УДК 551.243 + 550.349

О ВЛИЯНИИ ЗОН РАЗЛОМОВ НА ГРАВИТАЦИОННЫЕ ЯВЛЕНИЯ ПРИ ЗЕМЛЕТРЯСЕНИЯХ УМЕРЕННОЙ СИЛЫ

О.В. Лунина, Я.Б. Радзиминович, А.С. Гладков

Институт земной коры СО РАН, 664033, Иркутск, ул. Лермонтова, 128, Россия

Представлены результаты обследования скального обвала, обнаруженного в левом борту р. Верхняя Ангара, в 25 км от северо-западного портала Северомуйского тоннеля Байкало-Амурской железнодорожной магистрали. На основе геолого-структурных данных оценена тектоническая позиция обвала и его связь с конкретным землетрясением умеренной силы. Показана возможность возникновения подобных явлений при малой интенсивности сотрясений и благоприятном для прохождения сейсмических волн расположении разломов.

Скальный обвал, разломы, землетрясение, интенсивность сотрясений.

GRAVITY EFFECTS CAUSED BY MODERATE EARTHQUAKES: ROLE OF LOCAL FAULT PATTERN

O.V. Lunina, Ya.B. Radziminovich, and A.S. Gladkov

A rockfall was found on the left bank of the Upper Angara River, 25 km away from the northwestern doorway of the North Muya tunnel in the Baikal-Amur Railway. We investigate the tectonic position of the rockfall and its relation to a moderate event from structural data and show that low-intensity earthquakes can produce notable gravity effects if the local fault pattern is favorable for passage of seismic waves.

Rockfall, fault, earthquake, intensity

ВВЕЛЕНИЕ

Для достоверной диагностики гравитационных явлений, связанных с землетрясениями умеренной интенсивности, необходимы систематические наблюдения за геодинамическим состоянием специально выбранных для этого территорий [Агафонов, 2002]. Однако подобный мониторинг в силу разных причин не всегда удается проводить в сейсмоактивных регионах. Тем не менее информация о гравитационных явлениях, вызванных сейсмическим воздействием, которые особенно усиливаются в зонах активных разломов, является важной для широкого круга специалистов, занимающихся как проблемами денудации горных склонов, так и оценкой сейсмической опасности [Esposito et al., 1997; Nikonov, Sergeev, 1999]. В настоящей работе мы представляем результаты обследования скального обвала, связанного, по-видимому, с землетрясением энергетического класса $K_P = 11.9$, которое имело место в Становом нагорье между Верхнеангарской и Муяканской впадинами на северо-восточном фланге Байкальской рифтовой зоны (БР3). Обвал был обнаружен случайно 19 августа 2004 г. при полевых структурно-геологических и тектонофизических исследованиях.

МЕСТОПОЛОЖЕНИЕ ОБВАЛА И ЕГО ХАРАКТЕРИСТИКА

Обвал расположен в пункте с координатами 56.311° с.ш. и 112.948° в.д. (левый борт р. Верхняя Ангара), в 25 км от северо-западного портала Северомуйского тоннеля Байкало-Амурской железнодорожной магистрали (рис. 1). Коренной выход, в котором документировались тектонические нарушения, расположен на высоте примерно 80—100 м над днищем долины в склоне небольшого водораздела между р. Верхняя Ангара и левым безымянным притоком р. Ангаракан. Склон состоит из трех крупных сбросовых уступов и прорезается узкой зигзагообразной долинкой — расщелиной шириной 5—7 м, по которой спускается временный водоток — водопад. Подошва склона проходит по горизонтали 640 м, вершина достигает абсолютной отметки около 1900 м. Первый снизу уступ сложен светло-серыми гнейсами с многочисленными жилами кварца и подчеркивается зоной рассланцевания и трещиноватости видимой мощностью не менее 5 м и азимутом падения 320 ∠ 35—40°. Зона представляет собой один из сместителей Верхнеангарского разлома, который ограничивает юго-восточный борт одноименной впадины и трассируется вплоть до истока р. Верхняя Ангара. Непосредственно на месте документации коренного выхода следов недавнего обвала не наблюдалось.

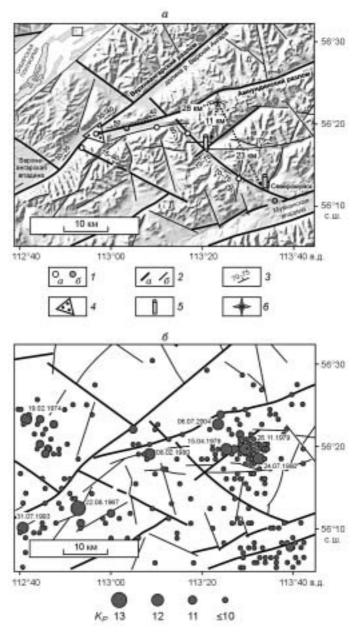

Обвал начинается в \sim 15 м ниже стенки коренного выхода на одной из частных ступеней склона и протягивается в виде шлейфа к днищу долины (рис. 2). Основное тело обвала имеет ширину \sim 30 м, длину \sim 350 м. В долине он приобретает форму конуса, ширина которого в нижней части \sim 100 м. Размер

Рис. 1. a — местоположение обвала и эпицентра землетрясения 6 июля 2004 г. с $K_p = 11.9$ на схеме разломно-блокового строения участка исследований (составлена по материалам авторов); δ — схема распределения землетрясений с энергетическим классом $K_p \geq 9$ за период с 1960 по 2004 г. Даты приведены для событий с $K_p \geq 12$.

Пунктиром со стрелками и цифрами указаны лучи и расстояния от эпицентра землетрясения до обвала и порталов Северомуйского тоннеля. В левом верхнем углу на врезке прямоугольником показан участок исследований в прелелах северо-восточного фланга БРЗ.

1 — точки наблюдения в коренных породах (a) и рыхлых отложениях (δ) ; 2 — разломы: региональные (a) и локальные (δ) ; 3 — направление и угол падения сместителей разломов; 4 — местоположение обвала; 5 — порталы Северомуйского тоннеля; δ — эпицентр землетрясения $06\ 07\ 2004\ r$

перемещенных блоков достигает 1.5 м в поперечнике. Принимая во внимание указанные параметры, можно оценить объем обрушившейся горной породы (V) не менее чем в 15 750 м³. При движении обвальная масса повалила деревья с зеленой, распустившейся в полную силу листвой. Размеры некоторых из них в высоту более 7 м, в диаметре — 0.15— 0.2 м. Единичные деревья оказались срубленными летящими обломками скальных пород на высоте 2.5—3 м. За пределами площади обвала растительность имеет обычный вид. Отсутствие следов обвала вблизи коренного выхода свидетельствует о том, что обломочный материал был принесен с высоты более чем 80—100 м над днищем долины и перемещался с большой скоростью вниз по склону, пересекая значительные расстояния по воздуху. Такое перебрасывание блоков горных пород возникает в случаях, когда пиковые ускорения мгновенно превышают ускорение силы тяжести [Никонов, 1995]. К сожалению,

мы не имели возможности наблюдать трещины, по которым произошел отрыв и обрушение блоков скальных пород. Судя по фотографиям водораздела, стенки срыва расположены в правом борту долинки с водопадом и имеют более крутые углы падения, чем основной сместитель Верхнеангарского разлома (см. рис. 2), т. е. не менее 35—40°. Исходя из размеров и предполагаемого места срыва обвала, общую дальность его перемещения можно оценить примерно в 500 м. Вероятно, ранее здесь также происходили подобные деформации, которые осуществляют основную работу по денудации склона и развитию долинки с временным водотоком. Поскольку исследования в данном месте проводились в середине августа 2004 г., было сделано предположение о сейсмогравитационной природе описываемого обвала — от землетрясения, которое могло иметь место летом этого же года, когда листва на деревьях полностью распустилась. На его сейсмогенное происхождение указывают и критерии, описанные в работе [Nikonov, Sergeev, 1999]. Немаловажно также отметить, что тот летний сезон на северо-восточном фланге БРЗ был довольно засушливым.

ЗЕМЛЕТРЯСЕНИЕ 6 ИЮЛЯ 2004 г. И ТЕКТОНИЧЕСКАЯ ПОЗИЦИЯ ОБВАЛА

Действительно, по данным оперативного каталога Байкальского филиала Геофизической службы СО РАН (http://seis-bykl.ru), 6 июля 2004 г. в точке с координатами 56.38° с.ш. и 113.39° в.д. было зарегистрировано землетрясение с $K_P = 11.9$. Точность определения его эпицентра является стандартной для

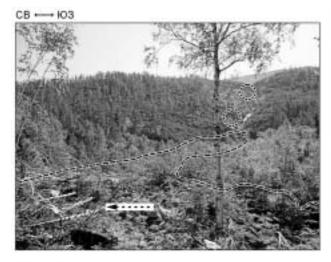


Рис. 2. Проявления обвала.

Штриховой линией оконтурен конус выноса обвала, стрелками показаны поваленные и срубленные деревья, кружками на верхнем снимке — места предполагаемой стенки срыва обвальной массы.

Байкальского региона и составляет 1—3 км. Подобных и более сильных событий в пределах участка исследований не было с 1993 г. (см. рис. 1). В северо-западном портале Северомуйского тоннеля интенсивность сотрясений 06.07.2004 г. составила 5—6 баллов, в г. Северомуйск — 4—5 баллов. Расстояние от эпицентра землетрясения до северо-западного портала по прямой равно 11 км, до юго-восточного — 23 км, до обследованного обвала — 28 км (см. рис. 1).

Приблизительная интенсивность сотрясений в месте обвала может быть рассчитана с помощью уравнения макросейсмического поля, которое, с учетом региональных коэффициентов для территории Прибайкалья, имеет следующий вид [Новый каталог..., 1977]:

$$I = 1.5M - 4 \lg \sqrt{\Delta^2 + H^2 + 4}, \tag{1}$$

где I — интенсивность сотрясений, M — магнитуда M_{LH} землетрясения, Δ — эпицентральное расстояние, H — глубина гипоцентра.

Уравнение (1) требует использования магнитуды M_{LH} , поэтому ее значение было пересчитано из энергетического класса K_P с использованием соотношения [Rautian, Leith, 2002]:

$$M_{LH} = (K_P - 4)/1.8. (2)$$

В результате получено значение M_{LH} , равное 4.4. Поскольку глубина очага ни местными, ни удаленными станциями не была определена с достаточной точностью, мы приняли ее равной 15 км, что соответствует среднему значению для Байкальского региона [Гилева и др., 2000].

Исходя из всех имеющихся данных и используя уравнение (1), мы получили расчетное значение I в месте обвала, равное 4.6 балла, или же в общепринятой форме 4—5 баллов. Сотрясения такой интенсивности, согласно новейшим разработкам в области сейсмических шкал [European Macroseismic Scale..., 1998; Шерман и др., 2003; The INQUA scale, 2004], могут вызвать (при очень благоприятных условиях) небольшие срывы камней или незначительные оползни в горных районах. Рассматриваемый же в нашем

случае обвал представляет собой достаточно масштабное явление, соответствующее по формальным признакам интенсивности сотрясений не менее 6 баллов, а согласно корреляционным зависимостям между объемом обрушившейся горной породы V и I по шкале MSK-64 — не менее 7 баллов [Nikonov, Sergeev, 1999]. Таким образом, на первый взгляд мы видим несоответствие расчетных данных и значения I, необходимого для возникновения охарактеризованного обвала, что, в свою очередь, ставит под сомнение его связь с землетрясением 06.07.2004 г. Тем не менее имеется немаловажное обстоятельство, которое позволяет связать эти два явления.

Тектоническая позиция обвала такова, что он произошел в узле пересечения двух региональных разломов — Верхнеангарского и Амнундинского (см. рис. 1). Линия, соединяющая эпицентр землетрясения и место, где произошло обрушение массива горных пород, совпадает с основным сместителем Амнундинского разлома. В работе [Солоненко и др., 1985] было отмечено, что наибольшие амплитуды волн проявляются, когда сейсмические колебания распространяются вдоль тектонических структур, наименьшие — при пересечении крупных разрывных нарушений. По инструментальным данным в исследуемом районе известно, что при пересечении Муяканского разлома максимальные амплитуды смещения затухают в 2.4, а при пересечении Перевального — в 1.7 раза [Голенецкий и др., 1985]. Это вызвано отражением упругих волн от контактных поверхностей сред с различными скоростями их распространения. Сейсмические колебания по направлению к г. Северомуйск во время землетрясения 06.07.2004 г. проходили почти под прямым углом к основным региональным разломам и произвели в городе сотрясения интенсивностью 4—5 балла. Положение, высказанное В.П. Солоненко с соавторами [1985], позволяет достаточно уверенно предполагать, что в 28 км от эпицентра, в месте обвала, могла наблюдаться интенсивность сотрясений, сопоставимая с таковой в эпицентральной зоне (не менее 6 баллов). Прохождение сейсмической волны вдоль зоны Амнундинского разлома, по-видимому, действительно сопровождалось увеличением амплитуд колебаний, что и вызвало в разломном узле достаточно сильные сотрясения и спровоцировало крупный обвал. Определенную роль сыграла и тектоническая раздробленность пород в зоне пересечения двух разломов, облегчившая срыв обломочного материала со склона.

ЗАКЛЮЧЕНИЕ

Представленный материал заслуживает внимания, так как по удачному стечению обстоятельств удалось обнаружить обвал, оценить его тектоническую позицию и связать его с конкретным землетрясением умеренной силы. Подобное сопоставление провести достаточно трудно, хотя обвалы в горах от сейсмических толчков — обычное и частое явление. Полученные данные показывают, что необходимо учитывать влияние разломных структур на распространение сейсмических колебаний при оценке сейсмической опасности территорий, хотя, безусловно, необходима дальнейшая разработка этого вопроса. Кроме того, изложенные в настоящей работе материалы представляют несомненный интерес в аспекте развития шкал сейсмической интенсивности, в особенности тех их разделов, в которых классифицируется степень воздействия землетрясений на элементы окружающей среды.

Авторы искренне благодарны рецензентам И.С. Новикову и А.А. Никонову за плодотворную работу над рукописью и комментарии, позволившие улучшить статью.

Исследования проведены при поддержке СО РАН (проект Лаврентьевского конкурса № 134 и комплексный интеграционный проект № СО РАН-2006-6.13.), РФФИ (проект № 04-05-64148), Совета по грантам Президента РФ (проект № МК-1645.2005.5) и INTAS (проект № 05-109-4383).

ЛИТЕРАТУРА

Агафонов Б.П. Тектонически раздробленные склоны в зонах активных разломов — чуткие индикаторы умеренных сейсмических воздействий // Вулканология и сейсмология, 2002, № 1, с. 61—71.

Гилева Н.А., Мельникова В.И., Радзиминович Н.А., Девершер Ж. Локализация землетрясений и средние характеристики земной коры в некоторых районах Прибайкалья // Геология и геофизика, 2000, т. 41 (5), с. 629—636.

Голенецкий С.И., Кочетков В.М., Солоненко А.В., Мишарина Л.А., Боровик Н.С., Солоненко Н.В., Гилева Н.А., Козьмин Б.М., Аниканова Г.В., Мельникова В.И., Штейман Е.А., Ларионов А.Г. Геология и сейсмичность зоны БАМ. Сейсмичность. Новосибирск, Наука, 1985, 192 с.

Никонов А.А. Терминология и классификация сейсмогенных нарушений рельефа // Геоморфология, 1995, № 1, с. 4—9.

Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. / Под ред. Н.В. Кондорской, Н.В. Шебалина. М., Наука, 1977, 535 с.

Солоненко В.П., Николаев В.В., Семенов Р.М., Демьянович М.Г., Курушин Р.А., Хромовских В.С., Чипизубов А.В. Геология и сейсмичность зоны БАМ. Сейсмогеология и сейсмическое районирование. Новосибирск, Наука, 1985, 192 с.

Шерман С.И., Бержинский Ю.А., Павленов В.А., Аптикаев Ф.Ф. Региональные шкалы сейсмической интенсивности. Опыт создания шкалы для Прибайкалья. Новосибирск, Изд-во СО РАН, филиал "Гео", 2003, 189 с.

Esposito E., Porfido S., Mastrolorenzo G., Nikonov A.A., Serva L. Briefreview and preliminary proposal for the use of ground effects in the macroseismic intensity assessment // Proceeding of 30th International Geological Congress, 1997, v. 5, p. 233—243.

European Macroseismic Scale 1998. EMS-98 / Edit. G. Grunthal. Luxembourg, 1998, 99 p.

Nikonov A.A., Sergeev A.P. Identification and quantification of seismogravitational mass movements: the Caucasian mountain area as an example // Landslide News, 1999, № 12, p. 20—24.

Rautian T., Leith W. Composite regional catalogs of earthquakes in the Former Soviet Union // U.S. Geological Survey Open File Report 02-500, 2002, 53 p.

The INQUA scale. Special paper / Eds. E. Vittori, V. Comerci. System Cart Srl. Roma, 2004, 116 p.

Поступила в редакцию 27 февраля 2006 г., после доработки— 22 августа 2006 г.