УДК 536.468

ХАРАКТЕРИСТИКИ ЗАЖИГАНИЯ МЕТАЛЛИЗИРОВАННОГО СМЕСЕВОГО ТВЕРДОГО ТОПЛИВА ГРУППОЙ ГОРЯЧИХ ЧАСТИЦ

Д. О. Глушков, Г. В. Кузнецов, П. А. Стрижак

Томский политехнический университет, 634050 Томск, dmitriyog@tpu.ru

Выполнено математическое моделирование твердофазного зажигания металлизированного смесевого топлива (перхлорат аммония + 14% бутилкаучука + 5% порошка алюминия + 6% пластификатора) в условиях локального нагрева несколькими источниками ограниченной энергоемкости (размеры горячей частицы $x_p = 4$ мм, $y_p = 2$ мм). При варьировании температуры нагретых стальных частиц и расстояния между ними соответственно в диапазонах $700 < T_p < 1\,500\,{\rm K}$ и $0.1x_p < \Delta x < 1.5x_p$ установлены значения T_p и Δx , при которых время задержки зажигания соответствует условиям инициирования горения смесевого топлива одиночной частицей, пластиной с постоянной температурой или несколькими частицами. В области невысоких начальных температур локальных источников ($T_p < 1\,100$ K) выявлены предельные значения $\Delta x \to 0.1 x_p$ и $\Delta x > 1.5 x_p$, при которых исследование характеристик и закономерностей зажигания топлива группой нагретых частиц можно выполнять в рамках соответственно модели пластина топливо — газ и модели одиночная частица — топливо — газ. Уменьшение расстояния Δx при $T_p < 1\,100$ К ведет к уменьшению индукционного периода до 50 % и снижению минимальной начальной температуры источника, необходимой для инициирования горения топлива, с 830 до 700 К. При T_p > 1100 К для исследования процессов зажигания металлизированного смесевого твердого топлива одиночными и несколькими частицами можно использовать относительно простые одномерные модели зажигания конденсированных веществ пластиной с постоянной температурой. При этом изменение времени задержки зажигания не превышает 5 %.

Ключевые слова: металлизированное смесевое твердое топливо, одиночная горячая частица, совокупность горячих частиц, пластина, теплоотвод, зажигание, моделирование.

DOI 10.15372/FGV20160609

ВВЕДЕНИЕ

Исследование условий реализации и характеристик процессов прогрева и зажигания высокоэнергетических твердых конденсированных веществ является актуальной задачей в связи с широким применением таких материалов в качестве топлива [1–6] в двигателях и газогенераторах различного назначения.

Для практического приложения большой интерес представляют результаты изучения высокотемпературного (выше 500÷600 K) [7] инициирования горения смесевых твердых топлив (СТТ). Как правило, зажигание высокоэнергетических материалов реализуется при воздействии на их поверхность лазерного излучения [8–10], потока электронов [11–13], теплового импульса [14], нагретого до высокой температуры газа [15–17], радиационного теплового потока [17–19], накаленного тела [20–24].

Развитие устойчивого переходного процесса в наиболее распространенных методах конвективного или радиационного подвода энергии характеризуется относительно высокими энергозатратами по сравнению со случаем зажигания горячими частицами малых (несколько миллиметров) размеров. Результаты исследований [25-28] позволили установить, что зажигание конденсированных веществ, в том числе и металлизированных смесевых топлив [29, 30], возможно в условиях локального нагрева источником ограниченной энергоемкости. Тепловой поток 30 кВт/м² при кондуктивном теплопереносе от одиночной горячей частицы в конденсированную фазу является минимальным [29]. При его превышении реализуется устойчивое зажигание топлива. Можно отметить, что это значение теплового потока в десять раз меньше, чем при зажигании баллиститного состава световым импульсом [8].

Как правило, процесс инициирования горения высокоэнергетических материалов при различных способах подвода энергии харак-

Работа выполнена при поддержке Российского научного фонда (проект № 15-19-10003).

[©] Глушков Д. О., Кузнецов Г. В., Стрижак П. А., 2016.

теризуется пространственно-временной неизотермичностью, определяемой отношением характерного времени прогрева образца к времени химического превращения $t_h \gg t_r$. Эта особенность хорошо соответствует положениям современной макрокинетики [7, 31, 32]. В случае локального нагрева конденсированных веществ источниками ограниченной энергоемкости [25–30, 33–35] нестационарность процесса выражена более существенно вследствие влияния сопряженного теплопереноса в системе частица — топливо — газ на интенсивность экзотермического реагирования в конденсированной фазе в течение индукционного периода.

При кондуктивном нагреве условия зажигания конденсированных веществ несколькими нагретыми частицами могут отличаться от условий зажигания одиночной частицей или пластиной, что преимущественно связано с динамикой поля температуры в зоне экзотермического реагирования.

Целью настоящей работы является численный анализ условий и характеристик зажигания металлизированного смесевого твердого топлива несколькими нагретыми до высокой температуры частицами.

ПОСТАНОВКА ЗАДАЧИ

Математическое моделирование процессов, протекающих при взаимодействии нескольких локальных источников энергии с металлизированным СТТ, выполнено в системе две частицы — СТТ — газ (рис. 1). Переход к группе трех, четырех и более частиц не вносит в постановку задачи каких-либо принципиальных изменений. В результате численных исследований газофазного зажигания жидких конденсированных веществ [36] и полимерных материалов [37] установлено, что при различном количестве нагретых частиц на поверхности вещества условия инициирования горения определяются расстоянием между двумя соседними источниками. Поэтому при постановке задачи учтены полученные ранее теоретические следствия [36, 37].

Исследовалось смесевое топливо состава перхлорат аммония + 14 % бутилкаучука + 5 % порошка алюминия + 6 % пластификатора с известными теплофизическими и термохимическими характеристиками. При постановке задачи учтена структурная неоднородность СТТ, обусловленная мелкодисперсными частицами алюминия (см. рис. 1). В топливе выде-

Рис. 1. Схема области решения задачи зажигания:

1 — инертный газ, 2 — горячая частица, 3 — смесевое твердое топливо, 4 — частица алюминия

лены участки, соответствующие частицам металла, полимерной матрице горючего и окислителя (бутилкаучук и перхлорат аммония).

В качестве локальных источников энергии (см. рис. 1) рассмотрены нагретые до высокой температуры стальные частицы в форме параллелепипеда малых размеров.

Предполагалась реализация следующей схемы процесса. В начальный момент времени (t = 0) горячие частицы инерционно осаждаются на поверхность металлизированного топлива на расстоянии Δx друг от друга (см. рис. 1). По мере аккумулирования энергии приповерхностным слоем топлива скорость экзотермического реагирования полимерной матрицы экспоненциально возрастает по закону Аррениуса [31]. При достижении условий, соответствующих критериям зажигания, процесс инициирования горения приобретает необратимый характер. Происходит твердофазное зажигание топлива.

В теоретических исследованиях, как правило, используют один из четырех критериев [28] инициирования горения конденсированных веществ горячим телом с конечным запасом тепла. Согласно критерию Я. Б. Зельдовича [38] момент зажигания определяется по времени установления нулевого градиента на границе частицы с конденсированным веществом. В работе [39] моментом зажигания считалось установление равенства теплоприходов от внешнего источника и от экзотермического химического процесса в топливе. В [40, 41] момент зажигания соответствовал резкому росту температуры и выгоранию конденсированного вещества в какой-либо точке. В [42] зажигание происходило при условии равенства нулю производной по времени от температуры поверхности горячего тела.

В данной работе, аналогично [29], приняты условия зажигания, соответствующие основным критериям воспламенения Д. А. Франк-Каменецкого, Я. Б. Зельдовича, А. А. Ковальского и В. Н. Вилюнова [31, 38–41, 43].

1. Скорость теплоприхода в системе (см. рис. 1) за счет экзотермической реакции в прогретой области приповерхностного слоя конденсированного вещества превышает скорость теплоотвода от горячих частиц в топливо и

окружающий газ $\left(\frac{dQ_3}{dt} > \left|\frac{dQ_2}{dt}\right|\right)$.

2. Температура СТТ в зоне локализации интенсивно развивающегося экзотермического процесса выше начальной температуры источников энергии.

Для наиболее общего случая математическое описание условий зажигания сформулировано в [44, 45]:

$$\left[2\lambda\rho QK_0\int_T^{T_s}\exp\left(-\frac{E_1}{RT}\right)dT\right]^{1/2} \ge$$

$$\geq -\lambda \left(\frac{\partial T}{\partial x}\right)_{x=xr}$$

Это выражение, описывающее соотношение суммарного тепловыделения в зоне экзотермической химической реакции и теплоотвода из этой зоны в глубь топлива, после приближенного вычисления интеграла и приведения к безразмерному виду может быть использовано в качестве критерия подобия условий зажигания:

$$-\left[2\lambda\rho QK_{0}\exp\left(-\frac{E_{1}}{RT_{s}}\right)\frac{RT_{s}^{2}}{E_{1}}\right]^{1/2} / \left| \left[K\lambda\left(\frac{\partial T}{\partial x}\right)_{x=x_{r}}\right] \ge 1, \quad (1)$$

где ρ , λ — плотность и теплопроводность топлива, Q, K_0 , E_1 — константы скорости тепловыделения, R — универсальная газовая постоянная, T_s — температура поверхности топлива, K — константа, характеризующая различные критерии зажигания [44], x_r — характерная ширина зоны реакции, определяемая расстоянием, на котором скорость тепловыделения уменьшается в e раз по сравнению с максимальной.

Установлено, что при варьировании константы K в выражении (1) можно получить значения времени задержки зажигания и температуры поверхности топлива (рис. 2), соответствующие различным критериям зажигания [44]. Анализ изменения температуры поверхности топлива в процессе нагрева позволяет сделать вывод о довольно существенном различии температуры при использовании различных критериев зажигания. При этом времена задержки зажигания в рассматриваемых условиях очень близки (см. рис. 2). Такой результат является следствием интенсивного тепловыделения при инициировании горения топлива.

В данной работе необходимость выполнения двух указанных выше условий зажигания, в отличие от задач [38–45], обусловлена пространственно-временной неизотермичностью процесса. Горячая частица малых размеров имеет ограниченный запас тепла. Кроме того, часть поверхности топлива охлаждается, так же как и частица — источник нагрева. В течение индукционного периода возможен вариант, при котором будет выполняться пер-

Рис. 2. Изменение температуры поверхности топлива в процессе нагрева при коэффициенте теплоотдачи $\alpha = 42 \text{ Br}/(\text{m}^2 \cdot \text{K})$ [44]

вое условие: скорость теплоприхода в систему за счет экзотермической реакции в приповерхностном слое конденсированного вещества превышает скорость теплоотвода от горячей частицы в топливо и окружающий газ. Однако зажигания не произойдет вследствие малого запаса энергии локального источника. Теоретически возможна ситуация, когда в результате отвода тепла от источника и конденсированного вещества температура вещества после роста в начальный период времени понизится на границе контакта с горячей частицей. Первое условие будет выполнено, но скорость экзотермического процесса химического реагирования не достигнет необходимого для зажигания значения. Выделяющейся в приповерхностном слое топлива энергии будет недостаточно для поддержания саморазвивающейся реакции. Второе условие (превышение температурой топлива в зоне экзотермической реакции значения начальной температуры источника энергии) позволяет учесть снижение температуры частицы — источника нагрева в течение индукционного периода. Выполнение этого условия гарантирует зажигание. В результате инертного прогрева температура топлива ни при каких обстоятельствах не может подняться выше начальной температуры горячей частицы.

Численные исследования выполнены при следующих допущениях.

1. На границе горячая частица — топливо реализуются условия идеального теплового контакта. Оценка влияния шероховатости поверхности СТТ на время задержки зажигания позволила установить [34], что относительное отклонение результатов не превышает 10 % в условиях идеального и неидеального (из-за наличия газового зазора) теплового контакта на границе локального источника энергии и топлива.

2. Возможное выгорание топлива не учитывается. В результате анализа влияния этого фактора установлено [35], что при локальном нагреве конденсированного вещества учет выгорания прогретой области приповерхностного слоя в окрестности контакта с горячей частицей приводит к увеличению времени задержки зажигания топлива не более чем на 8.3 %.

3. Кинетические параметры экзотермической реакции, протекающей в прогретой области приповерхностного слоя топлива без фазовых превращений, постоянны. Предполагается реализация одной эффективной реакции [7], в которой участвует одно вещество с известными значениями энергии активации, теплового эффекта и предэкспоненциального множителя.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ И МЕТОД РЕШЕНИЯ

Задача зажигания металлизированного СТТ горячими частицами в форме параллелепипеда решена в декартовой системе координат (см. рис. 1). Процессы теплопереноса в газовой среде, локальных источниках энергии, полимерной матрице, частицах алюминия, а также процессы экзотермического реагирования в прогретой области приповерхностного слоя СТТ описаны следующей системой дифференциальных уравнений теплопроводности: для газа

$$\rho_1 c_1 \frac{\partial T_1}{\partial t} = \lambda_1 \left(\frac{\partial^2 T_1}{\partial x^2} + \frac{\partial^2 T_1}{\partial y^2} \right); \tag{2}$$

для горячих стальных частиц — источников энергии

$$\rho_2 c_2 \frac{\partial T_2}{\partial t} = \lambda_2 \left(\frac{\partial^2 T_2}{\partial x^2} + \frac{\partial^2 T_2}{\partial y^2} \right); \tag{3}$$

для полимерной матрицы с учетом экзотермического реагирования

$$\rho_3 c_3 \frac{\partial T_3}{\partial t} = \lambda_3 \left(\frac{\partial^2 T_3}{\partial x^2} + \frac{\partial^2 T_3}{\partial y^2} \right) + Q_3 W_3; \quad (4)$$

для частиц алюминия

$$\rho_4 c_4 \frac{\partial T_4}{\partial t} = \lambda_4 \left(\frac{\partial^2 T_4}{\partial x^2} + \frac{\partial^2 T_4}{\partial y^2} \right). \tag{5}$$

Здесь

$$W_3 = \rho_3 k_3^0 \exp\left(-\frac{E_3}{RT_3}\right) \tag{6}$$

— массовая скорость экзотермической реакции в прогретой области приповерхностного слоя СТТ [31], кг/(м³ · c); t — время, c; x, y — координаты, м; T — температура, К; λ — теплопроводность, Вт/(м·К); ρ плотность, кг/м³; c_i — удельная теплоемкость, Дж/(кг · К); Q_3 — тепловой эффект экзотермической реакции в прогретой области приповерхностного слоя СТТ, Дж/кг; k_3^0 предэкспоненциальный множитель, с⁻¹; E_3 энергия активации, Дж/моль; индексы 1, 2, 3, 4 соответствуют газу, горячей стальной частице, полимерной матрице, частице алюминия.

Начальные условия: в области решения задачи (см. рис. 1) задано равномерное начальное распределение температуры в газовой среде и металлизированном СТТ ($T = T_0$), а также в локальных источниках энергии ($T = T_q$).

Граничные условия: на границе контакта веществ с отличающимися теплофизическими характеристиками (полимерная матрица, частицы алюминия, инертный газ, источники энергии) в области решения задачи зажигания (см. рис. 1) приняты условия идеального теплового контакта:

$$\lambda_i \frac{\partial T_i}{\partial x} = \lambda_j \frac{\partial T_j}{\partial x}, \quad T_i = T_j;$$

$$\lambda_i \frac{\partial T_i}{\partial y} = \lambda_j \frac{\partial T_j}{\partial y}, \quad T_i = T_j;$$

на внешних границах этой области заданы условия отсутствия градиентов температуры (тепловая волна от локальных источников за время задержки зажигания t_{ind} не успевает дойти до границ области решения задачи):

$$\frac{\partial T_i}{\partial x} = 0, \quad \frac{\partial T_i}{\partial y} = 0.$$

При разработке алгоритма численного решения системы уравнений (2)–(6) с соответствующими начальными и граничными условиями, описывающими физико-химические процессы при инициировании горения металлизированного СТТ, использованы методы [46, 47] конечных разностей, локально-одномерный, простых итераций, прогонки. Расчет характеристик зажигания выполнен с шагами по координате 10 мкм и по времени 0.1 мкс. На каждом шаге по времени контролировалось выполнение сформулированных условий зажигания металлизированного СТТ.

Верификация результатов математического моделирования состояла из тестирования численных методов и элементов алгоритма решения системы уравнений (2)–(6). При решении нелинейной задачи химической кинетики о зажигании нитроклетчатки нагретой пластиной с постоянной температурой установлена удовлетворительная корреляция результатов численного исследования с данными экспериментов [7, 22]. При варьировании начальной температуры горючего в широком диапазоне отклонение вычисленных значений $t_{ind}/(T_p$ –

Рис. 3. Результаты численного моделирования (ромбы) и экспериментального исследования (линия и точки) [7, 22] зажигания образцов нитроклетчатки при варьировании их начальной температуры ($T_p = 498$ K)

 T_0) относительно аппроксимационной прямой составило $6 \div 7 \%$ (рис. 3).

Консервативность используемой разностной схемы проверена по методике, приведенной в [34]. Погрешность выполнения закона сохранения энергии в исследуемой системе (см. рис. 1) составила не более 1.5 %.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Моделирование физико-химических процессов при инициировании горения металлизированного СТТ горячими стальными частицами выполнено при следующих значениях параметров: начальная температура топлива и газа $T_0 = 293$ К, локальных источников энергии $T_p = 700 \div 1500$ К; размеры горячих частиц $x_p = 4$ мм, $y_p = 2$ мм; размеры частиц алюминия $x_m = 0.08$ мм, $y_m = 0.08$ мм; размеры области решения $x_l = 8$ мм, $y_h = 8$ мм. Теплофизические характеристики [48–55] веществ (см. рис. 1):

$$\begin{split} \lambda_1 &= 0.026 \ \mathrm{Bt}/(\mathrm{M}\cdot\mathrm{K}), \ \rho_1 &= 1.161 \ \mathrm{kr}/\mathrm{M}^3, \\ c_1 &= 1\,190 \ \mathrm{Jk}/(\mathrm{kr}\cdot\mathrm{K}); \\ \lambda_2 &= 36 \ \mathrm{Bt}/(\mathrm{M}\cdot\mathrm{K}), \ \rho_2 &= 8\,100 \ \mathrm{kr}/\mathrm{M}^3, \\ c_2 &= 545 \ \mathrm{Jk}/(\mathrm{kr}\cdot\mathrm{K}); \\ \lambda_3 &= 0.472 \ \mathrm{Bt}/(\mathrm{M}\cdot\mathrm{K}), \ \rho_3 &= 1\,776 \ \mathrm{kr}/\mathrm{M}^3, \\ c_3 &= 1\,260 \ \mathrm{Jk}/(\mathrm{kr}\cdot\mathrm{K}); \\ \lambda_4 &= 343 \ \mathrm{Bt}/(\mathrm{M}\cdot\mathrm{K}), \ \rho_4 &= 2\,700 \ \mathrm{kr}/\mathrm{M}^3, \\ c_4 &= 930 \ \mathrm{Jk}/(\mathrm{kr}\cdot\mathrm{K}). \end{split}$$

Кинетические параметры экзотермического реагирования полимерного горючего и окислителя [48–51]: $E_3 = 50 \cdot 10^3 \text{ Дж/моль}, Q_3 k_3^0 =$

 $1.69 \cdot 10^9$ Дж/(кг · c).

Задача исследования зажигания (см. рис. 1) состояла в установлении «совместного» влияния двух нагретых до высокой температуры стальных частиц на основную характеристику процесса — время задержки зажигания t_{ind} металлизированного СТТ. Анализ влияния изменения условий теплопередачи от локального источника энергии в приповерхностный слой топлива за счет газовыделения при выгорании прогретой области СТТ не проводился. В [35] установлено несущественное (менее 5 %) выгорание полимерной матрицы на поверхности топлива в условиях вырожденного режима зажигания [56]. В [30] проведено экспериментальное исследование зажигания модельного СТТ (перхлорат аммония + 14 % бутилкаучука + 5 % порошка алюминия + 6 % пластификатора) одиночной, нагретой до высокой температуры $(T_p = 1200 \text{ K})$ стальной частицей в форме диска размерами $r_p = 3$ мм, $y_p = 2$ мм; газовыделения на границе горячая частица топливо в течение индукционного периода не обнаружено. Частица до момента появления пламени сохраняла неподвижное положение относительно поверхности СТТ. Интенсивная газификация инициировалась лишь после резкого ускорения экзотермической реакции в приповерхностном слое топлива, когда горение принимало стационарный характер. Результаты экспериментального исследования [30] являются основанием для вывода об отсутствии (или пренебрежимо малом значении) влияния газовыделения на характеристики зажигания СТТ.

Для одиночных частиц установлено [26-30, 33-37], что основным фактором, характеризующим длительность индукционного периода, является энергетический запас локального источника энергии, который в большей степени зависит от его начальной температуры T_{p} . Для группы частиц также целесообразен аналогичный анализ характеристик зажигания при варьировании расстояния между частицами. Существенное влияние на развитие экзотермического процесса оказывает интенсивность теплообмена источника энергии с топливом и окружающей средой. Изменение температуры частицы обусловлено стоком тепла в металлизированное CTT и инертный газ. В условиях твердофазного механизма инициирования горения представляется возможным исследовать изменение характеристик зажигания рассматриваемого состава СТТ несколькими локальными источниками энергии за счет изменения условий теплообмена в системе (см. рис. 1) на примере двух соседних частиц, расположенных на его поверхности.

Математическое моделирование выполнено при варьировании начальной температуры нагретых стальных частиц в диапазоне 700 < $T_p < 1500$ K, а также при изменении расстояния между ними в интервале $0.1x_p < \Delta x <$ 1.5x_p. На рис. 4 приведены зависимости времени задержки зажигания металлизированного СТТ от начальной температуры источника энергии в виде одиночной частицы; двух частиц, расположенных на расстоянии, равном характерному размеру последней, $\Delta x = x_p$; двух частиц на расстоянии $\Delta x = 0.5 x_p$ друг от друга; пластины толщиной y_p с постоянной температурой. Как показали расчеты, в области относительно невысоких начальных температур $T_p < 1100$ К в предельных случаях $\Delta x = 1.5 x_p$ и $\Delta x = 0.1 x_p$ зависимости $t_{ind}(T_p)$ аналогичны зависимостям для одиночной частицы и пластины соответственно. Полученный результат позволяет сделать вывод, что в предельных случаях анализ характеристик зажигания топлива несколькими локальными источниками энергии можно выполнять в рамках модели одиночная частица — СТТ — газ (при $\Delta x > 1.5 x_p$) или модели пластина — СТТ газ (при $\Delta x \to 0.1 x_p$). При средних значениях Δx необходимо использовать модель две частицы — СТТ — газ. Уменьшение расстоя-

Рис. 4. Зависимость времени задержки зажигания металлизированного твердого топлива от начальной температуры источника энергии $(x_p = 4 \text{ мм})$

Рис. 5. Распределение температуры в области решения задачи в момент зажигания металлизированного твердого топлива одиночной частицей $t_{ind} = 0.788$ с (*a*) и двумя частицами $t_{ind} = 0.698$ с (*б*) ($T_p = 1\,000$ K)

ния между частицами при $T_p < 1100$ К (см. рис. 4) приводит к снижению времени задержки зажигания (до 50 %) и минимальной начальной температуры, необходимой для инициирования горения металлизированного СТТ (с 830 до 700 К). Отток тепла от локальных источников в направлении координаты x снижается (рис. 5). Тепловой поток в конденсированную фазу возрастает. В результате прогрева приповерхностного слоя скорость экзотермической реакции увеличивается, зажигание происходит

при меньшем времени задержки.

Также установлено, что при $T_p > 1\,100$ К характеристики процесса зажигания топлива пластиной, одиночной частицей и группой частиц (в широком диапазоне варьирования Δx) отличаются не более чем на 5 % (см. рис. 4). Этот результат можно объяснить тем, что с повышением T_p возрастает теплосодержание локальных источников энергии и уменьшается влияние соседних частиц на интенсивность прогрева приповерхностного слоя СТТ. Вследствие относительно малой теплопроводности полимерной матрицы, а также высокого значения градиента температуры на границе горячая частица — топливо, время химического превращения снижается относительно характерного времени прогрева приповерхностного слоя [7]. Можно сделать вывод, что при $T_p > 1100 \text{ K}$ для определения продолжительности процесса инициирования горения металлизированного СТТ применимы относительно простые одномерные модели зажигания конденсированных веществ пластиной с постоянной температурой.

На рис. 6 приведены значения глубины прогрева h_w металлизированного СТТ в момент зажигания. Полученные минимальные значения ($h_w > 0.6$ мм при $T_p = 1500$ K) превышают глубину прогретого слоя топлива ($h_w = 0.02 \div 0.1$ мм) [50] при его стационарном горении, что согласно теоретическим следствиям [29] соответствует условиям реализации устойчивого зажигания СТТ. Частицы алюминия в

Рис. 6. Зависимость глубины прогрева приповерхностного слоя металлизированного твердого топлива в момент зажигания от начальной температуры источника энергии ($x_p = 4 \text{ мм}$)

приповерхностном слое топлива повышают эффективную теплопроводность, что ведет к увеличению глубины прогрева на $13 \div 18$ % по сравнению с безметалльным составом [29]. Изменение h_w при варьировании Δx в большей степени характеризуется интенсивностью теплоотвода в глубь топлива, а также длительностью индукционного периода (см. рис. 4).

Сопоставление установленных результатов численного исследования с известными данными других авторов, например [20, 21, 25– 28, 38-45], представляет определенные сложности. В подавляющем большинстве случаев постановки задач численных и экспериментальных исследований весьма существенно отличаются, в том числе и по составу конденсированных веществ, что определяет их структуру, теплофизические свойства и кинетические характеристики химических реакций. Различны также условия подвода тепла (кондуктивный, конвективный, лучистый) к поверхности конденсированного вещества и характеристики источников энергии, что влияет на интенсивность (стационарный/нестационарный случай) и масштаб (пространственная неоднородность) разогрева приповерхностного слоя топлива, а также на другие не менее значимые факторы.

Среди большого разнообразия исследований стоит выделить эксперименты [20, 21] по инициированию горения конденсированных веществ локальными источниками, которые условно можно разделить на два направления: 1) зажигание конденсированных взрывчатых веществ накаленной сферой, внедренной в приповерхностный слой [20],

2) инициирование горения топлив дисперсным потоком (газ — твердые частицы) [21].

Условия экспериментов [20, 21] существенно отличаются от рассматриваемых в данной работе. Поэтому совпадение (или несовпадение) времен задержки зажигания не свидетельствует о каких-либо особенностях.

Сравнение результатов исследований различных авторов возможно при использовании универсального критерия подобия, объединяющего достаточно большое количество характеристик и параметров переходного процесса. Формально с этой целью можно использовать модифицированный критерий зажигания, например выражение (1) [44], отражающий соотношение тепловыделения в зоне экзотермической реакции и теплоотвода из этой зоны в глубь топлива. В этом случае возможно абстрагирование от деталей [57], характерных для конкретной задачи. Всё сводится только к параметрам конденсированного вещества. Использование данного подхода трудно реализуемо из-за ограниченности представляемых исходных данных и характеристик процессов разными авторами. Отсутствует возможность получения достаточной информации для проведения сравнения результатов численного моделирования и экспериментальных исследований.

В [57] отмечалось, что при классификации уровней моделей горения конденсированного вещества прежде всего следует исходить из возможности определять с их помощью область параметров системы, в которой достаточно применения более простых моделей, а также область параметров, в которой использование относительно простых моделей приведет к большим погрешностям вычисления. Именно эта идея реализована в данной работе. Кроме установленных характеристик процесса, выделены диапазоны параметров системы, при которых моделирование твердофазного зажигания металлизированного смесевого топлива в условиях локального нагрева несколькими источниками ограниченной энергоемкости можно проводить в рамках моделей взаимодействия конденсированного вещества с одиночной частицей, пластиной с постоянной температурой или группой частиц.

выводы

1. В области относительно невысоких начальных температур ($T_p < 1100$ K) численно установлены предельные значения расстояния (Δx) между локальными источниками энергии, при которых анализ характеристик и закономерностей зажигания металлизированного смесевого твердого топлива (перхлорат аммония + 14 % бутилкаучука + 5 % порошка алюминия + 6 % пластификатора) несколькими нагретыми стальными частицами можно выполнять в рамках модели одиночная частица — CTT газ (при $\Delta x > 1.5x_p$) или модели пластина — CTT — газ (при $\Delta x \rightarrow 0.1x_p$).

2. Снижение расстояния Δx между локальными источниками энергии при $T_p < 1\,100$ К ведет к уменьшению времени задержки зажигания металлизированного СТТ до 50 % и минимального значения начальной температуры нагретых частиц, необходимой для инициирования процесса горения, с 830 до 700 К. 3. При $T_p > 1100$ К изменение времени задержки зажигания металлизированного СТТ при взаимодействии с пластиной, одиночной частицей или их группой не превышает 5 %. Это позволяет рекомендовать относительно простые одномерные модели зажигания конденсированных веществ пластиной с постоянной температурой для исследования характеристик инициирования горения.

4. Частицы алюминия в составе смесевого твердого топлива повышают эффективную теплопроводность приповерхностного слоя. При уменьшении расстояния между стальными частицами — источниками энергии снижается отток тепла в направлении координаты x, при этом общий тепловой поток в конденсированную фазу возрастает. Минимальное значение глубины ($h_w = 0.6$ мм) прогретого приповерхностного слоя в момент зажигания металлизированного топлива превышает аналогичный параметр для безметалльного состава не менее чем на 13 %.

ЛИТЕРАТУРА

- Бобылев В. М. Ракетный двигатель твердого топлива как средство управления движением ракет. — М.: Машиностроение, 1992.
- Петренко В. И., Попов В. Л. Регулируемый ракетный двигатель на твердом топливе с местным форсированием горения // Физика горения и взрыва. — 1996. — Т. 32, № 3. — С. 102–106.
- Рашковский С. А., Милехин Ю. М., Ключников А. Н., Федорычев А. В. Метод модельного уравнения в теории нестационарного горения твердого ракетного топлива // Физика горения и взрыва. — 2012. — Т. 48, № 1. — С. 71–79.
- 4. Шишков А. А., Румянцев Б. В. Газогенераторы ракетных систем. М.: Машиностроение, 1981.
- 5. Ветров В. В., Дунаев В. А., Никитин В. А., Алешичева Л. И. Моделирование догорания металлических частиц в заданной области управляемого артиллерийского снаряда с газогенератором // Изв. Рос. акад. ракет. и артиллер. наук. — 2010. — № 65. — С. 40–44.
- Рашковский С. А., Милехин Ю. М., Федорычев А. В. Газогенераторы на твердом ракетном топливе с системой стабилизации расхода газа // Докл. АН. — 2015. — Т. 463, № 1. — С. 67–71.
- Штейнберг А. С. Быстрые реакции в энергоемких системах: высокотемпературное разложение ракетных топлив и взрывчатых веществ. — М.: Физматлит, 2006.

- Гусаченко Л. К., Зарко В. Е., Рычков А. Д. Зажигание и гашение гомогенных энергетических материалов световым импульсом // Физика горения и взрыва. — 2012. — Т. 48, № 1. — С. 80–88.
- Ханефт А. В., Дугинов Е. В. Влияние плавления на критическую энергию зажигания конденсированного взрывчатого вещества коротким лазерным импульсом // Физика горения и взрыва. — 2012. — Т. 48, № 6. — С. 47–53.
- Зенин А. А., Занотти К., Джулиани П. Характеристики зажигания CO₂-лазером смесевого пороха // Хим. физика. — 2014. — Т. 33, № 8. — С. 12–21.
- Адуев Б. П., Белокуров Г. М., Гречин С. С., Пузынин А. В. Детонация монокристаллов тэна, инициируемая электронным пучком // Физика горения и взрыва. — 2010. — Т. 46, № 6. — С. 111–118.
- Ханефт А. В., Дугинов Е. В., Иванов Г. А. Моделирование инициирования тэна пуч- ком электронов наносекундной длительности // Хим. физика и мезоскопия. — 2012. — Т. 14, № 1. — С. 28–39.
- Олешко В. И., Зарко В. Е., Лысык В. В., Ципилев В. П., Калмыков П. И. Инициирование энергетических смесей на основе уразанотетразиндиоксида электронным пучком // Изв. вузов. Физика. — 2013. — Т. 56, № 12-2. — С. 63–68.
- 14. Ассовский И. Г., Закиров З. Г. О зажигании газифицирующего топлива тепловым импульсом // Хим. физика. — 1987. — Т. 6, № 11. — С. 1583–1589.
- 15. Мак-Алеви Р. Ф., Кауан П. Л., Саммерфилд М. Механизм воспламенения смесевых твердых топлив горячими газами // Исследование ракетных двигателей на твердом топливе: сб. ст. — М.: Изд-во иностр. лит., 1963. — С. 397–415.
- Barzykin V. V., Merzhanov A. G. Ignition of energetic materials under conditions of complex heat exchange // J. Propul. Power. — 1995. — V. 11, N 4. — P. 816–823.
- Ассовский И. Г., Закиров З. Г., Лейпунский О. И. О зажигании и горении топлива в потоке излучающего газа // Физика горения и взрыва. — 1986. — Т. 22, № 6. — С. 20–26.
- Kumar R. K. Gas phase ignition of a composite solid propellant subjected to radiant heating // Combust. Sci. Technol. 1983. V. 30, N 1-6. P. 273–288.
- Brewster M. Q. Surface-absorption assumption for radiant heating and ignition of energetic solids // J. Thermophys. Heat Transfer. — 2006. — V. 20, N 2. — P. 348–351.
- Гольдшлегер У. И., Барзыкин В. В., Ивлева Т. П. Зажигание конденсированных ВВ накаленной сферической частицей // Физика горения и взрыва. — 1973. — Т. 9, № 5. — С. 733–740.

- Гольдшлегер У. И., Барзыкин В. В., Мержанов А. Γ. О механизме и закономерностях зажигания конденсированных систем дисперсным потоком // Физика горения и взрыва. 1971. Т. 7, № 3. С. 319–332.
- 22. Штейнберг А. С., Улыбин В. Б., Барзыкин В. В., Мержанов А. Г. О зажигании конденсированных веществ в условиях постоянства температуры на поверхности // Инж.-физ. журн. — 1966. — № 4. — С. 482–486.
- Girdhar H. L., Arora A. J. Ignition of composite solid propellants by the hot plate technique // Combust. Flame. — 1978. — V. 31. — P. 245–250.
- Князева А. Г. Зажигание конденсированного вещества горячей пластиной с учетом термонапряжений // Физика горения и взрыва. — 1992. — Т. 28, № 1. — С. 13–18.
- Urban J. L., Zak C. D., Fernandez-Pello C. Cellulose spot fire ignition by hot metal particles // Proc. Combust. Inst. — 2015. — V. 35, N 3. — P. 2707–2714.
- 26. Wang S., Chen H., Liu N. Ignition of expandable polystyrene foam by a hot particle: An experimental and numerical study // J. Hazard. Mater. 2015. V. 283. P. 536–543.
- 27. Hadden R. M., Scott S., Lautenberger C., Fernandez-Pello A. C. Ignition of combustible fuel beds by hot particles: An experimental and theoretical study // Fire Technol. — 2011. — V. 47, N 2. — P. 341–355.
- Буркина Р. С., Микова Е. А. Высокотемпературное зажигание реакционноспособного вещества горячей инертной частицей с конечным запасом тепла // Физика горения и взрыва. 2009. Т. 45, № 2. С. 40–47.
- Глушков Д. О., Кузнецов Г. В., Стрижак П. А. Об устойчивости зажигания смесевого твердого топлива локальным источником ограниченной энергоемкости // Физика горения и взрыва. — 2014. — Т. 50, № 6. — С. 54–60.
- 30. Захаревич А. В., Кузнецов В. Т., Кузнецов Г. В., Максимов В. И. Зажигание модельных смесевых топливных композиций одиночной, нагретой до высоких температур частицей // Физика горения и взрыва. — 2008. — Т. 44, № 5. — С. 54–57.
- Франк-Каменецкий Д. А. Диффузия и теплопередача в химической кинетике. — М.: Наука, 1987.
- 32. Шленский О. Ф. Горение и взрыв материалов. — М.: Машиностроение, 2014.
- 33. Глушков Д. О., Кузнецов Г. В., Стрижак П. А. Численное моделирование твердофазного зажигания металлизированного конденсированного вещества нагретой до высоких температур частицей // Хим. физика. — 2011. — Т. 30, № 12. — С. 35–41.
- 34. Глушков Д. О., Кузнецов Г. В., Стрижак П. А. Зажигание смесевого топлива горячей частицей в условиях неидеального тепло-

вого контакта // Хим. физика. — 2015. — Т. 34, № 7. — С. 39–45.

- 35. Глушков Д. О. О влиянии выгорания на интегральные характеристики зажигания металлизированного смесевого твердого топлива при локальном нагреве // Хим. физика и мезоскопия. — 2014. — Т. 16, № 1. — С. 52–59.
- 36. Кузнецов Г. В., Стрижак П. А. Зажигание конденсированных веществ при локальном нагреве. — Новосибирск: Изд-во СО РАН, 2010.
- 37. Глушков Д. О., Кузнецов Г. В., Стрижак П. А. Исследование интегральных характеристик зажигания полимерного материала несколькими нагретыми до высоких температур частицами // Пожарная безопасность. 2013. № 4. С. 27–35.
- Зельдович Я. Б., Лейпунский О. И., Либрович В. Б. Теория нестационарного горения пороха. — М.: Наука, 1975.
- Аверсон А. Э., Барзыкин В. В., Мержанов А. Г. Приближенный метод решения задач тепловой теории зажигания // Докл. АН СССР. 1968. Т. 178, № 1. С. 131–134.
- Вилюнов В. Н., Колчин А. К. О зажигании конденсированных ВВ при кондуктивном подводе тепла от сред с плохой теплопроводностью // Физика горения и взрыва. 1966. Т. 2, № 3. С. 101–109.
- 41. Вилюнов В. Н. Теория зажигания конденсированных веществ. — Новосибирск: Наука, 1984.
- 42. Гришин А. М., Субботин А. Н. О сопряженном теплообмене между нагретыми инертными телами и реакционноспособной средой // Тепло- и массоперенос. Минск: Изд-во ИТМО АН БССР, 1972. Т. 1, ч. 1. С. 286–294.
- Vilyunov V. N., Zarko V. E. Ignition of Solids. — Amsterdam: Elsevier Sci. Publ., 1989.
- Ассовский И. Γ. Физика горения и внутренняя баллистика. — М.: Наука, 2005.
- 45. Ассовский И. Г., Истратов А. Г., Лейпунский О. И. О самовоспламенении конденсированного топлива // Докл. АН СССР. — 1978. — Т. 239, № 3. — С. 625–628.
- Пасконов В. М., Полежаев В. И., Чудов Л. А. Численное моделирование процессов тепло- и массообмена. — М.: Наука, 1984.
- Самарский А. А. Теория разностных схем. М.: Наука, 1989.
- 48. **Новожилов Б. В.** Нестационарное горение твердых ракетных топлив. М.: Наука, 1973.
- 49. Штехер М. С. Топлива и рабочие тела ракетных двигателей. — М.: Машиностроение, 1976.
- 50. **Тимнат И.** Ракетные двигатели на химическом топливе: пер. с англ. — М.: Мир, 1990.
- 51. Цуцуран В. И., Петрухин Н. В., Гусев С. А. Военно-технический анализ состояния и перспективы развития ракетных топлив. — М.: МО РФ, 1999.

- 52. Чиркин В. С. Теплофизические свойства материалов: справочное руководство. — М.: Гос. изд-во физ.-мат. лит., 1959.
- 53. Варгафтик Н. Б. Справочник по теплофизическим свойствам газов и жидкостей. — М.: ООО «Старс», 2006.
- 54. **Теплотехнический** справочник. Т. 1 / под ред. В. Н. Юренева, П. Д. Лебедева. — М.: Энергия, 1975.
- Теплотехнический справочник Т. 2 / под ред. В. Н. Юренева, П. Д. Лебедева. — М.: Энергия, 1976.
- 56. Аверсон А. Э., Барзыкин В. В., Мержанов А. Г. Закономерности зажигания конденсированных взрывчатых систем при идеальном теплообмене на поверхности с учетом выгорания // Инж.-физ. журн. — 1965. — Т. 9, № 2. — С. 245–249.
- 57. Ассовский И. Г., Мержанов А. Г. Об адекватности экспериментального и теоретического моделирования горения высокоэнергетических материалов // Физика горения и взрыва. — 2013. — Т. 49, № 3. — С. 11–21.

Поступила в редакцию 29/XII 2015 г., в окончательном варианте — 2/VI 2016 г.