2014. Том 55

Приложение № 2

S237 - S246

УДК 532.74:541.571.9:541.65

СТРОЕНИЕ МОЛЕКУЛЯРНЫХ КОМПЛЕКСОВ, ОБРАЗУЮЩИХСЯ В ВОДНЫХ РАСТВОРАХ ТРИФТОРУКСУСНОЙ КИСЛОТЫ

Е.Г. Тараканова, Г.В. Юхневич

Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия E-mail: egtar@igic.ras.ru

Статья поступила 22 ноября 2013 г.

Методом функционала плотности (B3LYP/6-31++G(d, p)) рассчитаны оптимальные структуры и частоты колебаний Н-связанных комплексов, образованных одной-двумя молекулами CF₃COOH (или ионом CF₃COO⁻) с молекулами воды, а также мономеров и димеров муравьиной, уксусной, трифторуксусной и трибромуксусной кислот. Полученные результаты сопоставлены с известными экспериментальными данными о колебательных спектрах и равновесном составе системы CF₃COOH—H₂O и указанных кислот. Определено строение гидратированных форм молекул CF₃COOH и анионов CF₃COO⁻, присутствующих в водных растворах трифторуксусной кислоты. В диапазоне концентраций 100 % > [CF₃COOH] > 35 % в них образуются циклические тетрамеры (CF₃COOH)₂·(H₂O)₂, в которых молекулы кислоты и воды расположены по две рядом, а, начиная с 75 % CF₃COOH, — циклические дигидраты аниона CF₃COO⁻·(H₂O)₂. Средняя прочность водородных связей в этих гетероассопиатах составляет ~9—10 ккал/моль. а свойства и взаимное расположение входящих в них молекул практически полностью определяют их колебательные спектры в растворе. Показано, что использованный метод расчета позволяет с хорошей точностью воспроизводить ИК и КР спектры находящихся в растворе молекулярных комплексов, имеющих циклическое строение и среднюю энергию Н-связи не менее 7 ккал/моль.

Ключевые слова: раствор CF₃COOH—H₂O, трифторуксусная кислота, строение гидратов трифторуксусной кислоты, ИК спектроскопия, водородная связь.

введение

Изучение строения и свойств карбоновых кислот и их гидратов представляет фундаментальный и практический интерес для целого ряда областей науки, таких как химия (в частности, гомогенный кислотный катализ), физика атмосферы (образование аэрозолей и явление "кислотных дождей"), биохимия (ферментативный катализ) и т.д. [1—28]. Благодаря высокой способности к само- и гетероассоциации карбоновые кислоты являются удобными объектами для исследования водородных связей, молекулярной самоорганизации и переноса протона в газовой фазе [1—6], матрицах [7—10], кристаллах [11—13] и растворах [1, 14—25].

Жидкие карбоновые кислоты (а трибромуксусная кислота и в кристаллической фазе [12, 13, 25]) практически полностью состоят из циклических димеров (C_{2h}) [19, 20] или гетеродимеров (смеси разных кислот) [20], обладающих большой устойчивостью. В газовой фазе, где степень ассоциации карбоновых кислот также очень высока (в парах CH₃COOH при температуре кипения она достигает 50 % [2]), наряду с мономерами наблюдаются только циклические димеры [2, 3]. Превалируют они и в аргоновых матрицах — единственной среде, в которой для

[©] Тараканова Е.Г., Юхневич Г.В., 2014

муравьиной [8] и уксусной [9] кислот обнаружены незначительные количества менее стабильных димеров других конфигураций.

Состав и строение гидратов карбоновых кислот определяются путем сопоставления их вращательных и колебательных спектров с результатами квантово-химических расчетов [4—7, 10, 25—28]. Так, при изучении гидратации муравьиной кислоты [4, 7, 27, 28] в эксперименте удалось обнаружить только самые стабильные циклические гетерокомплексы. В Аг матрицах найдены (методом ИК спектроскопии) ассоциаты молекул НСООН и H₂O состава 1:1 и 1:2 [7], а в газовой фазе (методом микроволновой спектроскопии высокого разрешения) — еще и 2:1 [4]. Самым прочным (средняя энергия H-связи ~5,6—6,6 ккал/моль [4, 28]) является дигидрат муравьиной кислоты — энтальпия присоединения к молекуле HCOOH второй молекулы воды ощутимо (на ~20 и ~30 %) выше, чем соответственно первой и третьей [27]. Сходный результат получен для гидратов пропионовой кислоты CH₃CH₂COOH·H₂O и CH₃CH₂COOH·(H₂O)₂, также обнаруженных методом микроволновой спектроскопии [6]. Оба комплекса имеют циклическое строение, а средняя прочность водородной связи во втором из них на 30 % больше, чем в первом.

Аналогичные исследования взаимодействия молекул CF₃COOH и H₂O показали, что в газовой фазе образуются три циклических гетероассоциата — 1:1, 1:2 и 1:3 [5]. В Ar матрице наряду с ними был обнаружен четвертый ассоциат. По мнению автора [10], он представляет собой циклический тетрагидрат трифторуксусной кислоты. Однако квантово-химический расчет 34 конформеров CF₃COOH · (H₂O)₄ показал, что наиболее устойчивым является один из бициклических комплексов, имеющих форму раскрытой книги [26]. Энергия образования этого конформера на ~0,8 ккал/моль больше, чем циклического.

Гидратацию трибромуксусной [25] и трифторуксусной [16, 18] кислот в растворах и строение образующихся в них частиц изучали методами КР и ИК спектроскопии. Авторы работы [25], сравнив измеренные ими спектры трибромуксусной кислоты и ее водных растворов с рассчитанными (B3LYP/6-311++G(3df,2pd), приближение поляризуемой полости) спектрами мономера CBr₃COOH и аниона CBr₃COO⁻, сделали отнесение полос.

В работе [16] методом КРС установлен равновесный состав системы CF₃COOH—H₂O (100—9,98 % кислоты), являющейся эффективным кислотным катализатором. Показано, что в зависимости от соотношения компонентов в ней присутствуют недиссоциированная кислота, ее гидраты и гидратированные анионы CF₃COO⁻. Определив, что гидрат молекулы CF₃COOH характеризуется стехиометрическим соотношением 1:1, авторы [16] полагали, что он представляет собою комплекс CF₃COOH·H₂O или (CF₃COO⁻·H₃O⁺), а гидрат аниона — CF₃COO⁻·H₂O. (Во время данного исследования не было известно о существовании иона H₅O⁺₂, наличие которого в системе CF₃COOH—H₂O доказали позже [18], поэтому авторы [16] считали, что протоны находятся в растворе в виде ионов H₃O⁺.)

Задача настоящей работы заключалась в определении состава и строения гидратированных форм молекул CF₃COOH и анионов CF₃COO⁻, реализующихся в водных растворах трифторуксусной кислоты. Для ее решения нужно было рассчитать оптимальные структуры H-связанных комплексов разной топологии, образованных одной-двумя молекулами CF₃COOH (или ионом CF₃COO⁻) с молекулами воды, и колебательные спектры наиболее устойчивых из них сопоставить со спектрами системы CF₃COOH—H₂O [16]. Расчет планировали проводить методом функционала плотности в базисе 6-31++G(*d*,*p*), поэтому сначала следовало убедиться в том, что данный базис позволяет достаточно точно воспроизводить частоты комплексов карбоновых кислот в жидкой фазе.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Методом функционала плотности (B3LYP/6-31++G(d,p)) с использованием программы GAUSSIAN 98 [29] были рассчитаны оптимальные структуры, полные энергии (E) и колебательные спектры мономеров и циклических димеров муравьиной, уксусной, трифторуксусной и трибромуксусной кислот. Энергии образования (ΔE) всех димеров, полученные на основании

Таблица 1

Полные энергии (E, ат. ед.) и энергии образования (ΔE , ккал/моль) димеров карбоновых кислот, средние отклонения рассчитанных частот этих димеров от частот колебательных полос в спектрах жидкой (твердой) кислоты (δ , %)

Комплекс	—Е	$\Delta E^{ m skcn}$	$\Delta E^{\rm pacy}$	δ, %
(CF ₃ COOH) ₂	1053,669121	14,1 [11]	15,0	1,18 [16]*
(HCOOH) ₂	379,576421	14,4 [27]	15,8	3,09 [14]*
(CH ₃ COOH) ₂	458,237972	15,3 [11]	16,3	3,85 [15]**
(CBr ₃ COOH) ₂	15884,902527	~16 [11, 19]	19,6	2,84 [12]*
				3,57 [13]**

* Спектр КР.

** Спектр ИК.

результатов расчета, были сопоставлены с соответствующими экспериментальными данными (табл. 1). Видно, что расчет позволил неплохо (с погрешностью ~11%) оценить величину ΔE и правильно передать тенденцию изменения энергии димеризации кислот в ряду CF₃COOH, HCOOH, CH₃COOH и CBr₃COOH. Сравнение вычисленных частот димера каждой кислоты с известными из литературы [11—16, 19, 27] ИК и (или) КР спектрами этой кислоты в жидкой (а в случае CBr₃COOH — в твердой) фазе показало, что средние отклонения рассчитанных значений частот от экспериментальных (δ , %) составляют ~1,2—3,9% (см. табл. 1). Следует отметить, что величина δ зависит не только от погрешности вычислений, но и от качества регистрации спектра, количества анализируемых колебательных частот.

Наиболее показательными для оценки соответствия расчета эксперименту являются спектры, измеренные с высокой точностью и состоящие из большого числа линий. В этом плане особый интерес представляют наборы частот кристаллической 100 %-ой трибромуксусной кислоты, полученные методами КРС [12] и ИК спектроскопии [13]. В настоящем расчете первый из них воспроизведен со средней погрешностью 2,84 %, а второй — 3,57 % (см. табл. 1). При этом в расчете димера (CBr₃COOH)₂ [12], выполненном методом B3LYP в базисе 6-311++G(3*df*,2*pd*), средние отклонения от экспериментальных данных [12] и [13] составили 2,47 и 3,32 % соответственно.

Из приведенных фактов следует, что расчет методом функционала плотности в базисе 6-31++G(d,p) позволяет с хорошей точностью воспроизводить частоты колебаний жидких и твердых карбоновых кислот, состоящих из циклических комплексов с энергиями H-связей \geq 7 ккал/моль. Поэтому данный способ расчета был использован и при установлении строения гидратов молекул CF₃COOH и анионов CF₃COO⁻ (которые, согласно данным [16], образуются в растворе CF₃COOH—H₂O при концентрациях CF₃COOH > 34,77 % и CF₃COOH < 75 % соответственно).

Традиционно квантово-химические исследования гидратации какой-либо частицы в растворе проводятся в приближении поляризуемой полости (приближении PCM (polarizable continuum model)). Это позволяет в какой-то степени моделировать влияние эффектов полярной среды (в данном случае — воды) на строение и свойства частицы (см., например, [25]). Чтобы сравнить точность воспроизведения спектров гидратированных молекулы CF₃COOH и аниона CF₃COO⁻, достигнутую в настоящей работе, с точностью, обеспечиваемой традиционным подходом, были выполнены расчеты этих частиц в приближении PCM. Они проводились методом B3LYP в базисах 6-31++G(d,p) и 6-311++G(2d,2p) по программе GAUSSIAN 09 [30].

Для определения строения исследуемых гидратов были рассчитаны оптимальные конфигурации, полные энергии и колебательные спектры нейтральных и отрицательно заряженных

Таблица 2

Система	-E	ΔE	$\Delta E/n$	r _{O1H}	r _{HO2}	γоно
1	2	3	4	5	6	7
ЦО	76 424125			0.065		
H ₂ U	/6,434135			0,965		
CF ₃ COOH	526,822564	15.05	7.52	0,973	1.((1	170
$(CF_3COOH)_2$	1053,669121	15,05	7,53	1,004	1,001	1/0
$(CF_3COOH)_2 \cdot H_2O^2$	1130,120355	25,77	8,39	1,025	1,530	1/8
				0,995	1,085	109
$(CE COOU)$ $(U O)$ $(I)^{a}$	1206 571007	26 75	0.10	0,982	1,707	170
$(CF_{3}COOH)_{2} \cdot (H_{2}O)_{2} (I)$	1200,371997	30,75	9,19	1,044	1,476	1/9
	1206 571924	26.65	0.16	1.024	1,070	107
$(CF_{3}COOH)_{2} \cdot (H_{2}O)_{2} (II)$	1200,571824	25.21	9,10	1,024	1,339	173
$(CF_{3}COOH)_{2} \cdot (H_{2}O)_{2} (III)^{*}$	1206,369337	35,21	8,80	1,050	1,448	1//
				0,999	1,001	108
				0,979	1,799	176
CE COOLLU O	602 276425	12.27	6 10	0,978	1,813	1/0
$CF_3COOH \cdot H_2O$	005,270425	12,57	0,19	1,000	1,090	100
$CF_3COOH \cdot (H_2O)_2^{*}$	6/9,/30899	25,13	8,38	1,023	1,558	179
$CF_3COOH \cdot (H_2O)_2$ *	6/9,/1//60	16,89	5,63	1,007	1,622	170
	556 101050	25.22	0.02	0,983	1,773	171
$CF_3COOH \cdot (H_2O)_3^{a}$	756,181279	35,32	8,83	1,029	1,526	171
				0,998	1,658	1//
				0,989	1,/16	168
	756 171542	20.21	7.20	0,977	1,841	1/4
$CF_3COOH \cdot (H_2O)_3^\circ$	/56,1/1543	29,21	7,30	1,014	1,608	1/8
				0,989	1,699	159
				0,977	1,887	150
	922 (22551	16.70	7 70*	0,971	2,016	152
$CF_3COOH \cdot (H_2O)_4^{-1}$	832,633551	46,70	/,/8*	1,053	1,457	1/8
				0,992	1,720	100
				0,987	1,/54	109
				0,980	1,//4	104
				0,981	1,830	100
CE COOL (ILO) 8	022 621205	15.22	0.07	0,975	1,972	140
$CF_3COOH \cdot (H_2O)_4^{-1}$	832,031385	45,55	9,07	1,035	1,505	175
				0,999	1,031	173
				0,992	1,700	177
				0,988	1,/38	1/3
CE.COO-	526 201285			0,970	1,040	105
$CE COO^{-} U O^{B}$	602 757671	13.06	6.08	0.087	1 703	175
$CF_{3}CUU \cdot H_{2}U$	670 210000	20.04	10.21	0,907	1,795	174
$(H_2O)_2 (IV)^2$	079,218880	30,94	10,31	0,990	1,/18	1/4
				0,978	1,934	108
				0,974	2,027	138

Полные энергии (E, at. eq.), энергии образования (ΔE , ккал/моль), средние прочности H-связей ($\Delta E/n$, ккал/моль) и параметры водородных мостиков (r_{01H} и r_{HO2} , Å, γ_{OHO} , град.) гидратов молекулы CF₃COOH и гидратов аниона CF₃COO⁻

ЖУРНАЛ	СТРУКТУРНОЙ	ХИМИИ.	2014. T. :	55. ПРИЛО	ЖЕНИЕ № 2
	011 / 101 / 11011				SICESTITE S (= =

	Окончание табл. 2						
1	2	3	4	5	6	7	
$CF_3COO^- \cdot (H_2O)_2 (V)^6$	679,211843	26,52	8,84	0,991	1,745	166	
				0,975	2,060	145	
				0,971	2,153	146	
$CF_3COO^- \cdot (H_2O)_3$	755,673463	43,76	8,75*	0,983	1,820	173	
				0,981	1,812	163	
				0,980	1,793	170	
				0,974	2,040	144	
				0,970	2,231	146	
$CF_3COO^- \cdot (H_2O)_4$	832,128470	56,85	9,48*	1,007	1,652	172	
				0,996	1,821	172	
				0,990	1,770	170	
				0,984	1,870	159	
				0,980	1,760	172	
				0,971	2,010	161	

^а Циклический комплекс.

⁶ Комплекс с разветвленной структурой.

^в Циклический комплекс, в образовании которого участвует атом фтора CF-связи.

^г Бициклический комплекс.

* Значения $\Delta E/n$ для бициклических комплексов, которые можно сравнивать друг с другом, но некорректно сопоставлять с остальными приведенными значениями $\Delta E/n$.

комплексов, содержащих молекулы CF₃COOH, H₂O и анион CF₃COO⁻. Их основные энергетические и структурные характеристики представлены в табл. 2. Здесь же приведены средние прочности H-связей — $\Delta E/n$ (n — число H-связей), позволяющие при сравнении циклических и разветвленных (но не "ячеистых", например, бициклических) комплексов разного состава и топологии оценивать их относительную стабильность.

Из данных табл. 2 видно, что самыми устойчивыми ($\Delta E/n = 9,2$ ккал/моль) среди десяти простейших по составу гидратов молекул трифторуксусной кислоты являются циклические гетероассоциаты (CF₃COOH)₂·(H₂O)₂. В одном из них (см. табл. 2, I) молекулы кислоты и воды расположены по две рядом, а в другом (см. табл. 2, II) — через одну. В третьем конформере состава 2:2 (см. табл. 2, III), представляющем собой циклический гетеротример, сольватированный молекулой воды, значение $\Delta E/n$ на ~0,4 ккал/моль ниже. На примере бициклического (типа "раскрытая книга") и циклического конформеров CF₃COOH·(H₂O)₄ можно убедиться в том, что полученные результаты неплохо согласуются с данными расчета [26]: энергия образования первого из них на ~1,4 ккал/моль больше, чем второго.

Самым стабильным из отрицательно заряженных комплексов оказался циклический дигидрат аниона $CF_3COO^- (H_2O)_2$, в котором каждый из атомов кислорода группы COO^- взаимодействует с одной из "димеризованных" молекул воды (см. табл. 2, IV). Средняя прочность H-связей в нем больше, чем во всех остальных (нейтральных и заряженных) комплексах (см. табл. 2). В энергетически менее выгодном гидрате того же состава (см. табл. 2, V) один из атомов кислорода иона CF_3COO^- взаимодействует одновременно с обеими "димеризованными" молекулами воды. Следует отметить, что энергии присоединения второй молекулы воды к молекуле CF_3COOH и к аниону CF_3COO^- заметно превышают энергии присоединения остальных молекул H_2O (рис. 1). Этот результат согласуется с аналогичными данными, полученными для молекулы муравьиной кислоты в работе [27].

Рис. 1. Зависимость энергии последовательного присоединения молекул воды к аниону СF₃COO⁻ (1) и к молекуле CF₃COOH (2) от числа молекул H₂O

Рис. 2. Зависимость между рассчитанными значениями длин связей в мостиках О—Н…О: результаты, полученные для нейтральных (1), для отрицательно заряженных молекулярных комплексов (2), теоретическая кривая [31], описывающая результаты нейтронографических измерений (3)

Анализ оптимальных структур рассматриваемых гетероассоциатов показал, что их водородные мостики, как правило, близки к линейным (см. табл. 2). Существенного — больше, чем на 0,07 Å — удлинения ковалентных связей при образовании этих мостиков не происходит. Соотношения между длинами связей ОН и Н…О во всех мостиках ложатся на описывающую результаты нейтронографических измерений 460 фрагментов ОНО (с углами 170—180°) кривую [31] с погрешностью < 0,03 Å (рис. 2). Это говорит о корректности воспроизведения расчетом межатомных расстояний в исследуемых системах.

В качестве экспериментальных были выбраны спектры КР растворов CF₃COOH— H_2O , содержащих по данным [16] наибольшее количество гидратов молекул CF₃COOH (85 % кислоты) и гидратов анионов CF₃COO⁻ (35 % кислоты). Наряду с ними — для иллюстрации характера и масштаба концентрационных изменений спектров — в табл. 3 приведены также частоты колебаний 100 %-ой трифторуксусной кислоты (а заодно — и соответствующие данные расчета).

Прежде чем перейти к сопоставлению рассчитанных спектров комплексов разной топологии с экспериментом, следует отметить, что в работе [16] определены частоты максимумов шести линий в спектрах КР системы CF₃COOH—H₂O, наблюдаемых во всем исследованном диапазоне концентраций (100—9,98 %). При высоком содержании кислоты они отвечают колебаниям молекулярной формы CF₃COOH, а при низком — колебаниям иона CF₃COOH⁻. Частоты трех из этих колебаний — 260, 436 и 813 см⁻¹ — остаются неизменными при всех соотношениях компонентов раствора. Это значит, что формы данных колебаний в молекулах и анионах, входящих и невходящих в состав различных комплексов, должны быть одинаковыми или очень близкими (что полностью согласуется с результатами расчета: 260 см⁻¹ — α_{CCF}^{as-} , 436 см⁻¹ — α_{CCF}^{s} , 813 см⁻¹ — v_{CC}).

Наличие трех не зависящих от строения комплекса частот осложняет поиск структуры гидратов, поэтому в рассмотрение была включена только одна из указанных частот — 813 см⁻¹. Это, на наш взгляд, позволило сделать оптимальным (для данной конкретной ситуации) набор сравниваемых величин (см. табл. 3). Наряду с основным, характеризующим погрешность расчета параметром δ , были проанализированы центры тяжести частот (M_1 , см⁻¹) четырех исследуемых колебаний (их формы приведены в табл. 3), величины частотных интервалов (Δ , см⁻¹), в которых лежат полосы этих колебаний, и взаимное расположение полос — расстояние между парами соседних частот, выраженное в долях от величины Δ (($v_j - v_i$)/ Δ). Последний параметр удобно оценивать, вычислив среднее отклонение расчетных значений ($v_i - v_i$)/ Δ от эксперимен-

Таблица З

Колебательные частоты систем, средние отклонения рассчитанных частот колебаний комплексов
от измеренных частот колебательных полос в спектрах растворов $ m CF_3COOH-H_2O$ (б, %),
параметры, характеризующие взаимное расположение частот в частотном интервале (Δ , см $^{-1}$):
$(v_j - v_i)/\Delta$, среднее отклонение расчетных значений $(v_j - v_i)/\Delta$ от экспериментальных (σ),
центры тяжести частот $(M_1, \operatorname{cm}^{-1})$

Система	ν_{CC}	$\nu_{CF}^{as^{\perp}}$	α_{COH}	$v_{C=0}$	δ	Δ	$(\nu_{CF}^{as^{\perp}}-\nu_{CC})\!/\!\Delta$	$(\alpha_{COH}-\nu_{CF}^{as^{\perp}})/\Delta$	$(\nu_{C=O}-\alpha_{COH})/\Delta$	σ	M_1
CF₃COOH $(100\%)^{a}$ (1:0) ⁶	813	1174	1445	1763	_	950	0.38	0.29	0.33		1299
CF ₃ COOH	787	1167	1412	1865	2.97	1078	0.35	0.23	0.42	0.06	1308
(CF ₃ COOH) ₂	809	1173	1501	1758	1.18	949	0.38	0.35	0.27	0.02	1310
$CF_{3}COOH (85\%)^{a}$ (1:1) ⁶	813	1174	1434	1752	—	939	0.38	0.28	0.34	—	1293
CF ₃ COOH (aq) ^B	787	1138	1420	1833	2.97	1046	0.34	0.27	0.39	0.033	1295
CF ₃ COOH (aq) ^r	789	1130	1418	1820	2.92	1031	0.33	0.28	0.39	0.033	1289
$CF_3COOH \cdot H_2O$	809	1164	1490	1823	2.33	1014	0.35	0.32	0.33	0.027	1322
$CF_3COOH \cdot 2H_2O$	815	1165	1520	1802	2.47	987	0.35	0.36	0.29	0.053	1326
$CF_3COOH \cdot 3H_2O$	815	1165	1504	1803	2.23	988	0.36	0.34	0.30	0.04	1322
$CF_3COOH \cdot 4H_2O$	829	1162	1421	1766	1.17	937	0.35	0.28	0.37	0.02	1295
2CF ₃ COOH·H ₂ O	825	1169	1470	1783	1.55	958	0.36	0.31	0.33	0.02	1312
2CF ₃ COOH · 2H ₂ O (I)	805	1164	1426	1769	0.84	964	0.37	0.27	0.36	0.013	1291
2CF ₃ COOH · 2H ₂ O (II)	821	1169	1387	1786	1.66	965	0.36	0.23	0.41	0.05	1291
Система	ν_{CC}	ν_{CF}^{s}	$\nu^{s}_{C=O}$	$\nu^{as}_{C=O}$	δ	Δ	$(\nu_{CF}^{s}-\nu_{CC})\!/\!\Delta$	$(\nu^{s}_{C=O} - \nu^{s}_{CF})/\Delta$	$(\nu_{C=O}^{as} - \nu_{C=O}^{s})/\Delta$	σ	M_1
CF ₃ COOH (35%) ^a (1:11.8) ⁶	813	1189	1425	1722	_	909	0.41	0.26	0.33	_	1287
CF_3COO^-	786	1182	1363	1762	2.65	976	0.40	0.19	0.41	0.053	1273
CF ₃ COO ⁻ (aq) ^B	797	1183	1400	1701	1.36	904	0.43	0.24	0.33	0.013	1270
CF ₃ COO ⁻ (aq) ^r	802	1177	1389	1676	2.27	874	0.43	0.24	0.33	0.013	1261
$CF_3COO^- \cdot H_2O$	799	1187	1377	1765	1.94	966	0.40	0.20	0.40	0.047	1282
$(2H_2O\cdots OOCCF_3)^-$ (III)	801	1197	1405	1746	1.24	945	0.42	0.22	0.36	0.027	1287
$(3H_2O\cdots OOCCF_3)^-$	707	1198	1412	1738	3.91	1031	0.48	0.21	0.31	0.047	1264
$(4H_2O\cdots OOCCF_3)^-$	710	1199	1412	1737	3.82	1027	0.48	0.21	0.31	0.047	1265

^а Данные работы [16].

⁶ Мольное соотношение компонентов раствора.

^в Расчет с базисом 6-31++G(*d*,*p*) в приближении РСМ.

^г Расчет с базисом 6-311++G(2d,2p) в приближении РСМ.

тальных (σ). Совместный анализ этих по сути независимых характеристик спектра существенно повышает достоверность выводов о структуре прочных молекулярных комплексов, образующихся в растворе (см., например, [32, 33]).

С результатами измерений сравнивали спектры самых стабильных комплексов из каждого ряда конформеров, так как только такие комплексы могут образовываться в растворах в большом количестве (см. [32, 33]). Для гидратов, содержащих две молекулы кислоты, в табл. 3 приведены частоты наиболее интенсивных в спектре КР колебаний каждой формы.

В табл. 3 также представлены частоты колебаний молекулы CF_3COO^- , рассчитанные в приближении поляризуемой полости. Видно, что в случае гидратации молеку-

лы кислоты такой расчет воспроизводит экспериментальные частоты хуже, чем любой из расчетов конкретной молекулярной структуры. При этом нельзя сказать, что данные, полученные с использованием базиса 6-311++G(2*d*,2*p*), лучше согласуются с результатами измерений, чем данные, полученные с применением базиса 6-31++G(*d*,*p*). Так, значения δ и σ в расчетах с обоими базисами практически одинаковы, а значения Δ и M_1 в расчете с меньшим базисом воспроизведены более адекватно.

Результаты моделирования гидратации аниона CF_3COO^- с учетом поляризующего действия среды в целом оказались ближе к эксперименту, чем аналогичные результаты для молекулы. Различие между двумя базисами в этом случае проявилось существенно ярче, причем тоже — в пользу базиса 6-31++G(*d*,*p*): рассчитанные с его применением значения δ , Δ и M_1 лучше описывают данные измерений.

Из спектров семи простейших гидратов молекулы CF₃COOH точнее всего воспроизводит эксперимент спектр гетеротетрамера I. Характеризующие его параметры Δ и M_1 близки к измеренным, а δ и σ — значительно меньше (в $\geq 1,5$ раза) соответствующих величин, полученных для остальных шести комплексов (см. табл. 3). Объяснением того, почему из двух одинаково стабильных конформеров — I и II — в растворе реализуется именно первый, может служить условная схема их образования в водном растворе трифторуксусной кислоты (рис. 3). (Оценка приведенных на ней прочностей H-связей выполнена в предположении, что полная энергия комплекса может быть представлена как сумма энергий отдельных его фрагментов и энергий связей между ними.) Из схемы видно, что образование из тримера (CF₃COOH)₂·H₂O и молекулы H₂O тетрамера I (требующее разрыва связи прочностью ~6,8 ккал/моль) намного предпочтительнее образования тетрамера II (требующего разрыва связи прочностью ~10,8 ккал/моль).

Таким образом, на основании всех данных, относящихся к гидратации молекулы CF₃COOH (см. табл. 2 и 3, рис. 3), можно заключить, что простейшим устойчивым гидратом этой молекулы в растворе CF₃COOH—H₂O является гетеротетрамер I, структура которого приведена на рис. 4, *а*. Следует подчеркнуть, что при получении этого заключения нигде не использовался тот экспериментальный факт (см. [16]), что стехиометрическое соотношение молекул в гидрате молекулы CF₃COOH составляет 1:1. Так что совпадение стехиометрических соотношений, полученных в настоящем исследовании и в работе [16], служит еще одним доводом в пользу правильности сделанного вывода.

Анализ рассчитанных спектров четырех гидратов аниона CF_3COO^- показывает, что эксперименту в наибольшей степени соответствует спектр самого устойчивого из них — CF_3COO^- . $(H_2O)_2$ (IV). Отвечающие этому спектру значения δ и σ более чем в 1,5 раза ниже, чем в остальных случаях, Δ — ближе всего к данным измерений, а M_1 точно совпадает с экспериментом (см. табл. 3). В итоге из результатов проведенного расчета и сравнения их с зарегистрированным в работе [16] спектром следует (см. табл. 2 и 3), что взаимодействие аниона CF_3COO^- с молекулами воды в растворе CF_3COOH — H_2O приводит к образованию очень стабильного циклического дигидрата этого аниона (см. рис. 4, δ).

Рис. 3. Схема образования гетероассоциата (СF₃COOH)₂ · (H₂O)₂ (I) в водном растворе трифторуксусной кислоты

Рис. 4. Молекулярное строение гидрата молекулы $CF_3COOH(a)$ и гидрата аниона $CF_3COO^-(\delta)$ в водном растворе трифторуксусной кислоты

Таким образом, на примере гидратов молекулы и аниона трифторуксусной кислоты показано, что строение образующихся в растворе стабильных Н-связанных циклических комплексов может быть установлено с помощью квантово-химического расчета изолированных молекулярных систем разного состава и топологии и сопоставления их спектров со спектром раствора. (Ранее такое же заключение было сделано на основании серии исследований гетероассоциатов, присутствующих в растворах HF—органический растворитель (см., например, [32, 33]). Отсюда, в свою очередь, следует, что свойства и взаимное расположение молекул, входящих в такие комплексы, практически полностью определяют их колебательные спектры в растворе.

выводы

Определено строение гидратированных форм молекул CF₃COOH и ионов CF₃COO⁻, присутствующих в растворе CF₃COOH—H₂O. В диапазоне концентраций 100 % > [CF₃COOH] > > 35 % в них образуются циклические тетрамеры (CF₃COOH)₂·(H₂O)₂, в которых молекулы кислоты и воды расположены по две рядом, а, начиная с 75 % CF₃COOH, — циклические дигидраты аниона CF₃COO⁻·(H₂O)₂.

Средняя прочность водородных связей в этих гетероассоциатах составляет ~9— 10 ккал/моль, а свойства и взаимное расположение входящих в них молекул практически полностью определяют их колебательные спектры в растворе.

Расчет методом функционала плотности в базисе 6-31++G(d,p) позволяет с хорошей точностью воспроизводить ИК и КР спектры молекулярных комплексов, имеющих циклическое строение и среднюю энергию водородной связи, превышающую 7 ккал/моль.

Авторы выражают глубокую благодарность д.х.н. Л.П. Сафоновой за полезную консультацию и к.х.н. М.А. Крестьянинову — за проведение расчетов в приближении PCM по программе GAUSSIAN-09.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 11-03-00235).

СПИСОК ЛИТЕРАТУРЫ

- 1. Fuson N., Joisen M.-L., Jones E.A., Lawson J.R. // J. Chem. Phys. 1952. 20, N 10. P. 1627.
- 2. Frurip D.J., Curtiss L.A., Blander M. // J. Amer. Chem. Soc. 1980. 102, № 8. P. 2610.
- 3. Marechal Y. // J. Chem. Phys. 1987. 87, N 11. P. 6344.
- 4. Priem D., Ha T.-K., Bauder A. // J. Chem. Phys. 2000. 113, N 1. P. 169.
- 5. Ouyang B., Starkey T.G., Howard B.J. // J. Phys. Chem. A. 2007. 111, N 28. P. 6165.
- 6. Ouyang B., Howard B.J. // J. Phys. Chem. A. 2008. 112, N 36. P. 8208.
- 7. George L., Sander W. // Spectrochim. Acta A. 2004. 60, N 13. P. 3225.
- 8. Olbert-Majkut A., Ahokas J., Lundell J., Pettersson M. // Chem. Phys. Lett. 2009. 468, N 4. P. 176.
- 9. Olbert-Majkut A., Ahokas J., Lundell J., Pettersson M. // J. Raman Spectrosc. 2011. 42, N 8. P. 1670.
- 10. Ito F. // Chem. Phys. 2011. 382, N 1. P. 52.
- 11. Lassegues J.C., White J.W. Molecular Motions in Liquids / Ed. J. Lascombe. Dordrecht-Holland: D. Reidel Publishing Company, 1974. P. 439 459.
- 12. Rudolph W.W., Irmer G. // Spectrochim. Acta A. 2012. 90, N 1. P. 165.
- 13. Marques F., Suero M.I., Otero J.C., Marcos J.I. // Spectrosc. Lett. 1992. 25, N 6. P. 821.
- 14. Свердлов Л.М., Ковнер М.А., Крайнов Е.П. Колебательные спектры многоатомных молекул. М.: Наука, 1970.
- 15. Max J.-J., Chapados C. // J. Phys. Chem. A. 2004. 108, N 16. P. 3324.
- 16. Зарахани Н.Г., Лобанова Л.А., Воробьева Н.П. // Журн. физ. химии. 1971. 45, № 6. С. 1488.
- 17. Перелыгин И.С., Афанасьева А.М. // Журн. структур. химии. 1973. 14, № 6. С. 1033.
- 18. Майоров В.Д., Либрович Н.Б., Винник М.И. // Журн. физ. химии. 1979. 53, № 4. С. 1036.
- 19. Денисов Г.С., Смолянский А.Л., Шейх-Заде М.И. // Журн. прикладн. спектроск. 1981. **34**, № 3. С. 470.
- 20. Голубев Н.С., Денисов Г.С. // Журн. прикладн. спектроск. 1982. 37, № 1. С. 265.
- 21. Майоров В.Д., Кислина И.С., Волошенко Г.И., Либрович Н.Б. // Изв. АН. Сер. хим. 2000. № 9. С. 1537.

- 22. Майоров В.Д., Кислина И.С., Волошенко Г.И., Либрович Н.Б. // Хим. физика. 2007. 26, № 5. С. 62.
- Бурейко С.Ф., Голубев Н.С., Денисов Г.С., Кучеров С.Ю., Толстой П.М. // Журн. общей химии. - 2005. - 75, № 11. - С. 1907.
- 24. Скреплева И.Ю., Волошенко Г.И., Либрович Н.Б., Майоров В.Д., Вишнецкая М.В., Мельников М.Я. // Вестн. Моск. ун-та. Сер. хим. – 2011. – **52**, № 4. – С. 281.
- 25. Rudolph W.W., Irmer G. // Spectrochim. Acta A. 2011. 79, N 7. P. 1483.
- 26. Ito F. // Comput. Theor. Chem. 2013. 1016. P. 48.
- 27. Wei D., Truchon J.-F., Sirois S., Salahub D. // J. Chem. Phys. 2000. 116, N 14. P. 6028.
- 28. Aloisio S., Hintze P.E., Vaida V. // J. Phys. Chem. A. 2002. 106, N 2. P. 363.
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Zakrzewski V.G., Montgomery J.A., Stratmann R.E., Burant J.C., Dapprich S., Millam J.M., Daniels A.D., Kudin K.N., Strain M.C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G.A., Ayala P.Y.,Cui Q., Morokuma K., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Cioslowski J., Ortiz J.V., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R.L., Fox D.J., Keith M.A., Al-Laham A., Peng C.Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P.M.W., Johnson B.G., Chen W., Wong M.W., Andres J.L., Head-Gordon M., Replogle E.S., Pople J.A. GAUSSIAN 98 (Revision A.1) / Gaussian, Inc., Pittsburgh PA, 1998.
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. GAUSSIAN 09 (Revision A.02) / Gaussian, Inc., Wallingford CT, 2009.
- 31. Юхневич Г.В. // Кристаллография. 2010. 55, № 3. С. 412.
- 32. Тараканова Е.Г., Юхневич Г.В. // Журн. структур. химии. 2008. 49, № 4. С. 707.
- 33. Тараканова Е.Г., Юхневич Г.В. // Изв. АН. Сер. хим. 2011. № 1. С. 79.