2016. Том 57, № 2

Февраль – март

C. 283 – 291

УДК 541.6:541.49:546.72:546.711

Посвящается 80-летию профессора С.П. Габуды

КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ ФОСФИНОВОГО ЛИГАНДА НА СТРУКТУРУ ВИНИЛИДЕНОВОГО БИЯДЕРНОГО КОМПЛЕКСА Mn И Fe

Е.А. Иванова-Шор¹, А.М. Шор¹, В.А. Наслузов¹, А.И. Рубайло^{1,2}

¹Институт химии и химической технологии СО РАН, Красноярск, Россия E-mail: shor-elena@rambler.ru ²Сибирский Федеральный университет, Красноярск, Россия

Статья поступила 16 сентября 2015 г.

Методом функционала плотности B3LYP выполнены расчеты структуры и относительной энергии биядерных железо-марганцевых комплексов с фосфиновым лигандом L, существующих в винилиденовой Cp(CO)(L)MnFe(µ-C=CHPh)(CO)₄ (2) и бензилиденкетеновой η⁴-{C[Mn(CO)(L)Cp](CO)CHPh}Fe(CO)₃ (3) формах. Для каждой из форм рассмотрены по четыре изомера, отличающиеся положением лиганда L относительно фенильного кольца (конформеры **a** и **b**) и заместителя Ph относительно связи C=C (конформеры E и Z), и определена их относительная стабильность. Показано, что все изомеры формы 2 имеют примерно одинаковую энергию (в пределах 4 ккал/моль), тогда как энергии изомеров формы 3 отличаются в пределах 21 ккал/моль. Наиболее энергетически выгодным является изомер **3Ea**, в котором лиганд PPh₃ находится в контакте с фенильным заместителем винилиденовой группы. Установлено, что с ростом размера лиганда L в ряду $PH_3 < PH_2Ph < PHPh_2 < PPh_3$ длина связи Mn—P увеличивается до 2,37 Å в самом стабильном изомере формы 3 и до 2,43 Å в изомерах формы 2 и трех конформерах формы 3. Более существенное увеличение длины связи Mn—P в комплексах 2 и 3 коррелирует с их меньшей стабильностью по сравнению с изомером Еа формы 3, что согласуется с экспериментальными данными о присутствии в растворе только одного конформера ЗЕа.

DOI: 10.15372/JSC20160204

Ключевые слова: метод функционала плотности, биядерные комплексы марганца и железа, винилиденовые комплексы, трифенилфосфин, карбонил.

Реакции присоединения второго металла М' к моноядерным комплексам с винилиденовым лигандом M=C=CRR' (R/R' = H, alkyl, aryl) представляют собой традиционный метод получения гетерометаллических биядерных комплексов [1]. Как правило, присоединение металлического фрагмента [Fe(CO)₄] к связи $M=C^1$ (M = Mn, Rh) моноядерного винилиденового комплекса $LM=C^1=C^2HR$ происходит с образованием треугольного остова $MFe(\mu-C^1)$ и не затрагивает органическую часть молекулы. В качестве примера можно привести синтез стабильных комплексов $Cp(CO)_2MnFe[\mu-C=C(H)COOMe](CO)_4$, $Cp(CO)_2MnFe[\mu-C=CPh_2](CO)_4$ [2], $Cp(i-Pr_3P)RhFe(\mu-C=CHR)(\mu-CO)_4CP$ (R = H, Me, Ph) [3].

Напротив, присоединение фрагмента [Fe(CO)₄] к комплексу Cp(CO)₂Mn=C=CHPh (**1-CO**) приводит не к ожидаемому μ -винилиденовому комплексу Cp(CO)₂MnFe(μ -C=CHPh)(CO)₄ (**2-CO**), а к его изомеру η^4 -{C[Mn(CO)₂Cp](CO)CHPh}Fe(CO)₃ (**3-CO**), включающему бензили-

[©] Иванова-Шор Е.А., Шор А.М., Наслузов В.А., Рубайло А.И., 2016

денкетеновый фрагмент [PhHC=C=C=O] [4] (рис. 1). Эта реакция явилась первым примером карбонилирования винилидена через внутримолекулярную миграцию группы CO с атома металла на винилиденовый фрагмент [4], а комплекс **3-CO** был первым зафиксированным гетерометаллическим аналогом комплекса η^4 -[C(CH₂)₂(CHPh)]Fe(CO)₃ с триметиленметановым (TMM) лигандом [5]. Позднее были обнаружены еще два примера карбонилирования винилидена на атоме металла: биядерные комплекс железа [Fe(CO)₃(Et₃P)]₂(μ -C=CH₂) [6] и платины Pt₂(μ -C=CHPh)(PPh₃)₂(CO)(C₆F₅)₂ [7].

Последующие исследования методами ИК и ¹Н и ¹³С ЯМР спектроскопии [8] показали, что при растворении комплекса **3-СО** в *н*-гексане происходит образование комплекса **2-СО** в виде двух изомерных форм *E* и *Z*, которые сосуществуют в растворе с формой ТММ **3-СО** в соотношении 3,7:1,3:1. Кроме того, было обнаружено, что взаимодействие фосфинового комплекса Cp(CO)(PPh₃)Mn=C=CHPh (**1-PPh3**) с Fe₂(CO)₉ также приводит к образованию комплекса ТММ-типа η^4 -{C[Mn(CO)(PPh₃)Cp](CO)CHPh}Fe(CO)₃ (**3-PPh**₃) (см. рис. 1). Однако в случае его растворения образования интермедиата Cp(CO)(PPh₃)MnFe(µ-C=CHPh)(CO)₄ (**2-PPh3**) не обнаружено и комплекс **3-PPh3** остается единственным комплексом зафиксированным в растворе [8].

Реакция взаимодействия дикарбонильного комплекса $Cp(CO)_2Mn=C=CHPh$ (1-CO) с Fe₂(CO)₉ ранее была нами детально изучена методом функционала плотности (ФП) [9]. Было показано, что два изомера интермедиата 2-CO и комплекс 3-CO имеют идентичные энергии. Более того, барьер трансформации 3-CO \rightarrow 2-CO для Z-изомера составил всего 12 ккал/моль. Таким образом, существование интермедиатов 2-CO обусловлено как их термодинамической стабильностью, так и низким активационным барьером для их изомеризации из комплекса 3-CO.

Ранее было показано [10], что наличие объемных фосфиновых групп в октаэдрических комплексах $[RhCH_3(CO)I_2(L)_2]^ (L=PPh_3)$ и $[RhCH_3(CO)I_2(LL)]^ (LL=Ph_2PCH_2CH_2PPh_2,$ Ph₂PCH₂P(O)Ph₂, Ph₂PCH₂P(S)Ph₂) благоприятствует миграции группы CO с металлического центра и внедрению ее по связи металл—углерод с образованием 5-координированных комплексов $[Rh(CH_3CO)I_2(LL)]^-$ [11]. Выгодность такого процесса, несмотря на повышение электронной плотности на атоме металла вследствие донорных свойств фосфиновых лигандов и повышение прочности связи Rh—C, объяснялась уменьшением координационного числа атома родия и, как следствие, уменьшением отталкивания фенильных групп в объемных фосфиновых лигандах. Гипотеза о преимущественно стерической природе влияния фосфиновых лигандов с объемными заместителями на свойства комплексов также подтверждается в работах [12, 13], где для количественной оценки их электронного ($E_{\rm eff}$) и стерического ($S_{\rm eff}$) эффектов применен подход, основанный на использовании гибридной квантово-механической и молекулярномеханической схемы ONIOM [14] совместно с анализом молекулярного электростатического потенциала (MESP). Согласно этим расчетам электронно-донорные свойства лиганда PPh₃ обусловлены преимущественно его большим размером ($S_{\rm eff} = 5,98$ ккал/моль), а не электронными эффектами ($E_{\rm eff} = -0,13$ ккал/моль).

Целью настоящей работы было выяснение факторов, определяющих устойчивость гексакарбонильных и карбонилфосфиновых комплексов η^4 -{C[Mn(CO)(L)Cp](CO)CHPh}Fe(CO)₃ типа ТММ. Для этого нами с использованием метода функционала плотности были смоделированы структуры возможных изомеров комплексов **2-PPh3** и **3-PPh3**, определены наиболее энергетически выгодные структуры для каждого типа, установлены изменения геометрии и энергии этих комплексов, происходящие при замене лиганда L с CO на фосфиновый лиганд (PH₃, PPhH₂, PPh₂H, PPh₃). Насколько нам известно, изучение влияния лигандного окружения на внутримолекулярную миграцию группы CO в биядерных металлических комплексах ранее не проводилось.

ДЕТАЛИ РАСЧЕТОВ И МОДЕЛИ

Все расчеты проводились методом функционала плотности с использованием гибридного обменно-корреляционного функционала B3LYP [15, 16], реализованного в пакете квантовохимических программ Gaussian09 [17]. В расчетах были использованы следующие полноэлектронные базисные наборы triple- ζ качества [18]: $(17s11p6d) \rightarrow [6s4p3d]$ для Fe и Mn, $(14s9p1d) \rightarrow [5s4p1d]$ для P, $(11s6p1d) \rightarrow [5s3p1d]$ для C и O, $(5s1p) \rightarrow [3s1p]$ для H. Структурные параметры всех комплексов были оптимизированы без применения ограничений по симметрии. Все исследуемые системы являются синглетами, кроме комплекса [Fe(CO)₄], который наиболее стабилен в триплетном состоянии. Для подтверждения того, что все оптимизированные комплексы являются минимумами на поверхности потенциальной энергии, был проведен анализ нормальных колебаний; мнимых частот не обнаружено

Для оценки относительных энергий изомеров использованы электронные энергии ΔE . Учет энтальпийных и энтропийных вкладов не проводился, поскольку ожидается, что их вклад для реакций, протекающих без изменения числа реагентов, не превысит 2 ккал/моль [9]. Структуры и энергии комплексов были рассчитаны без учета сольватационных эффектов. Данное приближение оправдано, поскольку экспериментально используемый растворитель *н*-гексан имеет низкую диэлектрическую проницаемость ($\varepsilon = 2$).

Для всех комплексов 1-PPh3, 2-PPh3 и 3-PPh3 были рассмотрены по два стереоизомера (а и b), отличающихся взаимным расположением лигандов CO и PPh₃ при атоме марганца (а — PPh₃ лиганд ближе к Ph, b — CO лиганд ближе к Ph). Кроме того, для биядерных комплексов (2-PPh3 и 3-PPh3) были оптимизированы *E*- и *Z*-изомеры с *цис*- и *mpaнc*-положением заместителя Ph к фрагменту Cp(CO)(PPh₃)Mn относительно связи $C^1=C^2$ соответственно. Таким образом, обозначение 2Ea-PPh3 для биядерного комплекса 2-PPh3 означает *E*-изомер, в котором по соседству с Ph заместителем находится лиганд PPh₃.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Комплексы Ср(СО)(PPh₃)MnFe(µ-C=CHPh)(СО)₄. Рассчитанные структурные параметры и относительные энергии четырех изомеров комплекса Cp(CO)(PPh₃)MnFe(µ-C=CHPh)(CO)₄ (**2-PPh3**) даны в табл. 1, оптимизированные пространственные структуры изомеров представлены на рис. 2.

Как видно из табл. 1, различное расположение лигандов L при атоме Mn и заместителей R при атоме C^2 слабо влияет на энергию комплексов: все четыре изомера имеют энергии в пределах 3,6 ккал/моль. Несколько более стабильными являются изомеры **2Eb-PPh3** и **2Zb-PPh3** с объемным лигандом PPh₃, расположенным в противоположной от фенильного заместителя стороне. Комплексы **Ea** и **Za** с близкорасположенными группами Ph и PPh₃ имеют на 2,0 и 3,6 ккал/моль более высокие энергии, чем самый стабильный изомер **Zb**. Интересно отметить, что энергетический эффект от перемены местами лигандов PPh₃ и CO (изомеризация **a**—**b**) составил 2,0 (для **Eb-Ea**) и 3,1 ккал/моль (для **Zb-Za**), что хорошо согласуется с разницей в энергии 3,1 ккал/моль для изомеров **a** и **b** моноядерного исходного комплекса Cp(CO)(PPh₃)Mn=C=

Таблица 1

$ep(eo)(E)(H)(H) = e^{-2H(H)}(eo)_4(E^{-1H})(eo)_4(E^{-1H})$								
Изомер	PPh ₃				СО			
нзомер	Ea	Eb	Za	Zb	Е	Z		
Mn—Fe	2,77	2,85	2,76	2,85	2,74	2,75		
$Mn - C^1$	1,94	1,99	1,96	2,01	1,98	2,01		
$C^1 - C^2$	1,34	1,34	1,33	1,33	1,334	1,331		
Fe—C ¹	2,07	2,00	2,03	1,98	2,006	1,975		
Mn—L	2,48	2,43	2,44	2,41	1,792	1,794		
Mn—C ⁴	1,82	1,77	1,81	1,78	1,817	1,813		
$C^4 - O^4$	1,16	1,16	1,16	1,16	1,153	1,152		
$Mn - C^1 - C^2$	146,0	140,6	135,1	131,2	142,4	133,0		
$Fe-C^1-C^2$	123,3	128,0	136,7	137,5	130,0	139,6		
Fe—C ¹ —Mn	87,1	91,0	87,7	91,3	87,1	87,4		
$P-Mn-C^1$	96,4	127,5	91,2	127,3	85,7	81,0		
C^4 —Mn— C^1	114,2	82,0	115,9	79,1	114,3	114,8		
$Mn - C^1 - C^2 - C^{Ph}$	21,9	5,3	170,1	173,1	-9,3	173,4		
$C^{1}-C^{2}-C^{Ph}-(C_{6}H_{5})$	40,7	57,8	44,8	50,4	-48,1	135,2		
ΔE	3,6	0,5	2,0	0,0	0,0	0,4		

Рассчитанные структурные параметры (длины связей, Å, углы, град.) *и относительные энергии* Δ*E* (ккал/моль) *комплексов* Cp(CO)(L)MnFe(u-C=CHPh)(CO)₄ (L = PPh₂, CO)

Энергии комплексов даны относительно самых стабильных изомеров \mathbf{Zb} (L = PPh₃) и E (L = CO).

Рис. 2. Оптимизированные методом B3LYP структуры изомеров биядерных комплексов **2-PPh3** и **3-PPh3**

СНРh, **1-PPh3**. Энергетический эффект Е—Z изомерии более скромный: 0,5 (для Eb-Zb) и 1,6 ккал/моль (для Ea-Za), что согласуется со значением 0,4 ккал/моль для разницы энергий изомеров **2E-CO** и **2Z-CO** дикарбонильного комплекса Cp(CO)₂MnFe(µ-C=CHPh)(CO)₄ в наших предыдущих ФП-расчетах [9].

Все изомеры комплекса 2-PPh3 имеют практически плоский центральный металл-винилиденовый фрагмент MnFe(μ -C=C), сумма углов при sp^2 -гибридизованном атоме C¹ составляет 359,5—360°. Исключение составляет самый нестабильный изомер 2Ea-PPh3, в котором сумма углов при C^1 отклоняется от 360° на 3,6°. Величины углов вокруг атома C^1 заметно отличаются от 120°: угол Mn—C¹—Fe составляет 88—91°, тогда как углы Mn—C¹—C² и Fe—C¹—C² варьируются в интервалах 131—146° и 123—138° соответственно. Аналогично гексакарбонильному комплексу **2Z-CO** [9], разница углов Mn— C^1 — C^2 и Fe— C^1 — C^2 в Z-изомерах **2Za-PPh3** и **2Zb**-**PPh3** не превышает 6°. В *E*-изомерах **2E-CO** и **2Eb-PPh3** угол Mn— C^1 — C^2 более чем на 12° превышает угол Fe—C¹—C². Самый нестабильный изомер 2Ea-PPh3 характеризуется наибольшей разницей углов Mn—C¹—C² и Fe—C¹—C² в 23°. Связь C¹=C² винилидена имеет характерную для двойной связи C=C длину 1,33—1,34 Å. Плоскость заместителя Ph при атоме C² повернута относительно плоскости металл-винилиденового фрагмента на 41—58° (см. табл. 1), что свидетельствует об отсутствии сопряжения между двойной связью C¹=C² и фенильным кольцом. Атом железа имеет тригонально-бипирамидальное лигандное окружение с двумя аксиальными и двумя экваториальными лигандами CO, а также фрагментом Cp(CO)(PPh₃)Mn=C =CHPh n^2 -координированным к атому железа.

Основные отличия в строении изомеров вызваны переменой местами лигандов при атоме Мп и заключены в структуре треугольника Mn— C^1 —Fe. Наиболее существенное расхождение наблюдается в рассчитанной длине связи Mn—Fe, которая в PPh₃-комплексах типа **b** составила 2,85 Å, что на ~0,1 Å больше, чем в PPh₃-изомерах типа **a**, **2Ea-PPh3** и **2Za-PPh3** (2,76—2,77 Å), а также в гексакарбонильных комплексах **2-CO** (2,74—2,75 Å) [9]. Интересно отметить, что такое расстояние соответствует верхней границе типичных длин связей металл—металл в биядерных комплексах MnFe, 2,70—2,85 Å [1, 4]. Две другие длины связей Mn— C^1 и Fe— C^1 в треугольнике Mn— C^1 —Fe в изомерах **2Eb-PPh3** и **2Zb-PPh3** примерно равноценны (1,98— 2,01 Å) и близки к таковым, рассчитанным для дикарбонильных комплексов **2E-CO** и **2Z-CO** [9]. Напротив, комплексы PPh₃ **a**-типа характеризуются асимметричными связями Mn— C^1 и Fe— C^1 : более короткими связями Mn— C^1 (1,94—1,96 Å) и более длинными связями Fe— C^1 (2,03—2,07 Å).

Интересно отметить, что длина связи $Mn-C^4O^4$ также зависит от ее местоположения в комплексе. Так, в комплексах **a**-типа длина связи $Mn-C^4$ составляет 1,81—1,82 Å, тогда как в комплексах типа **b** она сокращается до значений в моноядерных **1-PPh3**-комплексах, 1,77— 1,78 Å. Сравнение с экспериментально определенной структурой комплекса $Cp(CO)_2MnFe[\mu-C=C(H)COOMe](CO)_4$ [2] позволяет предположить, что удлинение связи Mn-C в случае изомеров **a**-типа вызвано взаимодействием группы C^4O^4 с атомом железа. В этом случае группа C^4O^4 имеет полумостиковый характер [19].

Комплексы η^4 -{C[Mn(CO)₂Cp](CO)CHPh}Fe(CO)₃. Рассчитанные структурные параметры и относительные энергии четырех изомеров комплексов η^4 -{C[Mn(CO)₂Cp](CO)CHPh}× ×Fe(CO)₃ (3-PPh3) даны в табл. 2 и на рис. 2. В отличие от 2-PPh3-комплексов, изомеры 3-PPh3 существенно различаются по энергии. Самым стабильным является стереоизомер 3Ea-PPh3 с объемными группами PPh₃ (при атоме Mn) и Ph (при атоме C² винилидена) в соседних положениях. Другой Е-изомер, 3Eb-PPh3, на 9 ккал/моль выше его по энергии. Z-Изомеры 3Za-PPh3 и 3Zb-PPh3 на 16 и 21 ккал/моль соответственно менее стабильны, чем 3Ea-PPh3. Отметим, что в случае дикарбонильных комплексов 3-CO Z-конформер также оказался менее стабильным, чем *E*-конформер, однако с разницей лишь в 8 ккал/моль [9]. Таким образом, для комплексов 3-PPh3 энергетический эффект от E-Z изомерии (12 и 16 ккал/моль) больше, чем от а—b изомерии (5 и 9 ккал/моль). Тем не менее, оба эффекта для комплексов 3-PPh3 больше по величине, чем для комплексов 2-PPh3.

Таблица 2

Изомер	PPh ₃				СО			
Изомер	Эксп.	Ea	Eb	Za	Zb	Эксп.	Е	Z
Mn—Fe	2,85	2,87	3,03	2,94	3,31	2,76	2,82	2,86
$Mn - C^1$	2,01	2,03	2,03	2,01	2,01	2,03	2,03	2,02
$C^1 - C^2$	1,41	1,42	1,42	1,43	1,43	1,44	1,42	1,42
$C^1 - C^3$		1,39	1,41	1,42	1,43	1,45	1,39	1,40
$C^3 - O^3$	1,19	1,19	1,19	1,19	1,19	1,16	1,18	1,19
$Fe-C^1$	2,02	2,02	2,01	2,05	2,06	2,00	2,02	2,026
Fe—C ²	2,14	2,18	2,20	2,21	2,21	2,22	2,20	2,22
Fe—C ³	2,07	2,10	2,00	2,02	1,96	2,08	2,10	2,07
Mn—L	2,30	2,37	2,43	2,41	2,43	1,74	1,80	1,81
$Mn - C^4$	1,78	1,79	1,79	1,78	1,79	1,79	1,81	1,81
$C^4 - O^4$	1,16	1,16	1,15	1,16	1,15	1,17	1,15	1,15
$Mn - C^1 - C^2$	125,3	124,3	127,1	139,3	139,0	124,8	123,7	132,9
$Fe - C^1 - C^2$	75,0	75,0	77,7	76,5	76,6	86,3	77,4	77,9
Fe—C ¹ —Mn	89,9	90,0	97,0	92,8	108,8	86,3	88,0	90,1
$Mn - C^1 - C^2 - C^{Ph}$		172,8	165,1	30,7	12,9		175,1	37,5
$C^{1}-C^{2}-C^{Ph}-(C_{6}H_{5})$		179,8	173,9	28,1	-48,5		5,5	127,4
ΔE		0,0	8,6	15,9	20,6		0,0	7,6

Рассчитанные и экспериментальные структурные параметры (длины связей, Å, углы, град.) и относительные энергии ΔE (ккал/моль) комплексов η^4 -{C[Mn(CO)(L)Cp](CO)CHPh}Fe(CO)₃ (L = CO, PPh₃)

Энергии комплексов даны относительно самых стабильных изомеров Ea (L = PPh₃) и E (L = CO).

Структура комплексов 3-PPh3 кардинально отличается от 2-PPh3 тем, что карбонильная группа $C^{3}O^{3}$ мигрирует от атома железа к центру C^{1} винилиденового лиганда. При этом винилиденовый фрагмент поворачивается таким образом, что лиганд C³O³ образует σ-связь с центром C^1 (а не атомом Fe, как в **2-РРh3**), а *sp*²-гибридизованный атом C^1 лежит в плоскости атомов Mn, C² и C³ (сумма углов составляет 350—358°). Длина связи C¹—C³ уменьшается с 2,5— 2,6 Å в **2-РРh3** до 1,39 Å в **3-РРh3** и становится сопоставимой с длиной связи C¹—C² винилиденового фрагмента, которая, в свою очередь, увеличивается с 1,33 в 2-PPh3 до 1,42 Å в 3-PPh3. Таким образом, связи C¹—C³ и C¹—C² имеют характерную для полуторной связи C—C длину 1,44 Å. Длина связи С³—О³ увеличивается с 1,14 в **2-РРh3** до 1,19 Å, что также свидетельствует об уменьшении порядка связи с 3 до 2,5. Следовательно, можно говорить об образовании C²=C¹=C³=О лиганда с делокализованным характером связи, η³-связанным с атомом железа. Связи Fe—C¹ и Fe—C³ имеют схожую длину, 2,01—2,06 и 1,96—2,10 Å соответственно, тогда как длины связи Fe—C² несколько больше, 2,18—2,21 Å. C¹ центр лежит на оси C_3 фрагмента Fe(CO)₃, имеющего локальную $C_{3\nu}$ -симметрию; фрагменты Mn(C¹)C²C³ и Fe(CO)₃ расположены в шахматном порядке друг к другу (имеют заторможенную конформацию). Этот результат подтверждает данные эксперимента [8] о том, что комплекс **3-PPh3** является гетерометаллическим аналогом комплексов ТММ-типа [5], где роль специального лиганда выполняет фрагмент $Cp(CO)(PPh_3)Mn(C^1)(C^3O^3)C^2HPh.$

Такая более компактная структура железосодержащего и фенилвинилиденового фрагментов делает менее напряженной структуру вокруг атома марганца. Так, угол Mn—C¹—C² уменьшается с 141—146 до 124—127° в *Е*-изомерах **3-PPh3** комплексов. Длины связей Mn—C¹ и Mn—C⁴ становятся не чувствительны к положению объемного трифенилфосфинового лиганда. Пространственная структура самого стабильного из четырех стереоизомеров — комплекса **3Ea-PPh3** с близкорасположенными группами Ph и PPh₃ — согласуется с экспериментально определенной структурой [8]. Отклонение длин связей и углов не превышает 0,04 Å и 2° (0,07 Å для атома P). По своим параметрам изомер **3Ea-PPh3** заметно отличается от других конформеров, в первую очередь более короткой длиной связи металл—металл 2,87 Å. Для сравнения, длина связи Mn—Fe в **3Za-PPh3** комплексе составила 2,94 Å, тогда в комплексах **b**-типа она вовсе отсутствует — расстояние Mn—Fe (>3 Å) превышает сумму ковалентных радиусов Mn (1,39 Å) и Fe (1,32 Å) [20].

Другим заметным отличием является длина связи Mn—P: в изомере **3Ea-PPh3** она составила 2,37 Å (2,32 Å в моноядерном комплексе **1-PPh3**), тогда как в других изомерах комплекса **3-PPh3** (и во всех изомерах комплексов **2-PPh3**) она составляет более 2,41 Å, что близко к сумме ковалентных радиусов Mn и P, 2,45 Å [20]. Таким образом, можно сделать вывод о слабой связанности лиганда PPh₃ в этих структурах и склонности его к диссоциации.

Наши расчеты показали, что энергия изомера **3Ea-PPh3** ниже энергий всех изомеров комплекса **2-PPh3** на 9 ккал/моль и более (табл. 3). Эта ситуация отличается от таковой для гексакарбонильных комплексов: комплексы **2-CO** и **3E-CO** имеют примерно одинаковую энергию [9] и согласно данным ИК и ЯМР исследований оба присутствуют в растворе. Экспериментальное наблюдение, что единственным зафиксированным в растворе *н*-гексана является комплекс **3-PPh3**, а интермедиаты **2-PPh3** не обнаруживаются [8], согласуется с рассчитанной нами более высокой стабильностью изомера **3Ea-PPh3**.

Обсуждение лигандного эффекта. Согласно ранним работам Толмана [21, 22], изменения в структуре и свойствах комплексов, вызванные введением фосфинового лиганда PR₃, традиционно объясняют двумя эффектами. Первый — электронный эффект $E_{\rm eff}$ — обусловлен электронно-донорными свойствами группы PR₃, величина которых определяется понижением частоты A_1 -колебания v(CO) в комплексе (R₃P)Ni(CO)₃ по сравнению с таковой в комплексе Ni(CO)₄ вследствие переноса электронной плотности с атома металла на разрыхляющие π^* орбитали группы CO [23]. Второй — стерический эффект $S_{\rm eff}$ — обусловлен размером лиганда PR₃ и приближенно оценивается величиной конического угла θ [21, 22]. Позднее были предложены и другие параметры для оценки $E_{\rm eff}$ и $S_{\rm eff}$ [24], базирующиеся на оценке редокспотенциала, минимума электростатического потенциала $V_{\rm min}$ [12, 13], симметричной деформационной координаты S4 [25].

Наше теоретическое исследование не показало наличия каких-либо существенных изменений в электронной структуре (в частности, зарядов на атомах металлов) комплексов **2-PPh3** по сравнению с комплексами **2-CO**, которые могли бы повлечь их дестабилизацию. Для выяснения причин дестабилизации комплексов Cp(CO)(L)MnFe(μ -C=CHPh)(CO)₄ при замене CO на фосфиновый лиганд нами было проведено сравнение параметров комплексов **2Eb** и **3Ea** с лигандами L постепенно увеличивающегося размера PH₃ < PPhH₂ < PPh₂H < PPh₃. Согласно классическим представлениям Толмана [21, 22], лиганды в данном ряду характеризуются постепенно увеличивающимся коническим углом (PH₃ = 87°, PPhH₂ = 101°, PPh₂H = 128°, PPh₃ = = 145°). В этом же ряду растет и величина минимума MES-потенциала (PH₃ = 28,22, PPhH₂ = = 28,63 и PPh₃ = 34,20 ккал/моль) [13].

Как видно из табл. 3, увеличение размера фосфинового лиганда по-разному сказывается на энергиях комплексов **2Eb** и **3Ea**, рассчитанных относительно суммы исходных моноядерных комплексов. Так, замена одного и двух атомов H на фенильные кольца приводит к повышению энергии комплекса **3Ea** с -13.9 (для L = PH₃) до -13.3 (для L = PPhH₂) и -11.8 ккал/моль (для L = PPh₂H) вне зависимости от местоположения C₆H₅-группы. Введение третьего объемного фенильного заместителя более заметно повышает энергию комплекса **3Ea** до -7.9 ккал/моль.

Замена уже первого атома H на C₆H₅-группу вызывает повышение энергии комплекса **2Eb** до -8 ккал/моль (вне зависимости от положения C₆H₅-группы). Это значение изменяется до -4,7 и -7,0 ккал/моль при второй замене H \rightarrow C₆H₅, причем дестабилизация комплекса сильнее в случае, если оба фенильных кольца PPh₂H лиганда находятся в контакте с CO группами при

Таблица 3

L	Относі энері	Длины связей Mn—Р				
	1b+Fe(CO) ₄	2Eb	3Ea	1b	2Eb	3Ea
СО	0,0	-10,2	-10,9			_
PH ₃	0,0	-11,0	-13,9	2,24	2,28	2,27
PH_2Ph^6	0,0	-8,4	-13,3	2,24	2,29	2,27
$\mathrm{PH}_{2}\mathrm{Ph}$	0,0	-7,8	-13,6	2,25	2,31	2,29
PHPh2 ⁶	0,0	-4,7	-11,9	2,25	2,32	2,30
PHPh ₂	0,0	-7,0	-11,8	2,26	2,34	2,31
PPh ₃	0,0	1,2	-7,9	2,30	2,43	2,37

Рассчитанные относительные энергии ΔE (ккал/моль) и длины связи Mn—P (Å) комплексов Cp(CO)(L)Mn(μ-C=CHPh) (1), Cp(CO)(L)MnFe(μ-C=CHPh)(CO)₄ (2) и η⁴-{C[Mn(CO)(L)Cp](CO)CHPh}Fe(CO)₃ (3)

^а Энергии ΔE биядерных комплексов **2** и **3** даны относительно суммы моноядерных комплексов **1** и Fe(CO)₄ и рассчитаны по формулам $\Delta E = E[\mathbf{2}] - E[\mathbf{1}] - E[Fe(CO)_4]$ и $\Delta E = E[\mathbf{3}] - E[\mathbf{1}] - E[Fe(CO)_4]$ для каждого типа лигандов L.

⁶ Фенильные кольца в фосфиновом лиганде находятся в контакте с лигандами при атоме железа.

атоме железа. Введение третьего заместителя C₆H₅ резко (до 1,2 ккал/моль) дестабилизирует комплекс **2-PPh3** относительно суммы исходных моноядерных комплексов.

Наиболее заметным изменением в структуре комплексов 2 и 3 при увеличении размера фосфинового лиганда является длина связи Mn—P. В частности, при переходе от лиганда PPh₂H к PPh₃ длина связи Mn—P растет с 2,30 до 2,37 Å в комплексе 3 и с 2,34 до 2,43 Å в комплексе 2. Таким образом, вероятной причиной дестабилизации изомеров 2-PPh3 является слабая связь фосфинового лиганда с атомом марганца вследствие его большого размера и склонности к диссоциации.

выводы

В настоящей работе методом функционала плотности выполнены расчеты структуры биядерных железо-марганцевых комплексов, существующих в винилиденовой Cp(CO)(L)MnFe(μ -C=CHPh)(CO)₄ и бензилиденкетеновой η^4 -{C[Mn(CO)(L)Cp](CO)CHPh}Fe(CO)₃ формах. Для каждой из форм рассмотрены по четыре изомера, отличающиеся положением лиганда L и заместителя Ph, и определены их относительные стабильности. На основании более высокой стабильности бензилиденкетенового комплекса обосновано экспериментальное наблюдение о существовании комплекса исключительно в этой форме. Установлена корреляция между размером лиганда L, длиной связи Mn—P и стабильностью комплексов.

Работа выполнена при финансовой поддержке Президиума РАН (проект № 15 программы № 8). Авторы благодарны Сибирскому суперкомпьютерному центру (Новосибирск) за предоставленные вычислительные ресурсы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Antonova A.B. // Coord. Chem. Rev. 2007. 251. P. 1521.
- 2. Kolobova N.E., Ivanov L.L., Zhvanko O.S. et al. // J. Organomet. Chem. 1982. 228. P. 265.
- 3. Werner H., Garcia Alonso F.J., Otto H. et al. // Chem. Ber. 1988. 121. P. 1565.
- 4. Andrianov V.G., Struchkov Yu.T., Kolobova N.E. et al. // J. Organomet. Chem. 1976. 122. P. 33.
- 5. Churchill M.R., Gold K. // Inorg. Chem. 1969. 8. P. 401.

- 6. Birk R., Berke H., Huttner G., Zsolnai L. // Chem. Ber. 1988. 121. P. 471.
- 7. Ara I., Berenguer J.R., Fornies J., Lalinde E., Tomas M. // Organometallic. 1996. 15. P. 1014.
- 8. Antonova A.B., Chudin O.S., Vasiliev A.D. et al. // J. Organomet. Chem. 2011. 696. P. 963.
- 9. Ivanova Shor E.A., Nasluzov V.A., Shor A.M. et al. // J. Organomet. Chem. 2011. 696. P. 3445.
- 10. Cavallo L., Solà M. // J. Am. Chem. Soc. 2001. 123. P. 12294.
- 11. Gonsalvi L., Adams H., Sunley G.J. et al. // J. Am. Chem. Soc. 2002. 124. P. 13597.
- 12. Suresh C.H. // Inorg. Chem. 2006. 45. P. 4982.
- 13. Mathew J., Thomas T., Suresh H. // Inorg. Chem. 2007. 46. P. 10800.
- 14. Chung L.W., Sameera W.M.C., Ramozzi R. et al. // Chem. Rev. 2015. 115. P. 5678.
- 15. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. 37. P. 785.
- 16. Vosko S., Wilk L., Nussair M. // Can. J. Phys. 1980. 58. P. 1200.
- 17. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT, 2013.
- 18. Schaefer A., Huber C., Ahlrichs R. // J. Chem. Phys. 1994. 100. P. 5829.
- 19. Johansson A.A., Antonova A.B., Pavlenko N.I. et al. // J. Mol. Struct. 1997. 408. P. 329.
- 20. Cordero B., Gómez V., Platero-Platz A.E. et al. // Dalton Trans. 2008. P. 2832.
- 21. Tolman Ch. // Chem. Rev. 1977. 77. P. 313.
- 22. Tolman Ch. // J. Am. Chem. Soc. 1970. 92. P. 2953.
- 23. Шор Е.А., Шор А.М., Наслузов В.А. и др. // Журн. структур. химии. 2005. 46. С. 228. (Shor E.A., Shor A.M., Nasluzov V.A. et al. // J. Struct. Chem. 2005. 46. Р. 220.)
- 24. Dunne B.J., Morris R.B., Orpen A.G. // J. Chem. Soc., Dalton Trans. 1991. P. 653.
- 25. Morris A.L., York J.T. // J. Chem. Ed. 2009. 86. P. 1408.