УДК 539.3

О ВОЗМОЖНОСТИ ЛОКАЛЬНОГО ВЫПУЧИВАНИЯ ПОВЕРХНОСТИ УПРУГОГО ПОЛУПРОСТРАНСТВА ПРИ СЖАТИИ

В. Г. Трофимов

Воронежский институт МВД Российской Федерации, 394065 Воронеж E-mail: vshmc@vor.mvd.ru

В статической постановке в рамках плоской деформации исследуется возможность локального выпучивания свободной поверхности нижней полуплоскости при сжатии. Показано, что при малых докритических деформациях в некоторых средах возможно локальное выпучивание поверхности полуплоскости. Установлено, что одной критической нагрузке сжатия соответствуют две формы локального выпучивания поверхности.

Ключевые слова: локальная неустойчивость, упругое полупространство, преобразование Фурье.

Впервые неустойчивость в целом свободной поверхности полуплоскости для несжимаемой среды исследовал М. Био [1]. Неустойчивость в целом свободной поверхности при сжатии нижней полуплоскости рассматривалась в работе [2]. Исследование локального осесимметричного выпучивания поверхности упругого полупространства при сжатии проведено в [3].

Настоящая работа посвящена изучению локального выпучивания свободной поверхности нижней полуплоскости при сжатии в статической постановке. Выпучивание поверхности исследуется в рамках плоской деформации при малых однородных докритических деформациях.

Упругое полупространство сжимается вдоль оси Ox_1 усилиями интенсивности p. Ось Ox_2 перпендикулярна свободной поверхности.

Линеаризированные уравнения устойчивости относительно возмущений перемещений $W_1(x_1, x_2), W_2(x_1, x_2)$ для ортотропного тела имеют вид [2]

$$a_{11}W_{1,11} + G_{12}W_{1,22} + (a_{12} + G_{12})W_{2,12} = 0,$$

(1)
$$(a_{12} + G_{12})W_{1,21} + (G_{12} - p)W_{2,11} + a_{22}W_{2,22} = 0,$$

где $a_{11}, a_{12} = a_{21}, a_{22}, G_{12}$ — коэффициенты упругости; дифференцирование обозначено индексами после запятой.

К системе уравнений (1) необходимо добавить граничные условия на свободной поверхности $(x_2 = 0)$

$$\sigma_{22}(x_1, 0) = 0, \qquad \sigma_{21}(x_1, 0) = 0 \tag{2}$$

и соотношения упругости

$$\sigma_{11} = a_{11}W_{1,1} + a_{12}W_{2,2}, \quad \sigma_{22} = a_{21}W_{1,1} + a_{22}W_{2,2}, \quad \sigma_{12} = \sigma_{21} = G_{12}(W_{1,2} + W_{2,1}).$$

Локальное выпучивание свободной поверхности характеризуется тем, что возмущения перемещений W_1 , W_2 должны затухать при удалении от эпицентра возмущений по поверхности (при $x_1 \to \pm \infty$) и в глубину от поверхности (при $x_2 \to -\infty$). Применим к возмущениям перемещений преобразование Фурье по координате x₁:

$$U_j(\xi, x_2) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} W_j(x_1, x_2) \exp(i\xi x_1) \, dx_1 \qquad (j = 1, 2)$$

Система уравнений (1) в результате преобразования Фурье принимает вид

$$-\xi^2 a_{11}U_1 + G_{12}U_{1,22} - i\xi(a_{12} + G_{12})U_{2,2} = 0,$$

$$-i\xi(a_{12} + G_{12})U_{1,2} - \xi^2(G_{12} - p)U_2 + a_{22}U_{2,22} = 0.$$
 (3)

Возмущения напряжений σ_{22} , σ_{21} в граничных условиях (2) выразим через возмущения перемещений W_1 , W_2 и, применив к граничным условиям преобразование Фурье, получим

$$a_{22}U_{2,2} - i\xi a_{21}U_1 = 0, \qquad U_{1,2} - i\xi U_2 = 0.$$
 (4)

Систему уравнений (3) сведем к одному уравнению относительно функции $U_1(\xi, x_2)$

$$U_{1,2222} - 2\xi^2 a U_{1,22} + \xi^4 b U_1 = 0, (5)$$

где $a = (a_{11}a_{22} - (a_{12} + G_{12})^2 + G_{12}(G_{12} - p))/(2a_{22}G_{12}); b = a_{11}(G_{12} - p)/(a_{22}G_{12}).$

Возмущения перемещений W_1 , W_2 должны затухать при удалении от свободной поверхности $x_2=0$, тем же свойством должны обладать и изображения возмущений перемещений U_1 , U_2 . Поэтому решение уравнения (5), затухающее при $x_2 \to -\infty$, имеет вид

$$U_1(\xi, x_2) = \begin{cases} C_1 \exp\left(\xi(k_1 x_2 + \gamma)\right) + C_2 \exp\left(\xi(k_2 x_2 + \gamma)\right), & \xi \ge 0, \\ C_1 \exp\left(-\xi(k_1 x_2 + \gamma)\right) + C_2 \exp\left(-\xi(k_2 x_2 + \gamma)\right), & \xi < 0, \end{cases}$$
(6)

где C_1, C_2 — произвольные постоянные; γ — постоянная ($\gamma < 0$); $k_{1,2} = \sqrt{a \pm \sqrt{a^2 - b}}$. Из системы (3) определим $U_2(\xi, x_2)$, затухающее при $x_2 \to -\infty$:

$$U_2(\xi, x_2) = i \begin{cases} C_1 d_1 \exp\left(\xi(k_1 x_2 + \gamma)\right) + C_2 d_2 \exp\left(\xi(k_2 x_2 + \gamma)\right), & \xi \ge 0, \\ -C_1 d_1 \exp\left(-\xi(k_1 x_2 + \gamma)\right) - C_2 d_2 \exp\left(-\xi(k_2 x_2 + \gamma)\right), & \xi < 0, \end{cases}$$
(7)

где $d_1 = k_1(a_1 - a_2k_1^2); d_2 = k_2(a_1 - a_2k_2^2); a_1 = (a_{11}a_{22} - (a_{12} + G_{12})^2)/a_3; a_2 = a_{22}G_{12}/a_3; a_3 = (a_{12} + G_{12})(G_{12} - p).$

Изображениям возмущений перемещений (6), (7) соответствуют оригиналы возмущений перемещений

$$W_{1}(x_{1}, x_{2}) = -\sqrt{\frac{2}{\pi}} \left(\frac{C_{1}(k_{1}x_{2} + \gamma)}{x_{1}^{2} + (k_{1}x_{2} + \gamma)^{2}} + \frac{C_{2}(k_{2}x_{2} + \gamma)}{x_{1}^{2} + (k_{2}x_{2} + \gamma)^{2}} \right),$$

$$W_{2}(x_{1}, x_{2}) = \sqrt{\frac{2}{\pi}} \left(\frac{C_{1}d_{1}x_{1}}{x_{1}^{2} + (k_{1}x_{2} + \gamma)^{2}} + \frac{C_{2}d_{2}x_{1}}{x_{1}^{2} + (k_{2}x_{2} + \gamma)^{2}} \right).$$
(8)

На рис. 1 представлено поперечное перемещение $W_2(x_1, 0)$ свободной поверхности.

Подставляя решения (6), (7) в граничные условия (4), получим однородную систему линейных алгебраических уравнений относительно произвольных постоянных C_1 и C_2 (при $\xi \ge 0$ и $\xi < 0$ системы совпадают).

Из условия существования нетривиальных решений системы получаем характеристическое уравнение для определения критической нагрузки сжатия p_*

$$(k_1 + d_1)(a_{22}d_2k_2 - a_{21}) - (k_2 + d_2)(a_{22}d_1k_1 - a_{21}) = 0.$$
(9)

Рис. 1

Из уравнения (9) получаем критические нагрузки сжатия

$$p_{1} = \left(\sqrt{1 + \frac{4a_{11}a_{22}G_{12}^{2}}{(a_{11}a_{22} - a_{12}^{2})^{2}} - 1}\right)\frac{(a_{11}a_{22} - a_{12}^{2})^{2}}{2a_{11}a_{22}G_{12}},$$

$$p_{2} = \left(2(a_{12} + G_{12})\sqrt{a_{11}a_{22}} - a_{11}a_{22} - 2a_{12}G_{12} - a_{12}^{2}\right)/G_{12}.$$
(10)

Меньший из этих положительных корней дает критическое значение p_* .

Если систему уравнений (3) свести к одному уравнению относительно функции $U_2(\xi, x_2)$

$$U_{2,2222} - 2\xi^2 a U_{2,22} + \xi^4 b U_2 = 0$$

то получим другую форму выпучивания поверхности. По аналогии с (6), (7) имеем

$$U_{1}(\xi, x_{2}) = i \begin{cases} C_{1}g_{1} \exp\left(\xi(k_{1}x_{2} + \gamma)\right) + C_{2}g_{2} \exp\left(\xi(k_{2}x_{2} + \gamma)\right), & \xi \ge 0, \\ -C_{1}g_{1} \exp\left(-\xi(k_{1}x_{2} + \gamma)\right) - C_{2}g_{2} \exp\left(-\xi(k_{2}x_{2} + \gamma)\right), & \xi < 0, \end{cases}$$
(11)
$$U_{2}(\xi, x_{2}) = \begin{cases} C_{1} \exp\left(\xi(k_{1}x_{2} + \gamma)\right) + C_{2} \exp\left(\xi(k_{2}x_{2} + \gamma)\right), & \xi \ge 0, \\ C_{1} \exp\left(-\xi(k_{1}x_{2} + \gamma)\right) + C_{2} \exp\left(-\xi(k_{2}x_{2} + \gamma)\right), & \xi < 0, \end{cases}$$

где $g_1 = k_1(b_1 - b_2k_1^2); g_2 = k_2(b_1 - b_2k_2^2); b_1 = (G_{12}(G_{12} - p) - (a_{12} + G_{12})^2)/b_3; b_2 = a_{22}G_{12}/b_3; b_3 = a_{11}(a_{12} + G_{12}).$

Изображениям возмущений перемещений (11) соответствуют оригиналы возмущений перемещений

$$W_{1}(x_{1}, x_{2}) = \sqrt{\frac{2}{\pi}} \left(\frac{C_{1}g_{1}x_{1}}{x_{1}^{2} + (k_{1}x_{2} + \gamma)^{2}} + \frac{C_{2}g_{2}x_{1}}{x_{1}^{2} + (k_{2}x_{2} + \gamma)^{2}} \right),$$

$$W_{2}(x_{1}, x_{2}) = -\sqrt{\frac{2}{\pi}} \left(\frac{C_{1}(k_{1}x_{2} + \gamma)}{x_{1}^{2} + (k_{1}x_{2} + \gamma)^{2}} + \frac{C_{2}(k_{2}x_{2} + \gamma)}{x_{1}^{2} + (k_{2}x_{2} + \gamma)^{2}} \right).$$
(12)

Для этой формы выпучивания поверхности (рис. 2) характеристическое уравнение имеет вид

$$(k_2g_2 - 1)(a_{22}k_1 + a_{21}g_1) - (k_1g_1 - 1)(a_{22}k_2 + a_{21}g_2) = 0.$$
(13)

Корни уравнения (13) совпадают с корнями (10). Следовательно, одной критической нагрузке сжатия соответствуют две формы локального выпучивания поверхности (8), (12). Заметим, что критическая нагрузка сжатия p_* зависит только от свойств среды. Оценка

Рис. 2

критической нагрузки p_* показывает, что локальное выпучивание поверхности возможно не во всех средах. Так, в упругой изотропной среде p_* соответствует нагрузке, превосходящей предел прочности на сжатие для реальных материалов. Следовательно, в изотропном теле не может возникать локальное выпучивание поверхности при малых докритических деформациях.

В работе [2] показано, что в ортотропной среде с малой сдвиговой жесткостью G_{12} возможна поверхностная неустойчивость в целом поверхности, так как в этом случае критическая нагрузка p_* меньше предела прочности на сжатие. Критическая нагрузка сжатия p_* , полученная в [2] при исследовании поверхностной неустойчивости в целом свободной поверхности, совпадает с критической нагрузкой (10) в случае локального выпучивания поверхности.

Таким образом, в некоторых средах возможно локальное выпучивание поверхности полуплоскости при сжатии при малых докритических деформациях, причем одной и той же критической нагрузке соответствуют две формы локального выпучивания поверхности.

ЛИТЕРАТУРА

- Biot M. A. Fundamental skin effect in anisotropic solids mechanics // Intern. J. Solids and Struct. 1966. V. 2, N 4. P. 645–663.
- 2. Гузь А. Н. Устойчивость трехмерных деформируемых тел. Киев: Наук. думка, 1971.
- 3. Иванищева О. И., Трофимов В. Г. Осесимметричное выпучивание упругого полупространства при сжатии // ПМТФ. 1995. Т. 36, № 4. С. 152–154.

Поступила в редакцию 10/VI 2004 г.