2009. Том 50, № 3

Май – июнь

C. 461 – 467

УДК 541.6:541.49

РЕНТГЕНОЭЛЕКТРОННОЕ ИЗУЧЕНИЕ ЗАРЯДОВОГО СОСТОЯНИЯ ИОНОВ з*d*-металлов в дисульфидах $CuCr_{1-x}V_xS_2$ (x = 0-0,4)

© 2009 Л.Н. Мазалов¹, В.В. Соколов¹, Н.А. Крючкова^{1*}, Е.И. Вовк², И.Ю. Филатова¹, Г.М. Абрамова³

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск ²Институт катализа им. Г.К. Борескова СО РАН, Новосибирск ³Институт физики им. Л.В. Киренского СО РАН, Красноярск

Статья поступила 13 марта 2009 г.

В работе проведено рентгеноэлектронное исследование зарядового состояния ионов 3*d*металлов в слоистых катион-замещенных дисульфидах CuCr_{1-x}V_xS₂. На основании анализа энергетического положения и структуры рентгеноэлектронных линий Cu2p_{3/2}, Cr2p_{3/2} показано присутствие в соответствующих поликристаллических образцах дисульфидов CuCr_{1-x}V_xS₂ разновалентных ионов хрома и меди. Выявлена зависимость зарядовых состояний ионов хрома и меди от концентрации катионов ванадия (*x*). Наличие разновалентных ионов меди Cu¹⁺ и Cu²⁺ в CuCr_{1-x}V_xS₂ может быть связано с особенностями кристаллического строения соответствующих слоистых дисульфидов.

Ключевые слова: катион-замещенные дисульфиды, рентгеновская фотоэлектронная спектроскопия, Оже-спектроскопия.

введение

Согласно классификации слоистых дисульфидов 3*d*-металлов [1] дисульфид хрома-меди $CuCrS_2$ относится к интеркалированным соединениям дисульфида хрома CrS_2 . Кристаллическую структуру этого вещества можно представить как последовательность тройных слоев S-Cr-S, в которых ионы хрома имеют октаэдрическую координацию. Слои разделены двумя рядами тетраэдрических позиций (так называемой ван-дер-ваальсовой щелью), половина из которых заполняется ионами меди. При температуре больше 670 К дисульфид хрома-меди претерпевает переход в суперионное состояние за счет высокой подвижности ионов меди [2], а в низкотемпературной фазе дисульфид обладает смешанной электрон-ионной проводимостью. Магнитные и электрические свойства соединения подобного типа изучены слабо.

С точки зрения магнитных свойств CuCrS₂ рассматривается как квазидвумерный антиферромагнетик, магнитные свойства которого определяются ферромагнитным упорядочением магнитных моментов трехвалентных ионов хрома в чередующихся тройных слоях CrS_2 и их антиферромагнитным упорядочением между слоями CrS_2 —Cu— CrS_2 [3].

Свойствами дисульфида хрома-меди можно управлять путем катионного замещения. Изменяя степень катионного замещения в $CuCr_{1-x}V_xS_2$, можно варьировать электрические и магнитные свойства $CuCrS_2$.

В соединениях $CuCr_{1-x}V_xS_2$ атомы меди могут находиться в различных неэквивалентных кристаллографических позициях. Вероятность заполнения этих позиций зависит от температуры и состава соединения [4]. На рис. 1 представлена схема кристаллической структуры дисульфида хрома-меди. Внутри тройных слоев S—Cr—S имеются две неэквивалентные пози-

^{*} E-mail: knatali@ngs.ru

Рис. 1. Фрагмент структуры CuCrS₂.
Позиции меди: ο — октаэдрическая, α — α-тетраэдрическая, β — β-тетраэдрическая, α'— α'-тетраэдрическая, β'— β'-тетраэдрическая

ции (α' и β'), в которых могут находиться атомы меди. Между тройными слоями в межслоевом промежутке атомы меди могут занимать позиции трех типов: две тетраэдрические (α и β) и октаэдрическую (о). При комнатной температуре для соединений CuCr_{1-x}V_xS₂ состава x = 0, 0,05, 0,1 и 0,15 наблюдается заселенность позиции α' в пределах тройных слоев, а также α -тетраэдрических позиций в межслоевом промежутке. Для составов x > 0,2 (0,25 и 0,3) атомы меди занимают α' -позиции, а также октаэдрические о-позиции в межслоевом пространстве.

Исследования магнитных свойств соединений CuCr_{1-x}V_xS₂ при варьировании степени катионного замещения показывают изменение типа магнитного порядка. Согласно [5, 6] обнаруженное изменение магнитных и электрических свойств соединений CuCr_{1-x}V_xS₂, возникающее при изменении состава, температуры и магнитного поля, может быть следствием своеобразного фазового расщепления Cu¹⁺Cr³⁺S₂²⁻ и Cu²⁺Cr²⁺S₂²⁻ и изменения концентрационного соотношения этих электронных фаз в объеме вещества. Вопрос о реальном электронном строении и зарядовом состоянии 3*d*-ионов в дисульфиде хрома-меди, а также его катион-замещенных соединениях остается открытым и является принципиальным для выяснения механизмов магнитного порядка и проводимости.

Для атомов меди в соединениях $CuCr_{1-x}V_xS_2$ характерно наличие различных неэквивалентных кристаллографических позиций, вероятность заполнения которых зависит от температуры и состава вещества [4]. Учитывая этот факт, можно ожидать, что энергетический спектр валентных и внутренних электронов атомов меди в $CuCr_{1-x}V_xS_2$, находящихся в различных кристаллографических позициях, будет различным. Энергетическое положение уровней внутренних электронов атома зависит от характера и зарядового состояния атомов ближайшего окружения, а также от локальной электронной плотности (эффективного заряда) [7, 8]. Последняя величина определяется природой электронных взаимодействий изучаемого атома с атомами, находящимися в ближайшем окружении. В соответствии с этим энергетическое положение внутренних уровней атомов, входящих в состав изучаемых соединений, при изменении соответствующих параметров будет варьироваться, что приведет к изменению химического сдвига внутренних уровней. Соответствующий сдвиг описывается соотношением

$$\Lambda E = kq + \sum \frac{q_i}{R_i} + l, \tag{1}$$

где *q* — эффективный заряд на атоме; второй член описывает электростатическое поле окружения; *l* — релаксационная поправка.

Согласно соотношению (1) величина химического сдвига будет зависеть как от местоположения атома в кристаллической решетке, так и от эффективной электронной плотности на атоме. Экспериментальное исследование химического сдвига внутренних уровней атомов выполняется методами рентгеновской фотоэлектронной спектроскопии (РФЭС).

В данной работе впервые представлены результаты экспериментального исследования интеркалированных соединений CuCr_{1-x}V_xS₂ методом РФЭС и Оже-спектроскопии, выполненного с целью выяснения электронного строения и зарядового состояния 3*d*-ионов в дисульфиде хрома-меди, а также его катион-замещенных соединениях.

ОБРАЗЦЫ И ТЕХНИКА ЭКСПЕРИМЕНТА

Исследуемые вещества и методы их получения. Исходные вещества. При получении дихалькогенидов хрома-меди были использованы коммерческие оксиды CuO, Cu₂O, Cr₂O₃,

Таблица 1

Состав шихты	Тампаратира °С	Время, ч	Параметры решетки (тип CuCrS ₂), Å		
	Temnepatypa, C		а	С	
CuCrS ₂	850	44	3,483	18,68	
CuCr _{0,95} V _{0,05} S ₂	900	19	3,478	18,69	
$CuCr_{0,9}V_{0,1}S_2$	800, 850	2, 3	3,478	18,67	
$CuCr_{0,85}V_{0,15}S_2$	850, 1000	4, 2,5	3,478	18,69	
$CuCr_{0,8}V_{0,2}S_2$	850	4,5	3,476	18,70	
CuCr _{0,75} V _{0,25} S ₂	850	4,5	3,476	18,68	
$CuCr_{0,7}V_{0,3}S_2$	850	4	3,472	18,67	
$CuCr_{0,6}V_{0,4}S_2$	850	9	3,456	18,71	

Условия синтеза и результаты рентгенофазового исследования соединений $CuCr_{1-x}V_xS_2$

V₂O₃, V₂O₅ чистотой не ниже 99—99,9 %, в качестве сульфидирующей смеси применяли продукты термического разложения NH₄CNS, в качестве газа-носителя — высокочистый аргон.

Метод синтеза. Исходный оксид или соответствующую шихту из смеси оксидов в стеклоуглеродной лодочке устанавливали в кварцевую трубу в печь, после вытеснения воздуха аргоном и продуктами разложения роданида аммония печь включали. Условия синтеза приведены в табл. 1. Обычно синтез включал 2—3-кратное перетирание шихты в интервале температур 500—900 °C. Полноту сульфидирования контролировали методом рентгенофазового анализа на дифрактометре ДРОН-3, используя Cu K_{α} -излучение. На рис. 2 приведены дифрактограммы приготовленных образцов. Они показывают, что в пределах точности метода все синтезированные вещества являются однофазными твердыми растворами и имеют структуру, типичную для CuCrS₂ (пространственная группа *R3m*, ромбоэдрическая решетка типа α -NaFeO₂). Наблюдаемое незначительное уменьшение параметра решетки *a* в области составов x = 0,05-0,25(см. табл. 1) и более резкое в области составов x = 0,25-0,4 может свидетельствовать об изменении типа твердых растворов, связанное с увеличением степени окисления ванадия.

Рентгеновская фотоэлектронная спектроскопия. Спектры были записаны на электронном спектрометре VG ESCA-3 с использованием немонохроматизированного излучения Mg K_{α} (hv = 1253,6 эВ, 200 Вт). Шкала энергий связи (E_{cB}) была предварительно откалибрована по положению пиков остовных уровней Au4 $f_{7/2}$ (84,0 эВ) и Cu2 $p_{3/2}$ (932,6 эВ). Образцы загружали в спектрометр в виде порошков, нанесенных на проводящий скотч. Эффект подзарядки, возникающий в процессе фотоэмиссии электронов, учитывали методом внутреннего стандарта, в качестве которого использовали линию C1s с $E_{cB} = 284,8$ эВ. Для детального анализа химического состава приповерхностной области образцов применяли разложение спектров на индивидуальные составляющие. После вычитания фона по методу Ширли [9] экспериментальную кривую раскладывали на ряд линий, соответствующих фотоэмиссии электронов с внутренних уровней атомов в различном химическом окружении. Энергетические положения основных фотоэлектронных линий в исследованных соединениях

СиС $r_{1-x}V_xS_2$ приведены в табл. 2. Точность измерения положения линии для изученных спектров составляла ~0,2 эВ.

Рис. 2. РФА образцов: $I - CuCr_{0,95}V_{0,05}S_2$, $2 - CuCr_{0,9}V_{0,1}S_2$, $3 - CuCr_{0,85}V_{0,15}S_2$, $4 - CuCr_{0,8}V_{0,2}S_2$, $5 - CuCr_{0,75}V_{0,25}S_2$, $6 - CuCr_{0,6}V_{0,4}S_2$

Таблица 2

Соединение	Cr2 <i>p</i> _{3/2} , эВ	Си2 <i>p</i> _{3/2} (осн.), эВ	C1s (осн.), эВ	O1 <i>s</i> , эВ	S2p _{3/2} , эВ	Си Оже, эВ
CuCrS ₂	575.3	932.5	284.8	531.6	161.3	337.4
$CuCr_{0,95}V_{0,05}S_2$	576,0	932,4	284,8	531,5	161,3	,
$CuCr_{0,9}V_{0,1}S_2$	575,9	932,2	284,8	531,2	162,1	
CuCr _{0,85} V _{0,15} S ₂	574,9	931,5	284,8	531,2	161,6	336,7
$CuCr_{0,8}V_{0,2}S_2$	574,8	932,6	284,8	531,5	161,3	336,4
$CuCr_{0,75}V_{0,25}S_2$	574,0	933,4	284,8	531,7	161,5	336,7
$CuCr_{0,6}V_{0,4}S_2$	—	934,4	284,8	531,5	161,7	336,9

Энергетическое положение рентгеноэлектронных линий в CuCr_{1-x}V_xS₂

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рентгеновские фотоэлектронные Си $2p_{3/2,1/2}$ -, Сг $2p_{3/2,1/2}$ -спектры. На рис. 3 показаны Си $2p_{3/2}$ -, Сг $2p_{3/2,1/2}$ -спектры катион-замещенных дисульфидов СиСг_{1-x}V_xS₂. Энергии максимумов

Рис. 4. Энергетическое положение линии спектров в зависимости от концентрации ванадия в CuCr_{1-x}V_xS₂: a — основной линии спектра Cu2 $p_{3/2}$, δ — основной линии спектра Cr2 $p_{3/2}$, s — компонент l и 2 Cu2 $p_{3/2}$ -спектров

соответствующих линий рентгеноэлектронных спектров приведены в табл. 2. Рис. 4 иллюстрирует изменение энергетического положения линий $Cu2p_{3/2}$ и $Cr2p_{3/2}$ в зависимости от содержания в надия в изучаемом ряду соединений $CuCr_{1-x}V_xS_2$.

Как видно из рис. 4, *а* в области составов $x \sim 0,1-0,15$ энергия линии Cu2 $p_{3/2}$ имеет наименьшее значение. В этой же области составов энергетическое положение линии Cr2 $p_{3/2}$ наибольшее (см. рис. 4, δ). Согласно литературным данным [7, 8] энергетическое положение линии $2p_{3/2}$ меди в интервале значений энергии связи 932—933 эВ соответствует состоянию одновалентного иона Cu(I), а в интервале 934,0—935,0 эВ — состоянию двухвалентного иона Cu(II). Для ионов Cr(III) энергия связи линии $2p_{3/2}$ лежит в интервале значений 575,0—576,5 эВ. Уменьшение энергии линии Cu2 $p_{3/2}$ может быть связано с увеличением интегральной электронной плотности на атомах меди, а увеличение энергии линии Cr2 $p_{3/2}$ обусловлено уменьшением электронной плотности на атомах хрома.

Рассмотренное смещение рентгеноэлектронных линий меди и хрома может быть обусловлено увеличением концентрации одновалентных ионов меди и, соответственно, трехвалентных ионов хрома. Дальнейшее повышение степени катионного замещения в CuCr_{1-x}V_xS₂ приводит к увеличению энергии связи соответствующих рентгеноэлектронных линий меди, что показывает уменьшение электронной плотности на атомах Cu и увеличение на атомах Cr, т.е. при x > 0,15 наблюдается обратная тенденция в изменении зарядовых состояний атомов меди и хрома.

Таким образом, рентгеноэлектронные измерения энергии внутренних уровней 3*d*-ионов переходных металлов, входящих в состав соединений $CuCr_{1-x}V_xS_2$ (x = 0-0,4), показывают, что

Таблица З

Соединение	Cu2p _{3/2} , эВ		Ширина на полувысоте		Площадь	
	1	2	1	2	1	2
CuCrS ₂	932,7	935,3	2,61	2,61	2037,4	776,8
CuCr _{0,95} V _{0,05} S ₂	932,4	934,8	2,6	2,6	2608,0	751,1
$CuCr_{0,9}V_{0,1}S_2$	932,0	934,1	2,6	2,6	2106,5	1452,8
$CuCr_{0,85}V_{0,15}S_2$	931,6	934,0	2,6	2,6	3639,5	998,6
$CuCr_{0,8}V_{0,2}S_2$	932,6	934,9	2,5	2,5	3476,2	1675,9
CuCr _{0,75} V _{0,25} S ₂	933,1	935,3	2,7	2,7	3281,5	2714,6
CuCr _{0,6} V _{0,4} S ₂	932,9	935,0	2,6	2,6	2624,5	2384,3

Энергетическое положение компонент 1 и 2 спектра $Cu2p_{3/2}$ рентгеноэлектронных линий в $CuCr_{1-x}V_xS_2$

при изменении состава (*x*) происходит изменение электронной плотности на ионах металлов, при этом соответствующие изменения имеют противоположный характер.

В изучаемых образцах, как показывают рентгеноэлектронные спектры, присутствуют атомы кислорода. Согласно литературным данным энергетическое положение уровней Cu2 $p_{3/2}$ и Cr2 $p_{3/2}$ для оксидов и сульфидов весьма близки, что затрудняет идентификацию зарядовых состояний меди в CuCrS₂. Рентгенофазовый анализ соответствующих образцов дисульфидов показывает отсутствие в изучаемых образцах соответствующих окисных фаз с точностью < 5 %. Вследствие этого можно предположить, что наблюдаемые O1*s*-линии в изучаемых образцах в определенной мере могут быть связаны с кислородными соединениями меди и хрома, присутствующими в приповерхностных слоях.

С целью идентификации возможных состояний атомов меди в приповерхностных слоях были получены Оже-спектры меди $L_3M_{45}M_{45}$ соответствующих образцов CuCr_{1-x}V_xS₂. В области концентраций x = 0,15—0,2 наблюдается характерный минимум энергий Оже-линий (см. табл. 1), что позволяет предположить, что приповерхностные слои по своему составу и состоянию атомов меди близки к объемным. Таким образом, в рентгеноэлектронных спектрах дисульфидов хрома-меди можно ожидать наличие двух рентгеноэлектронных линий, обусловленных различными зарядовыми состояниями меди.

На рис. 4, *в* показано разложение линии Cu2 $p_{3/2}$ на компоненты, энергии которых приведены в табл. 3. Как видно из таблицы, в рентгеноэлектронных $2p_{3/2}$ -спектрах меди можно выделить две компоненты — низкоэнергетическую *1* (932,0—933,5 эВ) и высокоэнергетическую *2* (934,0—936,0 эВ). Соответствующие компоненты могут быть обусловлены присутствием в исследуемых соединениях двух типов атомов меди в различных зарядовых состояниях, первое из которых соответствует большей электронной плотности по сравнению со второй. Условно соответствующие состояния можно отнести к компонентам Cu¹⁺ и Cu²⁺.

Анализ характера изменения положения компонент 1 и 2 спектральной линии показывает,

что катионное замещении вызывает аналогичные изменения электронной плотности (зарядового состояния) на атомах меди Cu¹⁺ и Cu²⁺.

Анализируя изменения интенсивности соответствующих спектральных компонент l и 2в рентгеновских спектрах Cu2 $p_{3/2}$, можно оценить характер изменения концентрации ионов меди Cu¹⁺ и Cu²⁺ в ходе катионного замещения (рис. 5). Как видно из диаграммы, изменения

Рис. 5. Концентрационная зависимость интенсивности компонент l и 2 спектра $Cu2p_{3/2}$ от x для $CuCr_{1-x}V_xS_2$

в концентрации ионов меди противоположны, т.е. увеличение числа ионов Cu^{1+} приводит к уменьшению количества Cu^{2+} . Наибольшее изменение концентраций соответствующих ионов меди наблюдается при $x \sim 0.15$.

ЗАКЛЮЧЕНИЕ

Измерения величин рентгеноэлектронных химических сдвигов в ряду катион-замещенных дисульфидов $\operatorname{CuCr}_{1-x}V_xS_2$ (x = 0—0,4) показывают, что в области x = 0,1 атомы меди находятся в степени окисления, близкой к Cu^{1+} {переход $\operatorname{Cu}^{2+} \rightarrow \operatorname{Cu}^{1+}$ } при одновременном увеличении степени окисления атомов хрома {переход $\operatorname{Cr}^{2+} \rightarrow \operatorname{Cr}^{3+}$ }. В этой же области ($x \sim 0,15$) наблюдается положительный химический сдвиг $2p_{3/2,1/2}$ -уровня серы ($\sim 1,0$ эВ), что свидетельствует об уменьшении электронной плотности на атомах серы. В области концентраций ванадия x > 0,15 интегральная электронная плотность на атомах меди уменьшается по мере введения катионов ванадия (растет степень окисления меди), и атомы меди находятся в состоянии, близком к Cu^{2+} .

Одна из причин присутствия в изучаемых соединениях различных зарядовых состояний атомов меди, возможно, связана с нахождением меди в различных локальных кристаллографических позициях. Это обуславливает различный характер электронных взаимодействий соответствующих атомов с окружением и, как следствие, изменение энергетического спектра остовных электронов атомов, входящих в состав изучаемых соединений, и химического сдвига в рентгеноэлектронных спектрах.

СПИСОК ЛИТЕРАТУРЫ

- 1. Wilson J.A., Yoffe A.D. // Adv. Phys. 1969. 18. C. 93.
- 2. Akmukhametov R.F., Yakshibayev R.A., Gabitov E.V. et al. // Phys. Stat. Sol. (b) 2003. 236. C. 29 32.
- 3. Bonger P.F., Bruggen C.F., Koopstra J. et al. // J. Phys. Chem. Solids. 1968. 29. P. 977.
- 4. Альмухаметов Р.Ф., Якшибаев Р.А., Габитов Э.В., Абдулин А.Р. // Физика твердого тела. 2000. **42**. С. 1465 1467.
- 5. Абрамова Г.М., Воротынов А.М., Петраковский Г.А. и др. // Там же. 2004. **46**. С. 1465 1467.
- 6. Абрамова Г.М., Петраковский Г.А., Воротынов А.М. и др. // Письма в ЖЭТФ. 2006. 83. С. 148.
- Нефедов В.И. Рентгеноэлектронная спектроскопия химических соединений. Справочник. М.: Химия, 1984.
- 8. Мазалов Л.Н. Рентгеновские спектры. Новосибирск: ИНХ СО РАН, 2003.
- 9. Shirley D.A. // Phys. Scripta. 1975. 11, N 3-4. P. 117 120.