиргиснурский, 3 – Айрыгнурский, 4 – Баян-Хаирханский, 5 – Западно-Баян-Хаирханский, 6 – Харанурский, 7 – Гундгузинский, 8 – Бумбат-Харханский, 9 – Хаирханский, 10 – Три Холма, 11 – Баян-Цаганский, 12 – Восточно-Баян-Цаганский, 13 – Таван-Хаирханский, 14-15 –шток Баян-Цаган-Нуру, 16 – Дутулинский, 17 – Баясгалантский, 18 – Мандалт, 19 – Хатан-Хунгинский, 20 – Тугурукский, 21 – Тугрикский, 22 – Удзур-Хунгинский, 23 – Тунгалагский, 24 – гранитоидные массивы хребта Дариби, 25 – офиолиты хребта Дариби, 26 – Хара-Чулу, 27 – Хутульский, 28 – Сархаирханский. Ареалы интрузивного магматизма: I – Хиргиснурский, II – Харанурский, III – Бумбат-Хаирханский, IV – Дутулинский, V – Хатан-Хунгинский, VI – Тугрикский, VII – Дарибский, VIII – Хантайширский.

На врезке показана схематичная тектоническая карта Западной Монголии. Докембрийские микроконтиненты: ДЗ – Дзабханский, ЮГ - Южно-Гобийский; ОЗ – островная дуга Озерной зоны (поздний неопротерозой – ранний палеозой); аккреционные комплексы (ранний-средний палеозой): МА – Монголо-Алтайский, ЮМ – Южно-Монгольский.

**Рис. 2.** Дискриминационные диаграммы для раннепалеозойских гранитоидов южной части Озерной зоны.

1–2 – Тугрикский массив (1 – диорит-тоналит-плагиогранитная ассоциация, ранний ритм, 531 млн лет; 2 – плагиогранитная ассоциация, поздний ритм, 504 млн лет); 3 – Удзур-Хунгинский массив (диорит-тоналит-плагиогранитная ассоциация, 517 млн лет); 4 – Хатан-Хунгинский массив (плагиогранитная ассоциация, 521 млн лет); 5 – массив Мандалт (диорит-тоналит-плагиогранитная ассоциация, 495 млн лет); 6-7 – Баясгалантский массив (6 –тоналит-плагиогранитная, ранний ритм, 524 млн лет, 7 – плагиогранитная ассоциация, поздний ритм, 522 млн лет); 8 – Дутулинский массив (плагиогранитная ассоциация, 481 млн лет). Анализы пород см. табл. 1. Диаграммы SiO<sub>2</sub> – Rb, SiO<sub>2</sub> – Sr и SiO<sub>2</sub> – Ba, диаграмма Y – Nb, Y+Nb – Rb по [Pearce et al.,

Диаграммы  $SIO_2 - RD$ ,  $SIO_2 - Sr$  и  $SIO_2 - Ba$ , диаграмма Y - ND, Y + ND - RD по [Pearce et al., 1984], где WPG – внутриплитные граниты, ORG – граниты океанических хребтов, syn-

COLG – синколлизионные граниты, VAG – граниты вулканических дуг; диаграмма Ta/Yb– Th/Yb по [Pearce, 2008], где N\_MORB –базальты срединно-океанических хребтов; диаграмма Y/Nb – Yb/Ta по [Eby, 1990], где IAB –базальты островных дуг, OIB – базальты океанических островов.

Диаграммы: Al<sub>2</sub>O<sub>3</sub>–Yb по [Arth, 1979], Eu–Yb по [Туркина, 2000], SiO<sub>2</sub>–MgO, Sr–(CaO + Na<sub>2</sub>O), Sr/Y–Y и Cr/Ni–TiO<sub>2</sub> по [Martin et al., 2005; Castillo, 2006], демонстрирующие принадлежность исследуемых раннепалеозойских плагиогранитоидных ассоциаций к высоко- и низкоглиноземистым TTG комплексам. На диаграмме Eu-Yb треугольниками области образующихся показаны содержания элементов В расплавах, при дегидратационном (сплошные линии) и водном (штриховые линии) плавлении источников ТН1, ТН2 и MORB [Rapp et al., 1991; Rapp, Watson, 1995; Beard, Lofgren, 1991] в равновесии с пятью типами реститов по [Туркина, 2000]. I – Pl+Cpx+Opx, II – Hbl+Pl±Cpx±Opx, III-IV – Hbl+Cpx+Pl±Grt, V – Cpx+Grt±Hbl, где Pl – плагиоклаз, Cpx – клинопироксен, Opx – ортопироксен, Hbl – амфибол, Grt – гранат; LSA – низкокремнистые адакиты, HAS – высококремнистые адакиты.

**Рис. 3.** Мультиэлементные диаграммы для раннепалеозойских плагиогранитоидов южной части Озерной зоны.

(а-б) – Тугрикский массив (а –ранний ритм; б –поздний ритм); (в) – Удзур-Хунгинский массив; (г) – Хатан-Хунгинский массив; (д) – массив Мандалт; (е-ж) – Баясгалантский массив (е – ранний ритм, ж– поздний ритм); (з) – Дутулинский массив. Поле, закрашенное серым цветом отвечает составам адакитов по [Martin et al., 2005; Castillo., 2006]. Нормирование редких элементов проведено по хондриту и примитивной мантии [Sun, McDonough, 1989].

**Рис. 4.** Изотопные диаграммы ε<sub>Nd</sub> – возраст и ε<sub>Nd</sub> – ε<sub>Sr</sub> для раннепалеозойских плагиогранитоидных ассоциаций Озерной зоны Западной Монголии.

1-8 – изотопные характеристики плагиогранитоидов южной части Озерной зоны (по данным табл. 2) : 1-2 – Тугрикский массив (1 – диорит-тоналит-плагиогранитная ассоциация, ранний ритм, 531 млн лет; 2 – плагиогранитная ассоциация, поздний ритм, 504 млн лет); 3 – Удзур-Хунгинский массив (диорит-тоналит-плагиогранитная ассоциация, 517 млн лет); 4 – Хатан-Хунгинский массив (плагиогранитная ассоциация, 521 млн лет); 5 – массив Мандалт (диорит-тоналит-плагиогранитная ассоциация, 495 млн лет); 6-7 – Баясгалантский массив (6 –тоналит-плагиогранитная, ранний ритм, 524 млн лет, 7 – плагиогранитная ассоциация, поздний ритм, 522 млн лет); 8 – Дутулинский массив

(плагиогранитная ассоциация, 481 млн лет); 9 – палеозойские гранитоидные ассоциации Озерной зоны по данным [Коваленко и др., 2004; Ковач и др., 2011; Руднев и др., 2009, 2013]; 10–14 – изотопные характеристики по данным [Ковач и др., 2011; Кгöner et al., 2014]: 10 – осадочные породы аккреционных призм; 11 – осадочные отложения в ассоциации с вулканическими породами; 12 – вулканогенные образования океанических плато; 13 – вулканогенные образования островных дуг; 14 – вулканогенные образования задуговых бассейнов; 15 – плагиогранитоидные ассоциации северной и центральной части Озерной зоны по [Руднев и др., 2009, 2013]. На диаграмме  $\varepsilon_{Nd}$  – возраст, поле, закрашенное серым цветом, отвечает эволюции изотопного состава Nd островодужных вулканитов Озерной зоны; крапом –эволюции изотопного состава Nd докембрийских пород Дзабханского микроконтинента по [Ковач и др., 2011; Kröner et al., 2014].

**Рис. 5.** Катодолюминесцентные изображения (КЛ) зерен циркона из плагиогранитоидов южной части Озерной зоны.

Красным сплошным кружком показаны точки, где проводились изотопные исследования магматического и ксеногенного циркона U-Pb методом [Руднев и др., 2019], желтым пунктирным кружком – Lu-Hf методом (см. табл. 3). Над чертой показано значение возраст (млн лет), под чертой – значение параметров ε<sub>Hf</sub> и T<sub>DM</sub><sup>Crustal</sup> (млрд лет).

Тугрикский массив: проба РМ-26-11 (кварцевый диорит) и проба РМ-38-11 (плагиогранит); Удзур-Хунгинский массив - проба РМ-17-11 (кварцевый диорит); Хатан-Хунгинский массив - проба РМ-34-13 (плагиогранит); массив Мандалт – проба РМ-25-14 (кварцевый диорит); Баясгалантский массив: проба РМ-31-14 (плагиогранит) и проба РМ-28-14 (плагиогранит); Дутулинский массив - проба РМ-62-08 (плагиогранит).

**Рис. 6.** Изотопная диаграмма ε<sub>Hf</sub> – возраст для цирконов из раннепалеозойских плагиогранитоидов южной части Озерной зоны (см. табл. 3). Условные обозначения см. рис. 2.

| HTЫ                                |              | Диорип       | 1-тоналит-п. | <b>Тугрикский</b><br>лагиогранит | й массив<br>ная ассоциац | ия (ранний р | итм)         |             |
|------------------------------------|--------------|--------------|--------------|----------------------------------|--------------------------|--------------|--------------|-------------|
| Компоне                            | PM-31-<br>11 | PM-30-<br>11 | PM-26-<br>11 | PM-24-<br>11                     | PM-20-<br>11             | PM-19-<br>13 | PM-20-<br>13 | PM-7-<br>13 |
| SiO <sub>2</sub> , мас. %          | 57.77        | 60.45        | 62.31        | 63.25                            | 63.81                    | 64.28        | 67.82        | 71.15       |
| TiO <sub>2</sub>                   | 0.45         | 0.44         | 0.40         | 0.44                             | 0.43                     | 0.43         | 0.20         | 0.27        |
| Al <sub>2</sub> O <sub>3</sub>     | 19,10        | 19,20        | 18,35        | 18,70                            | 17,80                    | 17,22        | 17,80        | 15,04       |
| Fe <sub>2</sub> O <sub>3 общ</sub> | 6.28         | 5.39         | 4.93         | 4.22                             | 4.40                     | 4.71         | 2.40         | 2.63        |
| MnO                                | 0,10         | 0,08         | 0,08         | 0,07                             | 0,09                     | 0,09         | 0,03         | 0,07        |
| MgO                                | 2,86         | 2,14         | 1,74         | 1,49                             | 2,02                     | 1,75         | 0,62         | 0,86        |
| CaO                                | 6,53         | 5,65         | 5,13         | 5,04                             | 5,20                     | 5,06         | 4,53         | 2,66        |
| Na <sub>2</sub> O                  | 4.71         | 4,77         | 4,98         | 5.28                             | 4,43                     | 4.65         | 5.04         | 4,54        |
| K <sub>2</sub> O                   | 1.15         | 1.05         | 1.05         | 0.74                             | 1.42                     | 1.26         | 1.06         | 1.87        |
| LIO                                | 1.21         | 0.89         | 0.69         | 0.82                             | 0.86                     | 0.57         | 0.95         | 0.53        |
| $P_2O_5$                           | 0,21         | 0,21         | 0,20         | 0,17                             | 0,14                     | 0,19         | 0,12         | 0,09        |
| Сумма                              | 100,37       | 100,27       | 99,86        | 100,22                           | 100,60                   | 100,20       | 100,58       | 99,70       |
| <b>Rb,</b> г/т                     | 15           | 14           | 13           | 12                               | 19                       | 13           | 9            | 25          |
| Sr                                 | 890          | 912          | 895          | 949                              | 823                      | 791          | 823          | 587         |
| Ba                                 | 389          | 396          | 415          | 348                              | 388                      | 441          | 372          | 512         |
| Y                                  | 12,22        | 11,37        | 11,03        | 7,68                             | 10,50                    | 9,19         | 3,59         | 7,02        |
| Zr                                 | 65           | 114          | 108          | 88                               | 79                       | 97           | 73           | 64          |
| Hf                                 | 1,65         | 2,58         | 2,62         | 1,96                             | 2,09                     | 2,70         | 2,01         | 1,97        |
| Nb                                 | 1,91         | 1,87         | 1,99         | 1,40                             | 1,99                     | 1,97         | 1,01         | 3,33        |
| Та                                 | 0,09         | 0,10         | 0,11         | 0,08                             | 0,13                     | 0,11         | 0,09         | 0,29        |
| Th                                 | 0,86         | 1,29         | 1,09         | 0,53                             | 2,37                     | 1,81         | 1,42         | 2,19        |
| U                                  | 0,30         | 0,40         | 0,46         | 0,23                             | 0,72                     | 0,73         | 0,60         | 0,65        |
| V                                  | 122          | 102          | 87           | 83                               | 87                       | 97           | 41           | 32          |
| Cr                                 | 30           | 36           | 22           | 54                               | 29                       | 31           | 50           | 27          |
| Со                                 | 19           | 16           | 13           | 11                               | 13                       | 11           | 5            | 5           |
| Ni                                 | 23           | 16           | 14           | 18                               | 15                       | 11           | 6            | 7           |
| La                                 | 9,82         | 11,71        | 10,20        | 6,65                             | 8,95                     | 11,44        | 6,89         | 7,88        |
| Ce                                 | 21,74        | 24,78        | 23,90        | 15,38                            | 19,81                    | 26,10        | 13,97        | 19,18       |
| Pr                                 | 3,00         | 3,28         | 3,32         | 2,16                             | 2,67                     | 3,32         | 1,65         | 2,54        |
| Nd                                 | 11,98        | 13,13        | 13,64        | 8,93                             | 10,95                    | 12,84        | 6,34         | 9,25        |
| Sm                                 | 2,44         | 2,84         | 2,81         | 1,95                             | 2,37                     | 2,56         | 1,14         | 1,89        |
| Eu                                 | 0,76         | 0,83         | 0,86         | 0,69                             | 0,72                     | 0,83         | 0,52         | 0,47        |
| Gd                                 | 2,30         | 2,32         | 2,28         | 1,56                             | 1,99                     | 2,20         | 0,89         | 1,53        |
| Tb                                 | 0,33         | 0,30         | 0,33         | 0,24                             | 0,30                     | 0,29         | 0,13         | 0,19        |
| Dy                                 | 1,92         | 1,80         | 1,75         | 1,17                             | 1,65                     | 1,52         | 0,59         | 1,08        |
| Ho                                 | 0,39         | 0,36         | 0,33         | 0,24                             | 0,30                     | 0,32         | 0,12         | 0,22        |
| Er                                 | 1,08         | 0,93         | 0,95         | 0,72                             | 0,90                     | 0,88         | 0,37         | 0,62        |
| Tm                                 | 0,16         | 0,14         | 0,14         | 0,10                             | 0,15                     | 0,14         | 0,06         | 0,11        |
| Yb                                 | 0,96         | 0,90         | 0,87         | 0,63                             | 0,96                     | 0,99         | 0,40         | 0,72        |
| Lu                                 | 0,15         | 0,13         | 0,13         | 0,10                             | 0,15                     | 0,15         | 0,07         | 0,11        |
| ΣREE                               | 57,04        | 63,46        | 61,51        | 40,53                            | 51,88                    | 62,58        | 33,14        | 45,79       |
| (La/Yb) <sub>N</sub>               | 6,9          | 8,8          | 7,9          | 7,1                              | 6,3                      | 7,8          | 11,6         | 7,4         |
| (Eu/Eu*) <sub>N</sub>              | 1,0          | 1,0          | 1,0          | 1,2                              | 1,0                      | 1,0          | 1,5          | 0,8         |
| Sr/Y                               | 73           | 80           | 81           | 124                              | 78                       | 86           | 229          | 84          |

Таблица 1. Содержания петрогенных и редких элементов в представительных образцах плагиогранитоидных массивов южной части Озерной зоны Западной Монголии

| Iđ                                  | Тугрикский массив<br>Плагиогранитная ассоциация (поздний ритм)<br>Удзур-Хунгинский масси<br>Диорит-тоналит-плагиогранитна. |             |              |           |          |             |             |              |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-----------|----------|-------------|-------------|--------------|
| eHT                                 | Плагиогра                                                                                                                  | нитная ассо | циация (позд | нии ритм) | Диорит-т | оналит-плаг | иогранитная | а ассоциация |
| HOL                                 |                                                                                                                            |             |              |           |          |             |             |              |
| IWO                                 | PM-37-11                                                                                                                   | PM-24-13    | PM-40-11     | PM-38-11  | PM-18-11 | PM-16-11    | PM-19-15    | PM-19/1-11   |
| N X                                 |                                                                                                                            |             |              |           |          |             |             |              |
| <b>SiO</b> <sub>2</sub> , mac. %    | 71,21                                                                                                                      | 71,56       | 71,88        | 72,58     | 57,53    | 60,21       | 62,58       | 74,88        |
| TiO <sub>2</sub>                    | 0,03                                                                                                                       | 0,02        | 0,03         | 0,03      | 0,50     | 0,55        | 0,42        | 0,08         |
| $Al_2O_3$                           | 16,70                                                                                                                      | 15,33       | 16,05        | 15,95     | 19,25    | 18,60       | 17,27       | 14,20        |
| Fe <sub>2</sub> O <sub>3 общ.</sub> | 2,34                                                                                                                       | 2,55        | 1,75         | 2,15      | 6,47     | 6,00        | 5,62        | 2,14         |
| MnO                                 | 0,06                                                                                                                       | 0,06        | 0,03         | 0,06      | 0,13     | 0,10        | 0,10        | 0,02         |
| MgO                                 | 0,45                                                                                                                       | 0,49        | 0,49         | 0,45      | 3,28     | 2,64        | 2,27        | 0,23         |
| CaO                                 | 1,70                                                                                                                       | 2,37        | 1,74         | 1,30      | 7,10     | 6,31        | 5,43        | 3,09         |
| Na₂O                                | 5,47                                                                                                                       | 5,19        | 5,99         | 5,37      | 4,16     | 4,32        | 4,17        | 4,21         |
| K <sub>2</sub> O                    | 1,42                                                                                                                       | 1,28        | 0,73         | 1,36      | 0,83     | 0,90        | 0,89        | 0,37         |
| LIO                                 | 0,75                                                                                                                       | 0,60        | 0,95         | 0,81      | 1,25     | 0,80        | 1,07        | 0,41         |
| $P_2O_5$                            | 0,05                                                                                                                       | 0,05        | 0,03         | 0,04      | 0,16     | 0,16        | 0,13        | 0,02         |
| Сумма                               | 100,18                                                                                                                     | 99,50       | 99,67        | 100,10    | 100,66   | 100,59      | 99,96       | 99,65        |
| <b>Rb,</b> г/т                      | 14                                                                                                                         | 9           | 8            | 15        | 9        | 10          | 9           | 4            |
| Sr                                  | 690                                                                                                                        | 668         | 901          | 652       | 809      | 781         | 720         | 597          |
| Ba                                  | 696                                                                                                                        | 583         | 321          | 570       | 363      | 373         | 500         | 285          |
| Y                                   | 4,22                                                                                                                       | 4,55        | 5,50         | 8,64      | 10,50    | 9,05        | 8,26        | 1,59         |
| Zr                                  | 73                                                                                                                         | 56          | 66           | 64        | 29       | 60          | 56          | 43           |
| Hf                                  | 1,75                                                                                                                       | 1,58        | 1,60         | 1,53      | 0,87     | 1,39        | 1,53        | 1,28         |
| Nb                                  | 1,59                                                                                                                       | 1,45        | 1,72         | 1,66      | 0,83     | 0,92        | 0,96        | 0,29         |
| Та                                  | 0,11                                                                                                                       | 0,11        | 0,11         | 0,11      | 0,05     | 0,06        | 0,05        | 0,04         |
| Th                                  | 0,46                                                                                                                       | 0,48        | 0,53         | 0,40      | 0,46     | 0,26        | 0,63        | 1,96         |
| U                                   | 0,17                                                                                                                       | 0,14        | 0,13         | 0,23      | 0,26     | 0,23        | 0,21        | 0,30         |
| V                                   | 19                                                                                                                         | 20          | 17           | 16        | 162      | 143         | 115         | 21           |
| Cr                                  | 46                                                                                                                         | 22          | 23           | 38        | 42       | 48          | 37          | 95           |
| Со                                  | 3                                                                                                                          | 2           | 3            | 3         | 22       | 19          | 13          | 4            |
| Ni                                  | 11                                                                                                                         | 3           | 11           | 12        | 22       | 18          | 15          | 30           |
| La                                  | 7,06                                                                                                                       | 5,90        | 6,49         | 5,74      | 4,74     | 4,35        | 4,77        | 7,50         |
| Ce                                  | 14,55                                                                                                                      | 12,07       | 13,47        | 11,82     | 10,62    | 9,97        | 10,63       | 14,92        |
| Pr                                  | 1,81                                                                                                                       | 1,39        | 1,59         | 1,40      | 1,51     | 1,49        | 1,55        | 1,40         |
| Nd                                  | 6,40                                                                                                                       | 4,96        | 5,78         | 5,23      | 6,99     | 6,36        | 6,11        | 4,60         |
| Sm                                  | 1,16                                                                                                                       | 0,95        | 1,05         | 1,06      | 1,75     | 1,53        | 1,22        | 0,60         |
| Eu                                  | 0,28                                                                                                                       | 0,29        | 0,28         | 0,29      | 0,73     | 0,62        | 0,52        | 0,29         |
| Gd                                  | 0,92                                                                                                                       | 0,81        | 0,86         | 1,19      | 1,81     | 1,57        | 1,45        | 0,41         |
| Tb                                  | 0,12                                                                                                                       | 0,12        | 0,14         | 0,18      | 0,30     | 0,24        | 0,23        | 0,05         |
| Dy                                  | 0,63                                                                                                                       | 0,67        | 0,71         | 1,08      | 1,65     | 1,36        | 1,36        | 0,18         |
| Но                                  | 0,12                                                                                                                       | 0,13        | 0,15         | 0,23      | 0,33     | 0,27        | 0,28        | 0,04         |
| Er                                  | 0,33                                                                                                                       | 0,43        | 0,45         | 0,66      | 0,90     | 0,77        | 0,85        | 0,12         |
| Tm                                  | 0,06                                                                                                                       | 0,08        | 0,08         | 0,11      | 0,14     | 0,12        | 0,13        | 0,03         |
| Yb                                  | 0,36                                                                                                                       | 0,50        | 0,56         | 0,69      | 0,93     | 0,71        | 0,89        | 0,18         |
| Lu                                  | 0,06                                                                                                                       | 0,08        | 0,09         | 0,11      | 0,14     | 0,11        | 0,13        | 0,03         |
| ΣREE                                | 33,86                                                                                                                      | 28,38       | 31,69        | 29,80     | 32,54    | 29,47       | 30,11       | 30,38        |
| (La/Yb) <sub>N</sub>                | 13,1                                                                                                                       | 8,0         | 7,8          | 5,6       | 3,4      | 4,1         | 3,6         | 28           |
| (Eu/Eu*) <sub>N</sub>               | 0,8                                                                                                                        | 1,0         | 0,9          | 0,8       | 1,2      | 1,2         | 1,2         | 1,7          |
| Sr/Y                                | 164                                                                                                                        | 147         | 164          | 75        | 77       | 86          | 87          | 375          |

Таблица 1 (продолжение)

| TbI                                    | Хатан     | -Хунгинский м  | лассив   | <b>Массив Мандалт</b><br>Лиорит-тоналит-рлагиогранитная ассониация |               |               |          |  |  |
|----------------------------------------|-----------|----------------|----------|--------------------------------------------------------------------|---------------|---------------|----------|--|--|
| нен                                    | 11/102006 | гранатная ассо | дийция   | диорит-г                                                           | поналит-плаги | огранатная ас | социация |  |  |
|                                        |           |                |          |                                                                    |               |               |          |  |  |
| Kow                                    | PM-3/-13  | PM-36-13       | PM-34-13 | PM-26-14                                                           | PM-25-14      | PM-21-14      | PM-23-14 |  |  |
| H                                      |           |                |          |                                                                    |               |               |          |  |  |
| <b>SiO</b> <sub>2</sub> , mac. %       | 71,82     | 72,40          | 73,70    | 58,05                                                              | 59,29         | 64,68         | 67,20    |  |  |
|                                        | 0,13      | 0,10           | 0,10     | 0,66                                                               | 0,57          | 0,31          | 0,41     |  |  |
| $Al_2O_3$                              | 15,87     | 15,47          | 15,32    | 17,42                                                              | 17,13         | 17,40         | 16,14    |  |  |
| <b>Fe</b> ₂ <b>O</b> <sub>3 общ.</sub> | 1,93      | 1,89           | 1,69     | 5,81                                                               | 5,57          | 4,41          | 2,92     |  |  |
| MnO                                    | 0,07      | 0,06           | 0,07     | 0,08                                                               | 0,08          | 0,05          | 0,03     |  |  |
| MgO                                    | 0,37      | 0,31           | 0,37     | 3,48                                                               | 3,80          | 1,46          | 1,60     |  |  |
| CaO                                    | 2,42      | 2,19           | 1,81     | 5,94                                                               | 5,72          | 3,66          | 3,87     |  |  |
| Na <sub>2</sub> O                      | 5,37      | 5,51           | 5,59     | 4,72                                                               | 4,72          | 5,02          | 4,69     |  |  |
| K <sub>2</sub> O                       | 1,22      | 0,96           | 1,03     | 1,28                                                               | 0,97          | 1,49          | 0,86     |  |  |
| LIO                                    | 0,92      | 0,59           | 0,87     | 2,15                                                               | 1,27          | 1,04          | 1,50     |  |  |
| $P_2O_5$                               | 0,06      | 0,07           | 0,05     | 0,22                                                               | 0,20          | 0,11          | 0,13     |  |  |
| Сумма                                  | 100,16    | 99,55          | 100,61   | 99,81                                                              | 99,30         | 99,63         | 99,34    |  |  |
| <b>Rb,</b> г/т                         | 14        | 10             | 11       | 28                                                                 | 22            | 32            | 22       |  |  |
| Sr                                     | 592       | 540            | 521      | 805                                                                | 781           | 727           | 739      |  |  |
| Ba                                     | 746       | 649            | 883      | 440                                                                | 335           | 468           | 360      |  |  |
| Y                                      | 2,91      | 5,37           | 4,12     | 13,42                                                              | 11,08         | 2,86          | 2,91     |  |  |
| Zr                                     | 59        | 51             | 51       | 111                                                                | 68            | 75            | 106      |  |  |
| Hf                                     | 1,64      | 1,49           | 1,48     | 2,76                                                               | 1,92          | 2,01          | 2,33     |  |  |
| Nb                                     | 1,45      | 1,12           | 1,01     | 3,44                                                               | 2,79          | 2,43          | 2,85     |  |  |
| Та                                     | 0,08      | 0,06           | 0,06     | 0,24                                                               | 0,21          | 0,27          | 0,18     |  |  |
| Th                                     | 0,39      | 0,23           | 0,14     | 3,11                                                               | 2,80          | 2,83          | 4,85     |  |  |
| U                                      | 0,11      | 0,11           | 0,09     | 1,11                                                               | 0,60          | 0,84          | 0,60     |  |  |
| V                                      | 13        | 8              | 7        | 109                                                                | 93            | 50            | 45       |  |  |
| Cr                                     | 44        | 60             | 24       | 110                                                                | 126           | 135           | 51       |  |  |
| Со                                     | 2         | 2              | 2        | 16                                                                 | 16            | 8             | 10       |  |  |
| Ni                                     | 11        | 8              | 9        | 56                                                                 | 69            | 30            | 41       |  |  |
| La                                     | 3,29      | 2,52           | 2,43     | 15,52 12,40                                                        |               | 9,10          | 11,62    |  |  |
| Ce                                     | 7,03      | 5,75           | 5,54     | 33,10                                                              | 27,18         | 16,23         | 18,53    |  |  |
| Pr                                     | 0,85      | 0,78           | 0,73     | 3,85                                                               | 3,20          | 1,50          | 1,50     |  |  |
| Nd                                     | 3,60      | 3,41           | 3,00     | 15,80                                                              | 13,30         | 5,40          | 4,90     |  |  |
| Sm                                     | 0,68      | 0,69           | 0,66     | 3,52                                                               | 2,84          | 0,95          | 0,86     |  |  |
| Eu                                     | 0,19      | 0,16           | 0,20     | 1,09                                                               | 1,03          | 0,58          | 0,45     |  |  |
| Gd                                     | 0,56      | 0,71           | 0,64     | 2,89                                                               | 2,57          | 0,74          | 0,56     |  |  |
| Tb                                     | 0,08      | 0,12           | 0,10     | 0,46                                                               | 0,35          | 0,10          | 0,08     |  |  |
| Dy                                     | 0,43      | 0,75           | 0,58     | 2,37                                                               | 1,96          | 0,46          | 0,38     |  |  |
| Но                                     | 0,09      | 0,18           | 0,13     | 0,48                                                               | 0,40          | 0,09          | 0,08     |  |  |
| Er                                     | 0,29      | 0,54           | 0,40     | 1,24                                                               | 1,05          | 0,27          | 0,23     |  |  |
| Tm                                     | 0,05      | 0,08           | 0,08     | 0,19                                                               | 0,16          | 0,04          | 0,03     |  |  |
| Yb                                     | 0,36      | 0,55           | 0,53     | 1,13                                                               | 0,99          | 0,27          | 0,22     |  |  |
| Lu                                     | 0,06      | 0,08           | 0,08     | 0,17                                                               | 0,15          | 0,04          | 0,03     |  |  |
| ΣREE                                   | 17,56     | 16,32          | 15,11    | 81,80                                                              | 67,58         | 35,78         | 39,46    |  |  |
| (La/Yb) <sub>N</sub>                   | 6,2       | 3,1            | 3,1      | 9,3                                                                | 8,4           | 22,8          | 35,6     |  |  |
| (Eu/Eu*) <sub>N</sub>                  | 0.9       | 0.7            | 0.9      | 1.0                                                                | 1.1           | 2.0           | 1.9      |  |  |
| Sr/Y                                   | 203       | 101            | 126      | 60                                                                 | 71            | 255           | 254      |  |  |

Таблица 1 (продолжение)

| HTbI                                |          | Баясгалантский массив |                               |            |          |                |                            |              |  |  |  |  |  |
|-------------------------------------|----------|-----------------------|-------------------------------|------------|----------|----------------|----------------------------|--------------|--|--|--|--|--|
| ПОНе                                |          | Тоналит-пла           | гиогранитная<br>(ранний ритм) | ассоциация |          | Плагиогр<br>(п | анитная асс<br>оздний ритм | оциация<br>) |  |  |  |  |  |
| KOM                                 | PM-38-14 | PM-35-14              | PM-30/2-14                    | PM-30-14   | PM-31-14 | PM-28-14       | PM-29-14                   | PM-33-14     |  |  |  |  |  |
| <b>SiO</b> <sub>2</sub> , mac. %    | 66,31    | 67,95                 | 70,14                         | 72,17      | 73,05    | 71,50          | 72,33                      | 72,54        |  |  |  |  |  |
| TiO <sub>2</sub>                    | 0,47     | 0,44                  | 0,34                          | 0,33       | 0,31     | 0,30           | 0,29                       | 0,23         |  |  |  |  |  |
| $Al_2O_3$                           | 15,06    | 14,80                 | 14,29                         | 13,43      | 13,57    | 13,76          | 13,78                      | 13,50        |  |  |  |  |  |
| Fe <sub>2</sub> O <sub>3 общ.</sub> | 5,30     | 4,94                  | 3,93                          | 3,99       | 3,35     | 3,45           | 3,39                       | 2,97         |  |  |  |  |  |
| MnO                                 | 0,11     | 0,11                  | 0,09                          | 0,09       | 0,09     | 0,07           | 0,07                       | 0,08         |  |  |  |  |  |
| MgO                                 | 1,58     | 1,56                  | 1,17                          | 0,79       | 0,75     | 0,84           | 0,76                       | 0,64         |  |  |  |  |  |
| CaO                                 | 4,01     | 3,89                  | 3,01                          | 2,64       | 2,42     | 2,52           | 2,39                       | 2,60         |  |  |  |  |  |
| Na <sub>2</sub> O                   | 4,11     | 3,85                  | 4,40                          | 4,16       | 4,24     | 4,15           | 4,07                       | 4,29         |  |  |  |  |  |
| K <sub>2</sub> O                    | 1,04     | 1,20                  | 1,35                          | 1,60       | 1,64     | 1,76           | 1,81                       | 1,44         |  |  |  |  |  |
| LIO                                 | 1,02     | 0,81                  | 1,32                          | 0,72       | 0,78     | 0,66           | 0,75                       | 0,76         |  |  |  |  |  |
| $P_2O_5$                            | 0,09     | 0,09                  | 0,07                          | 0,06       | 0,06     | 0,06           | 0,06                       | 0,05         |  |  |  |  |  |
| Сумма                               | 99,11    | 99,64                 | 100,09                        | 99,98      | 100,27   | 99,09          | 99,71                      | 99,09        |  |  |  |  |  |
| <b>Rb,</b> г/т                      | 15       | 22                    | 24                            | 28         | 23       | 28             | 30                         | 25           |  |  |  |  |  |
| Sr                                  | 255      | 224                   | 215                           | 151        | 174      | 217            | 232                        | 235          |  |  |  |  |  |
| Ba                                  | 337      | 372                   | 385                           | 454        | 482      | 717            | 762                        | 613          |  |  |  |  |  |
| Y                                   | 22,72    | 22,18                 | 22,96                         | 28,80      | 30,78    | 27,86          | 27,65                      | 27,88        |  |  |  |  |  |
| Zr                                  | 139      | 160                   | 144                           | 168        | 151      | 141            | 148                        | 119          |  |  |  |  |  |
| Hf                                  | 3,23     | 3,59                  | 3,55                          | 4,17       | 3,84     | 3,36           | 3,51                       | 3,04         |  |  |  |  |  |
| Nb                                  | 3,10     | 2,93                  | 3,01                          | 3,26       | 3,31     | 3,83           | 3,41                       | 2,94         |  |  |  |  |  |
| Та                                  | 0,21     | 0,21                  | 0,24                          | 0,24       | 0,24     | 0,24           | 0,18                       | 0,24         |  |  |  |  |  |
| Th                                  | 1,82     | 2,12                  | 2,60                          | 2,62       | 2,66     | 2,69           | 2,85                       | 2,13         |  |  |  |  |  |
| U                                   | 0,63     | 0,69                  | 1,05                          | 0,95       | 1,11     | 0,99           | 1,02                       | 1,15         |  |  |  |  |  |
| V                                   | 62       | 64                    | 41                            | 26         | 26       | 24             | 23                         | 21           |  |  |  |  |  |
| Cr                                  | 47       | 30                    | 43                            | 88         | 41       | 44             | 55                         | 56           |  |  |  |  |  |
| Со                                  | 10       | 10                    | 7                             | 5          | 5        | 5              | 5                          | 4            |  |  |  |  |  |
| Ni                                  | 18       | 12                    | 11                            | 11         | 8        | 8              | 13                         | 15           |  |  |  |  |  |
| La                                  | 7,47     | 8,41                  | 10,04                         | 10,42      | 10,22    | 10,18          | 9,05                       | 6,29         |  |  |  |  |  |
| Ce                                  | 17,31    | 19,03                 | 21,76                         | 24,10      | 23,40    | 23,19          | 20,61                      | 14,747       |  |  |  |  |  |
| Pr                                  | 2,05     | 2,20                  | 2,50                          | 2,88       | 2,86     | 2,88           | 2,46                       | 1,92         |  |  |  |  |  |
| Nd                                  | 8,80     | 9,20                  | 9,90                          | 12,08      | 12,07    | 12,33          | 10,54                      | 8,77         |  |  |  |  |  |
| Sm                                  | 2,50     | 2,42                  | 2,42                          | 3,15       | 3,29     | 3,25           | 2,73                       | 2,45         |  |  |  |  |  |
| Eu                                  | 0,84     | 0,79                  | 0,72                          | 0,80       | 0,78     | 0,61           | 0,53                       | 0,61         |  |  |  |  |  |
| Gd                                  | 2,40     | 2,38                  | 2,22                          | 2,80       | 2,89     | 2,92           | 2,51                       | 2,47         |  |  |  |  |  |
| ТЬ                                  | 0,42     | 0,42                  | 0,42                          | 0,55       | 0,58     | 0,56           | 0,54                       | 0,53         |  |  |  |  |  |
| Dy                                  | 2,91     | 2,79                  | 2,89                          | 3,71       | 3,90     | 3,57           | 3,56                       | 3,59         |  |  |  |  |  |
| Ho                                  | 0,64     | 0,64                  | 0,63                          | 0,80       | 0,87     | 0,73           | 0,78                       | 0,78         |  |  |  |  |  |
| Er                                  | 1,93     | 1,92                  | 1,97                          | 2,47       | 2,68     | 2,25           | 2,38                       | 2,40         |  |  |  |  |  |
| Tm                                  | 0,32     | 0,31                  | 0,33                          | 0,42       | 0,43     | 0,38           | 0,38                       | 0,38         |  |  |  |  |  |
| Yb                                  | 2,07     | 2,07                  | 2,20                          | 2,80       | 2,97     | 2,68           | 2,51                       | 2,50         |  |  |  |  |  |
| Lu                                  | 0,32     | 0,32                  | 0,35                          | 0,43       | 0,44     | 0,41           | 0,38                       | 0,39         |  |  |  |  |  |
| ΣREE                                | 49,98    | 52,88                 | 58,35                         | 67,41      | 67,37    | 65,96          | 58,96                      | 47,82        |  |  |  |  |  |
| (La/Yb) <sub>N</sub>                | 2,4      | 2,7                   | 3,1                           | 2,5        | 2,3      | 2,6            | 2,4                        | 1,7          |  |  |  |  |  |
| (Eu/Eu*) <sub>N</sub>               | 1,0      | 1,0                   | 0,9                           | 0,8        | 0,8      | 0,6            | 0,6                        | 0,8          |  |  |  |  |  |
| Sr/Y                                | 11       | 10                    | 9                             | 5          | 6        | 8              | 8                          | 8            |  |  |  |  |  |

Таблица 1 (продолжение)

| Tbi                                 | <b>Дутулинский массив</b><br>Плагиогранитная ассоциация |               |              |               |               |  |  |  |  |  |
|-------------------------------------|---------------------------------------------------------|---------------|--------------|---------------|---------------|--|--|--|--|--|
| Нен                                 |                                                         | тлигиогр      |              | лииция        |               |  |  |  |  |  |
| IOLIMO                              | PM-10-11                                                | PM-13-11      | PM-4-11      | PM-63-08      | PM-62-08      |  |  |  |  |  |
| K K                                 |                                                         |               |              |               |               |  |  |  |  |  |
| <b>SiO</b> <sub>2</sub> , Mac. %    | 68,60                                                   | 71,36         | 71,78        | 71,27         | 71,27         |  |  |  |  |  |
| TiO <sub>2</sub>                    | 0,21                                                    | 0,18          | 0,16         | 0,03          | 0,15          |  |  |  |  |  |
| $Al_2O_3$                           | 18,10                                                   | 16,25         | 16,20        | 15,45         | 15,70         |  |  |  |  |  |
| Fe <sub>2</sub> O <sub>3 общ.</sub> | 2,24                                                    | 2,29          | 1,77         | 2,35          | 2,19          |  |  |  |  |  |
| MnO                                 | 0,03                                                    | 0,05          | 0,03         | 0,05          | 0,05          |  |  |  |  |  |
| MgO                                 | 0,52                                                    | 0,38          | 0,34         | 0,50          | 0,50          |  |  |  |  |  |
| CaO                                 | 3,73                                                    | 1,94          | 3,00         | 3,75          | 3,56          |  |  |  |  |  |
| Na <sub>2</sub> O                   | 5,33                                                    | 5,15          | 5,02         | 5,03          | 5,34          |  |  |  |  |  |
| K <sub>2</sub> O                    | 0,62                                                    | 1,33          | 1,11         | 0,49          | 0,48          |  |  |  |  |  |
| LIO                                 | 0,77                                                    | 1,25          | 0,75         | 0,88          | 0,70          |  |  |  |  |  |
| $P_2O_5$                            | 0,06                                                    | 0,05          | 0,07         | 0,04          | 0,03          |  |  |  |  |  |
| Сумма                               | 100,21                                                  | 100,23        | 100,23       | 99,84         | 99,97         |  |  |  |  |  |
| <b>Rb,</b> г/т                      | 7                                                       | 20            | 15           | 9             | 6             |  |  |  |  |  |
| Sr                                  | 672                                                     | 416           | 481          | 563           | 462           |  |  |  |  |  |
| Ba                                  | 274                                                     | 575           | 487          | 422           | 409           |  |  |  |  |  |
| Y                                   | 5,38                                                    | 6,61          | 6,27         | 9,34          | 5,97          |  |  |  |  |  |
| Zr                                  | 92                                                      | 90            | 77           | 99            | 394           |  |  |  |  |  |
| Hf                                  | 2,07                                                    | 2,28          | 1,93         | 2,26          | 9,26          |  |  |  |  |  |
| Nb                                  | 1,15                                                    | 1,52          | 1,52         | 1,19          | 1,46          |  |  |  |  |  |
| Та                                  | 0,07                                                    | 0,11          | 0,09         | 0,08          | 0,11          |  |  |  |  |  |
| Th                                  | 0,36                                                    | 0,48          | 1,03         | 0,66          | 0,63          |  |  |  |  |  |
| U                                   | 0,18                                                    | 0,21          | 0,21         | 0,21          | 0,83          |  |  |  |  |  |
| V                                   | 17                                                      | 13            | 13           | 13            | 10            |  |  |  |  |  |
| Cr                                  | 7                                                       | 57            | 8            | 15            | 16            |  |  |  |  |  |
| Со                                  | 3                                                       | 3             | 2            | 3             |               |  |  |  |  |  |
| Ni                                  | 21                                                      | 30            | 18           | 21            |               |  |  |  |  |  |
| La                                  | 2,91                                                    | 3,41          | 4,98         | 3,95          | 3,49          |  |  |  |  |  |
| Ce                                  | 5,93                                                    | 7,28          | 9,80         | 8,72          | 7,64          |  |  |  |  |  |
| Pr                                  | 0,75                                                    | 0,91          | 1,22         | 1,17          | 0,88          |  |  |  |  |  |
| Nd                                  | 3,03                                                    | 3,68          | 4,97         | 4,36          | 3,92          |  |  |  |  |  |
| Sm                                  | 0,63                                                    | 0,88          | 0,85         | 1,05          | 0,85          |  |  |  |  |  |
| Eu                                  | 0,21                                                    | 0,15          | 0,19         | 0,30          | 0,24          |  |  |  |  |  |
| Gđ                                  | 0,59                                                    | 0,80          | 0,75         | 0,89          | 0,63          |  |  |  |  |  |
| TD                                  | 0,09                                                    | 0,11          | 0,13         | 0,15          | 0,11          |  |  |  |  |  |
| Dy                                  | 0,57                                                    | 0,/1          | 0,73         | 0,84          | 0,75          |  |  |  |  |  |
| HO                                  | 0,14                                                    | 0,16          | 0,15         | 0,16          | 0,16          |  |  |  |  |  |
| Er<br>Tm                            | 0,41                                                    | 0,49          | 0,44         | 0,50          | 0,48          |  |  |  |  |  |
|                                     | 0,00                                                    | 0,08          | U,Uð<br>0 50 | 0,08          | 0,09          |  |  |  |  |  |
| 10                                  | 0,43                                                    | 0,52          | 0,52         | 0,50          | 0,/0          |  |  |  |  |  |
|                                     |                                                         | U,Uð<br>10.20 | U,Uð<br>D100 | U,Uð<br>22.75 | U,15<br>20.10 |  |  |  |  |  |
|                                     | 15,81                                                   | 19,20         | 24,00<br>C F | 22,75         | 20,10         |  |  |  |  |  |
| (La/YD) <sub>N</sub>                | 4,6                                                     | 4,5           | 6,5          | 5,3           | 3,4           |  |  |  |  |  |
| (Eu/Eu*) <sub>N</sub>               | 1,1                                                     | 0,6           | 0,7          | 0,9           | 1,0           |  |  |  |  |  |
| Sr/Y                                | 129                                                     | 63            | 77           | 60            | 116           |  |  |  |  |  |

Таблица 1 (окончание)

Примечание. Содержания петрогенных элементов определены рентгенофлюоресцентным методом в Аналитическом центре Института геологии и минералогии Сибирского отделения Российской академии наук (Новосибирск, Россия) с использованием установки СРМ-25 (аналитики – Н.Г. Карманова, А.Н. Торяник). Содержания редких и редкоземельных элементов выполнены методом ICP-MS на установке Finnigan Element в Аналитическом центре Института геологии и минералогии Сибирского отделения Российской академии наук (Новосибирск, Россия) по методике [Николаева и др., 2008]. Погрешности определения содержаний редких и редкоземельных элементов составили менее 10%.

| N⁰ | № пробы  | Возраст, | Sm<br>(ppm) | Nd<br>(ppm) | <sup>147</sup> Sm/ <sup>144</sup> Nd | <sup>143</sup> Nd/ <sup>144</sup> Nd | ε <sub>Nd</sub> (T) | T <sub>Nd</sub> (DM-2st), | Rb<br>(ppm) | Sr<br>(ppm) | <sup>87</sup> Rb/ <sup>86</sup> Sr | <sup>87</sup> Sr/ <sup>86</sup> Sr, изм. | <sup>87</sup> Sr/ <sup>86</sup> Sr) <sub>0</sub> | ε <sub>sr</sub> (T) |
|----|----------|----------|-------------|-------------|--------------------------------------|--------------------------------------|---------------------|---------------------------|-------------|-------------|------------------------------------|------------------------------------------|--------------------------------------------------|---------------------|
|    |          | млнлет   | (ppin)      | (ppin)      |                                      |                                      |                     | млнлет                    | (ppin)      | (ppin)      |                                    |                                          |                                                  |                     |
| 1  | PM-26-11 | 530      | 2.761       | 13.93       | 0.1198                               | 0.512753±8                           | +7.5                | 648                       | 15.1        | 874         | 0.04984                            | 0.70412±1                                | 0.7037                                           | -2.0                |
| 2  | PM-38-11 | 504      | 0.911       | 5.33        | 0.1033                               | 0.512643±7                           | +6.1                | 739                       | 15.6        | 600         | 0.07510                            | 0.70413±4                                | 0.7036                                           | -4.6                |
| 3  | PM-17-11 | 517      | 1.805       | 7.16        | 0.1524                               | 0.512911±8                           | +8.3                |                           | 7.2         | 715         | 0.02913                            | 0.70368±2                                | 0.7035                                           | -6.2                |
| 4  | PM-34-13 | 521      | 0.531       | 2.79        | 0.1153                               | 0.512776±9                           | +8.1                | 585                       | 11.2        | 526         | 0.06355                            | 0.70399±6                                | 0.7035                                           | -5.3                |
| 5  | PM-25-14 | 495      | 3.094       | 14.01       | 0.1335                               | 0.512443±7                           | +0.2                | 1226                      | 22.7        | 800         | 0.08224                            | 0.70585±3                                | 0.7053                                           | +19.1               |
| 6  | PM-23-14 | 495      | 0.867       | 5.74        | 0.0913                               | 0.512369±10                          | +1.4                | 1123                      |             |             |                                    |                                          |                                                  |                     |
| 7  | PM-31-14 | 524      | 3.502       | 11.69       | 0.1811                               | 0.512818±8                           | +4.6                |                           | 21.7        | 166         | 0.37692                            | 0.70621±3                                | 0.7034                                           | -7.1                |
| 8  | PM-28-14 | 522      | 3.081       | 11.97       | 0.1556                               | 0.512851±9                           | +6.9                |                           | 25.7        | 202         | 0.36885                            | 0.70641±1                                | 0.7037                                           | -3.3                |
| 9  | PM-62-08 | 481      | 0.791       | 4.00        | 0.1196                               | 0.512828±11                          | +8.5                | 525                       | 7.5         | 576         | 0.03759                            | 0.70384±7                                | 0.7036                                           | -5.1                |

Таблица 2. Результаты Sm-Nd и Rb-Sr изотопных исследований раннепалеозойских плагиогранитоидных ассоциаций южной части Озерной зоны

Примечание. 1-2 – Тугрикский массив (1 – диорит-тоналит-плагиогранитная ассоциация, ранний ритм; 2 – плагиогранитная ассоциация, поздний ритм); 3 – Удзур-Хунгинский массив (диорит-тоналит-плагиогранитная ассоциация); 4 – Хатан-Хунгинский массив (плагиогранитная ассоциация); 5-6 – массив Мандалт (диорит-тоналит-плагиогранитная ассоциация); 7-8 – Баясгалантский массив (7 – диорит-тоналит-плагиогранитная ассоциация, ранний ритм; 8 – плагиогранитная ассоциация, поздний ритм); 9 – Дутулинский массив (плагиогранитная ассоциация).

Sm-Nd изотопные исследования выполнены по валовым пробам в Геологическом институте Кольского научного центра РАН (Апатиты, Россия) на семиканальном масс-спектрометре Finnigan-MAT-262 (RPQ). Нормирование изотопных отношений Nd осуществляли по отношению <sup>146</sup>Nd/<sup>144</sup>Nd=0.7219. Ошибка в <sup>147</sup>Sm/<sup>144</sup>Nd отношениях составляет 0.3% (2 $\sigma$ ). Холостое загрязнение на период измерений составило 0.06 нг для Sm и 0.3 нг для Nd. Среднее значение отношения <sup>143</sup>Nd/<sup>144</sup>Nd в стандарте JNd<sub>i</sub>-1 за период измерений составило 0.512090±13 (N=15). Значение параметра  $\epsilon_{Nd}$ (T) рассчитано относительно однородного хондритового резервуара (CHUR) с современными характеристиками <sup>143</sup>Nd/<sup>144</sup>Nd=0.512638; <sup>147</sup>Sm/<sup>144</sup>Nd=0.1967 [Jacobsen, Wasserburg, 1984]. Модельные возрасты  $T_{Nd}$ (DM) вычислены по данным [Goldstein, Jacobsen, 1988] для резервуара деплетированной мантии с (<sup>143</sup>Nd/<sup>144</sup>Nd)<sub>0</sub>=0.513151 и <sup>147</sup>Sm/<sup>144</sup>Nd=0.21365. При расчете модельных возрастов по двухстадийной модели [Liew, Hofmann, 1988] среднекоровое значение <sup>147</sup>Sm/<sup>144</sup>Nd отношения принято равным 0.12 [Taylor, McLennan, 1985].

Rb-Sr изотопные исследования проведены по валовым пробам в Аналитическом центре ИГМ СО РАН (Новосибирск, Россия) на масс-спектрометре MI-1201AT Погрешность определения отношений  $^{87}$ Rb/ $^{86}$ Sr не превышает 1 %. Средние значения отношений  $^{87}$ Sr/ $^{86}$ Sr в стандартах составило: VNIIM (0.70800±7, N = 30) и ISG-1 (0.71732±10, N = 30).

| Таблица З. Изотопный Lu-Hf состав циркона (LA-ISP-MS) из плагиогранитоидных массивов южной части Озерной з |              |                                      |            |                                      |                                      |                 |              |           |                          | зерной зон                       |      |  |
|------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------|------------|--------------------------------------|--------------------------------------|-----------------|--------------|-----------|--------------------------|----------------------------------|------|--|
| N₂                                                                                                         | № точки      | Lu-Hf RATION                         |            |                                      | Hf <sub>initial</sub>                | U-Pb<br>возраст | εHf(T)       | ± SE      | Т <sub>DM</sub><br>(млрд | Т <sub>DM</sub> Crustal<br>(млрд |      |  |
|                                                                                                            |              | <sup>176</sup> Hf/ <sup>177</sup> Hf | 1SE        | <sup>176</sup> Lu/ <sup>177</sup> Hf | <sup>176</sup> Yb/ <sup>177</sup> Hf |                 | (млн<br>лет) |           |                          | лет)                             | лет) |  |
| Тугрикский массив                                                                                          |              |                                      |            |                                      |                                      |                 |              |           |                          |                                  |      |  |
| 1                                                                                                          | DM 20 11 1 1 | <u>Диорит-п</u>                      | поналит-пл | агиогранитн                          | ая ассоциация                        | я, ранний ри    | тм, кварц    | евый диор | oum                      | 0.50                             | 0.62 |  |
| 1                                                                                                          | PM-26-11_1_1 | 0,282832                             | 0,000007   | 0,00038                              | 0,0140/1                             | 0,282828        | 539          | 13,5      | 0,3                      | 0,59                             | 0,62 |  |
| 2                                                                                                          | 3_1          | 0,282839                             | 0,000009   | 0,000460                             | 0,016590                             | 0,282834        | 534          | 13,6      | 0,3                      | 0,58                             | 0,61 |  |
| 3                                                                                                          | 4_1          | 0,282837                             | 0,000007   | 0,001035                             | 0,039825                             | 0,282827        | 529          | 13,3      | 0,2                      | 0,59                             | 0,63 |  |
| 4                                                                                                          | 5_1          | 0,282845                             | 0,000007   | 0,001610                             | 0,062214                             | 0,282829        | 525          | 13,3      | 0,2                      | 0,59                             | 0,63 |  |
| 5                                                                                                          | 6_1          | 0,282838                             | 0,000008   | 0,001044                             | 0,041210                             | 0,282828        | 531          | 13,3      | 0,3                      | 0,59                             | 0,63 |  |
| 6                                                                                                          | 9_1          | 0,282833                             | 0,000009   | 0,000950                             | 0,0359                               | 0,282823        | 539          | 13,0      | 0,3                      | 0,59                             | 0,63 |  |
| 7                                                                                                          | 10_1         | 0,282854                             | 0,000006   | 0,001049                             | 0,041742                             | 0,282843        | 536          | 14,0      | 0,2                      | 0,57                             | 0,59 |  |
|                                                                                                            | DM 20 11 1 1 | 0.000000                             | Плагиогра  | нитная ассо                          | оциация, поздн                       | ии ритм, пл     | агиограни    | 1D C      | 0.5                      | 0.00                             | 0.66 |  |
| 8                                                                                                          | PM-38-11_1_1 | 0,282833                             | 0,000014   | 0,001600                             | 0,061967                             | 0,282818        | 512          | 12,6      | 0,5                      | 0,60                             | 0,66 |  |
| 9                                                                                                          | 2_1          | 0,282815                             | 0,000030   | 0,003122                             | 0,150251                             | 0,282785        | 519          | 11,6      | 1,1                      | 0,66                             | 0,73 |  |
| 10                                                                                                         | 3_1          | 0,282844                             | 0,000022   | 0,002671                             | 0,121976                             | 0,282819        | 497          | 12,3      | 0,8                      | 0,61                             | 0,67 |  |
| 11                                                                                                         | 4_1          | 0,282825                             | 0,000009   | 0,002656                             | 0,113615                             | 0,282800        | 495          | 11,6      | 0,3                      | 0,63                             | 0,71 |  |
| 12                                                                                                         | 5_1          | 0,282775                             | 0,000016   | 0,004099                             | 0,185945                             | 0,282737        | 494          | 9,3       | 0,6                      | 0,74                             | 0,86 |  |
| 13                                                                                                         | 6_1          | 0,282813                             | 0,000021   | 0,003435                             | 0,155388                             | 0,282780        | 508          | 11,2      | 0,7                      | 0,67                             | 0,75 |  |
| 14                                                                                                         | 7_1          | 0,282888                             | 0,000023   | 0,003307                             | 0,135621                             | 0,282857        | 504          | 13,8      | 0,8                      | 0,55                             | 0,58 |  |
| 15                                                                                                         | 8_1          | 0,282841                             | 0,000021   | 0,002551                             | 0,110958                             | 0,282817        | 497          | 12,2      | 0,7                      | 0,61                             | 0,67 |  |
| 16                                                                                                         | 4*           | 0,282874                             | 0,000017   | 0,002364                             | 0,097648                             | 0,282851        | 524          | 14,0      | 0,6                      | 0,56                             | 0,58 |  |
| 17                                                                                                         | 6*           | 0,282531                             | 0,000021   | 0,001725                             | 0,076166                             | 0,282513        | 563          | 2,9       | 0,7                      | 1,04                             | 1,32 |  |
| Хатан-Хунгинский массив                                                                                    |              |                                      |            |                                      |                                      |                 |              |           |                          |                                  |      |  |
| 18                                                                                                         | PM-34-13 1 1 | 0,282841                             | 0,000018   | 0,001226                             | 0,048961                             | 0,282829        | 517          | 13,1      | 0,6                      | 0,59                             | 0,63 |  |
| 19                                                                                                         | 10_1         | 0,282879                             | 0,000011   | 0,001505                             | 0,061863                             | 0,282865        | 511          | 14,2      | 0,4                      | 0,54                             | 0,55 |  |
| 20                                                                                                         | 2 1          | 0,282863                             | 0,000010   | 0,001709                             | 0,066046                             | 0,282846        | 527          | 13,9      | 0,4                      | 0,56                             | 0,59 |  |
| 21                                                                                                         | 3 1          | 0,282819                             | 0,000010   | 0,001170                             | 0,044442                             | 0,282807        | 531          | 12,6      | 0,4                      | 0,62                             | 0,67 |  |
| 22                                                                                                         | 6 1          | 0,282825                             | 0,000011   | 0,001988                             | 0,079916                             | 0,282806        | 501          | 11,9      | 0,4                      | 0,62                             | 0,69 |  |
| 23                                                                                                         | 7 1          | 0.282843                             | 0.000011   | 0.001988                             | 0.081029                             | 0.282824        | 511          | 12.8      | 0.4                      | 0.60                             | 0.65 |  |
| 24                                                                                                         | 8 1          | 0.282862                             | 0.000008   | 0.002087                             | 0.086047                             | 0.282841        | 528          | 13.8      | 0.3                      | 0.57                             | 0.60 |  |
| 25                                                                                                         | 9 1          | 0.282853                             | 0.000010   | 0.000682                             | 0.024066                             | 0.282846        | 529          | 14.0      | 0.3                      | 0.56                             | 0.58 |  |
| 26                                                                                                         | 1*           | 0,282678                             | 0,000028   | 0,004673                             | 0,17501                              | 0,282630        | 545          | 6,7       | 1,0                      | 0,90                             | 1,07 |  |
| 27                                                                                                         | 11*          | 0,28268                              | 0,000031   | 0,001048                             | 0,036287                             | 0,282667        | 664          | 10,6      | 1,1                      | 0,81                             | 0,91 |  |
|                                                                                                            |              | ,                                    |            | N                                    | Гассив Манда                         | АЛТ             | 1            | ,         |                          | ,                                | ,    |  |
|                                                                                                            |              | Ди                                   | орит-тона  | лит-плагиог                          | ранитная асс                         | оциация, ква    | прцевый ді   | lopum     |                          |                                  |      |  |
| 28                                                                                                         | PM-25-14_6   | 0,282695                             | 0,000016   | 0,002063                             | 0,081611                             | 0,282676        | 496          | 7,2       | 0,6                      | 0,81                             | 0,99 |  |
| 29                                                                                                         | 9            | 0,282679                             | 0,000014   | 0,002995                             | 0,126419                             | 0,282651        | 495          | 6,3       | 0,5                      | 0,86                             | 1,05 |  |
| 30                                                                                                         | 10           | 0,282649                             | 0,000017   | 0,002386                             | 0,102548                             | 0,282627        | 495          | 5,4       | 0,6                      | 0,89                             | 1,10 |  |
| 31                                                                                                         | 20           | 0,282648                             | 0,000019   | 0,00219                              | 0,086309                             | 0,282628        | 498          | 5,5       | 0,7                      | 0,88                             | 1,10 |  |
| 32                                                                                                         | 29           | 0,282665                             | 0,000015   | 0,002802                             | 0,12001                              | 0,282639        | 489          | 5,7       | 0,5                      | 0,87                             | 1,08 |  |
| 33                                                                                                         | 30           | 0,282667                             | 0,000016   | 0,001653                             | 0,068401                             | 0,282652        | 486          | 6,1       | 0,6                      | 0,84                             | 1,05 |  |
| 34                                                                                                         | 44           | 0,282651                             | 0,000020   | 0,002157                             | 0,088437                             | 0,282631        | 490          | 5,5       | 0,7                      | 0,88                             | 1,10 |  |
| 35                                                                                                         | 47C          | 0,282696                             | 0,000022   | 0,002838                             | 0,110018                             | 0,282670        | 489          | 6,8       | 0,8                      | 0,83                             | 1,01 |  |
| 36                                                                                                         | 7*           | 0,282872                             | 0,000024   | 0,002985                             | 0,105791                             | 0,282843        | 519          | 13,6      | 0,8                      | 0,57                             | 0,60 |  |
| 37                                                                                                         | 14*          | 0,282855                             | 0,000014   | 0,002175                             | 0,084230                             | 0,282833        | 530          | 13,5      | 0,5                      | 0,58                             | 0,61 |  |
| 38                                                                                                         | 28C*         | 0,282869                             | 0,000012   | 0,002276                             | 0,090088                             | 0,282847        | 525          | 13,9      | 0,4                      | 0,56                             | 0,59 |  |
| 39                                                                                                         | 28R*         | 0,282857                             | 0,000010   | 0,001513                             | 0,057713                             | 0,282842        | 520          | 13,6      | 0,4                      | 0,57                             | 0,60 |  |

|          |                     |                                      | Lu-Hf      | RATION                               |                                      |                                 | U-Pb            |        |            | Т <sub>DM</sub> | $\mathbf{T}_{\mathrm{DM}}^{\mathrm{Crustal}}$ |
|----------|---------------------|--------------------------------------|------------|--------------------------------------|--------------------------------------|---------------------------------|-----------------|--------|------------|-----------------|-----------------------------------------------|
| N⁰       | № точки             | <sup>176</sup> Hf/ <sup>177</sup> Hf | 1SE        | <sup>176</sup> Lu/ <sup>177</sup> Hf | <sup>176</sup> Yb/ <sup>177</sup> Hf | Hf <sub>initial</sub>           | возраст<br>(млн | εHf(T) | ± SE       | (млрд<br>лет)   | (млрд<br>лет)                                 |
|          |                     |                                      |            | Баяс                                 | <br>галанский ма                     | ссив                            | лету            |        |            |                 |                                               |
|          | 1                   |                                      | Тоналит-пл | агиогранитн                          | ая ассоциация                        | , ранний риг                    | пм, тоналі      | um     |            | 1               |                                               |
| 40       | PM-31-14_1          | 0,282832                             | 0,000010   | 0,002023                             | 0,081783                             | 0,282812                        | 527             | 12,7   | 0,3        | 0,61            | 0,66                                          |
| 41       | 2                   | 0,282836                             | 0,000011   | 0,002905                             | 0,119927                             | 0,282808                        | 522             | 12,4   | 0,4        | 0,62            | 0,68                                          |
| 42       | 14R                 | 0,282885                             | 0,000011   | 0,001711                             | 0,069563                             | 0,242868                        | 523             | 14,6   | 0,4        | 0,53            | 0,54                                          |
| 43       | 17                  | 0,282856                             | 0,000019   | 0,001553                             | 0,062645                             | 0,282841                        | 523             | 13,6   | 0,7        | 0,57            | 0,60                                          |
| 44       | 20                  | 0,282849                             | 0,000014   | 0,001732                             | 0,063166                             | 0,282832                        | 528             | 13,4   | 0,5        | 0,58            | 0,62                                          |
| 45       | 22                  | 0,282826                             | 0,000009   | 0,001844                             | 0,072787                             | 0,282808                        | 527             | 12,6   | 0,3        | 0,62            | 0,67                                          |
| 46       | 23                  | 0,282879                             | 0,000009   | 0,002081                             | 0,085800                             | 0,282859                        | 522             | 14,2   | 0,3        | 0,54            | 0,56                                          |
| 47       | 24                  | 0,282846                             | 0,000016   | 0,002239                             | 0,088423                             | 0,282824                        | 521             | 13,0   | 0,6        | 0,60            | 0,64                                          |
| 48       | 25R                 | 0,282838                             | 0,000013   | 0,002280                             | 0,090936                             | 0,282816                        | 525             | 12,8   | 0,5        | 0,61            | 0,66                                          |
| 49       | 30C                 | 0,282829                             | 0,000015   | 0,002635                             | 0,103288                             | 0,282803                        | 525             | 12,3   | 0,5        | 0,63            | 0,69                                          |
| 50       | 34                  | 0,282845                             | 0,000010   | 0,002019                             | 0,078544                             | 0,282825                        | 525             | 13,1   | 0,4        | 0,59            | 0,63                                          |
| 51       | 42                  | 0,282878                             | 0,000011   | 0,002346                             | 0,094866                             | 0,282855                        | 528             | 14,2   | 0,4        | 0,55            | 0,57                                          |
| 52       | 48                  | 0,282911                             | 0,000012   | 0,002359                             | 0,095548                             | 0,282888                        | 521             | 15,3   | 0,4        | 0,50            | 0,50                                          |
| 53       | 26C*                | 0,282871                             | 0,000010   | 0,001855                             | 0,071511                             | 0,282852                        | 537             | 14,3   | 0,4        | 0,55            | 0,57                                          |
| 54       | 35C*                | 0,282884                             | 0,000013   | 0,001948                             | 0,080363                             | 0,282864                        | 535             | 14,7   | 0,5        | 0,54            | 0,54                                          |
| 55       | 44*                 | 0,282854                             | 0,000011   | 0,001898                             | 0,073978                             | 0,282835                        | 538             | 13,8   | 0,4        | 0,58            | 0,60                                          |
| 56       | 51*                 | 0,282865                             | 0,000014   | 0,001946                             | 0,078417                             | 0,282845                        | 539             | 14,2   | 0,5        | 0,56            | 0,58                                          |
| 57       | 52*                 | 0,282882                             | 0,000015   | 0,001965                             | 0,080692                             | 0,282862                        | 536             | 14,7   | 0,5        | 0,54            | 0,54                                          |
|          |                     |                                      | Плагиогра  | нитная ассои                         | циация, поздни                       | ій ритм, пло                    | пгиограниг      | n      |            |                 |                                               |
| 58       | PM-28-14_2R         | 0,282874                             | 0,000009   | 0,001743                             | 0,066531                             | 0,282857                        | 520             | 14,1   | 0,3        | 0,55            | 0,57                                          |
| 59       | 3R                  | 0,282851                             | 0,00008    | 0,001882                             | 0,073573                             | 0,282833                        | 523             | 13,3   | 0,3        | 0,58            | 0,62                                          |
| 60       | 4C                  | 0,282865                             | 0,000012   | 0,002035                             | 0,071724                             | 0,282845                        | 515             | 13,7   | 0,4        | 0,56            | 0,60                                          |
| 61       | 5                   | 0,282885                             | 0,000011   | 0,001884                             | 0,071449                             | 0,282866                        | 524             | 14,6   | 0,4        | 0,53            | 0,54                                          |
| 62       | 8C                  | 0,282839                             | 0,000010   | 0,002708                             | 0,105087                             | 0,282813                        | 521             | 12,6   | 0,4        | 0,61            | 0,67                                          |
| 63       | 11C                 | 0,28287                              | 0,000009   | 0,002799                             | 0,111326                             | 0,282843                        | 519             | 13,6   | 0,4        | 0,57            | 0,60                                          |
| 64       | 12C                 | 0,282854                             | 0,000011   | 0,002312                             | 0,089169                             | 0,282831                        | 526             | 13,4   | 0,4        | 0,59            | 0,62                                          |
| 65       | 13C                 | 0,282846                             | 0,000009   | 0,002173                             | 0,084285                             | 0,282825                        | 520             | 13,0   | 0,3        | 0,59            | 0,64                                          |
| 66       | 17                  | 0,282851                             | 0,000010   | 0,002069                             | 0,082588                             | 0,282831                        | 519             | 13,2   | 0,4        | 0,59            | 0,63                                          |
| 67       | 20                  | 0,28287                              | 0,000009   | 0,001730                             | 0,063929                             | 0,282853                        | 525             | 14,1   | 0,4        | 0,55            | 0,57                                          |
| 68       | 21                  | 0,282854                             | 0,000011   | 0,002062                             | 0,077746                             | 0,282834                        | 523             | 13,4   | 0,4        | 0,58            | 0,62                                          |
| 69       | 23C                 | 0,282873                             | 0,000014   | 0,002136                             | 0,087301                             | 0,282852                        | 521             | 14,0   | 0,5        | 0,55            | 0,58                                          |
| 70       | 25                  | 0,282854                             | 0,000010   | 0,002707                             | 0,10281                              | 0,282827                        | 528             | 13,3   | 0,4        | 0,59            | 0,63                                          |
| 71       | 27                  | 0,282873                             | 0,000010   | 0,001494                             | 0,056631                             | 0,282858                        | 526             | 14,3   | 0,4        | 0,54            | 0,56                                          |
| 72       | 34                  | 0,282846                             | 0,000010   | 0,001833                             | 0,070747                             | 0,282828                        | 523             | 13,2   | 0,4        | 0,59            | 0,63                                          |
| 73       | 2C*                 | 0,282837                             | 0,000012   | 0,002762                             | 0,111405                             | 0,282809                        | 535             | 12,8   | 0,4        | 0,62            | 0,66                                          |
| 74       | 4R*                 | 0,282871                             | 0,000011   | 0,001620                             | 0,056146                             | 0,282855                        | 538             | 14,5   | 0,4        | 0,55            | 0,56                                          |
| 75       | 12R*                | 0,282852                             | 0,000009   | 0,002018                             | 0,076985                             | 0,282832                        | 535             | 13,6   | 0,3        | 0,58            | 0,61                                          |
|          |                     |                                      | Π          | Дут                                  | улинский мас                         | СИВ                             |                 |        |            |                 |                                               |
| 76       | PM-62-08 1 1        | 0.282833                             | 0.000011   | 0.003345                             | ая ассоциация<br>0.142074            | , <i>плагиогран</i><br>0.282802 | 488             | 11 5   | 04         | 0.63            | 0.71                                          |
| 77       | 3 1                 | 0.282892                             | 0.000017   | 0.001059                             | 0.037891                             | 0.282882                        | 492             | 14.4   | 04         | 0.51            | 0.53                                          |
| 78       | <u> </u>            | 0.282865                             | 0.000012   | 0.001695                             | 0.066706                             | 0.282849                        | 506             | 13.5   | 0.5        | 0.56            | 0.59                                          |
| 79       | - <u>-</u> -<br>4 2 | 0.282885                             | 0 000014   | 0.001961                             | 0.083739                             | 0 282868                        | 475             | 13.5   | 0,0        | 0.53            | 0.57                                          |
| 80       | <u>-</u><br>5 1     | 0.28286/                             | 0 000010   | 0.007//3                             | 0.108/17/                            | 0.2828/12                       | 487             | 12.9   | 0.4        | 0,55            | 0.62                                          |
| 81       | 5_1<br>6 1          | 0.28286                              | 0 000012   | 0,002440                             | 0.056881                             | 0.282847                        | /0/             | 12,5   | 0,4        | 0.56            | 0,02                                          |
| 82       | 9_1                 | 0 282807                             | 0 000014   | 0,001400                             | 0.055191                             | 0.282865                        | /77             | 1/7    | 0,5<br>N R | 0,50            | 0.53                                          |
| 02<br>Ω2 | J_⊥<br>)*           | 0,20203/                             | 0,000022   | 0,001525                             | 0,055101                             | 0.202003                        | 540             | 120    | 0,0<br>0 / | 0,51            | 0,00                                          |
| 03       |                     | 0,202049<br>*                        | 0,00012    | 0,001340                             |                                      |                                 |                 | 1,0    | 0,4        | 0,00            |                                               |

Примечание: \* — показаны номера точек, где выполнены изотопные измерения по ксеногенным/унаследованным цирконам, остальные — по магматическим цирконам, С – центр, R – край. Hf-изотопные исследования по цирконам (см. рис 7) проведены по тем же локальным точкам, где ранее были выполнены U-Pb изотопные исследования [Руднев и др., 2019].

Изотопный состав Hf в цирконе определялся с использованием лазерного пробоотборника Photon Machines Eximer 193 nm на мультиколлекторном масс-спектрометре Nu Plasma в Аналитическом Центре GEMOC Macquarie University (Sydney Australia). Измерения проводились в гелиевой атмосфере, диаметр пучка лазера 40–65 мкм, частота – 5 Гц, с плотностью энергии лазерного излучения 8.44 мДж/пульс. Процедура коррекции и используемые значения описаны в работах [Griffin et al., 2004; Pearson et al., 2008; Belousova et al., 2009]. Для контроля воспроизводимости результатов и стабильности работы прибора стандартные образцы цирконов TEMORA-II и Mud Tank. Расчет значений «Hf проводился с использованием константы распада <sup>176</sup>Lu из работы [Scherer et al., 2001]. Для расчета модельного возраста  $T_{DM}$  (относительно линии эволюции деплетированной мантии) использовались следующие изотопные отношения: (<sup>176</sup>Hf/<sup>177</sup>Hf)<sub>i</sub> = 0.279718 на 4.56 млрд лет и <sup>176</sup>Lu/<sup>177</sup>Hf = 0.0384). При использовании этих значений современное отношение <sup>176</sup>Hf/<sup>177</sup>Hf составляет 0.28325, что близко к среднему значению для БСОХ [Griffin et al., 2000, 2004]. Модельные возрасты  $T_{DM}$  являются минимальными значениями возраста источника магмы, из которой кристаллизовался циркон. Вследствие этого, для каждого образца циркона также рассчитывали модельные возрасты  $T_{DM}$ <sup>Grust</sup>, при расчете которых предполагается, что магма выплавлялась из средней континентальной коры с изотопным отношением <sup>176</sup>Lu/<sup>177</sup>Hf = 0.015, которая в свою очередь также выплавлялась из деплетированной мантии [Griffin et al., 2000].











Рис. 3



Рис. 5



Рис. 6



Рис. 4