УДК 539.3

ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ ДЛЯ НЕОДНОРОДНОГО СЛОИСТОГО ТЕЛА

А. Е. Алексеев, В. В. Алехин, Б. Д. Аннин

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

Рассмотрена плоская задача для неоднородного упругого слоистого тела, ограниченного эквидистантными (равноудаленными) выпуклыми кривыми. Предложен и реализован алгоритм численного решения.

Введение. Различные способы построения уравнений упругого деформирования многослойной конструкции изложены в [1–3].

В настоящей работе для построения уравнений, описывающих упругое деформирование слоистого тела, используются результаты, полученные в [4–7], что позволило корректно сформулировать условия сопряжения напряжений и перемещений на межслойных границах. Полученные результаты могут быть использованы при создании оптимальных слоистых конструкций [8].

1. Определение криволинейной системы координат. Пусть L — достаточно гладкая замкнутая выпуклая кривая, ограничивающая область D, причем радиус кривизны во всех точках L не меньше ρ_* .

Пусть R — произвольная точка кривой L (рис. 1); t, n — единичные векторы касательной и нормали к L в точке R; β — угол между касательной t и осью x, причем в точке пересечения L с осью x угол $\beta = \pi/2$. Пусть начало координат (точка O) находится внутри области D. Уравнения овала L в параметрической форме можно представить в виде [9]

$$x_L(\beta) = \frac{dF(\beta)}{d\beta} \cos\beta + F(\beta) \sin\beta, \qquad y_L(\beta) = \frac{dF(\beta)}{d\beta} \sin\beta - F(\beta) \cos\beta, \qquad \frac{\pi}{2} \leqslant \beta \leqslant \frac{5\pi}{2}.$$

Рис. 1

Работа выполнена при частичной финансовой поддержке Министерства образования Российской Федерации (грант № Е-00-4.0-120).

Здесь $x_L(\beta), y_L(\beta)$ — декартовы координаты точки $R; F(\beta) \ge 0$ — периодическая (с периодом 2π) опорная функция контура L (расстояние от точки O до касательной t). Каждому значению $\beta \in [\pi/2, 5\pi/2)$ соответствует одна и только одна точка $R \in L$. Радиус кривизны L равен $\rho = \rho(\beta) = F(\beta) + d^2F(\beta)/d\beta^2 \ge \rho_*$, единичные векторы t и n определяются в виде $t = (\cos \beta, \sin \beta), n = (\sin \beta, -\cos \beta).$

Рассмотрим ортогональную криволинейную систему координат (α, β) , индуцированную контуром L с опорной функцией $F(\beta)$:

$$x = x(\alpha, \beta) = \frac{dF(\beta)}{d\beta} \cos\beta + (F(\beta) + \alpha) \sin\beta,$$

$$y = y(\alpha, \beta) = \frac{dF(\beta)}{d\beta} \sin\beta - (F(\beta) + \alpha) \cos\beta,$$

$$\frac{\pi}{2} \leqslant \beta \leqslant \frac{5\pi}{2}, \quad \alpha \ge 0.$$
 (1.1)

Якобиан преобразования координат $J(\alpha,\beta) = D(x,y)/D(\alpha,\beta) = \rho(\beta) + \alpha > 0$. Из (1.1) следует, что координатные линии $\alpha = \text{const}$ представляют собой эквидистантные кривые с опорной функцией $F_{\alpha} = F_{\alpha}(\beta) = F(\beta) + \alpha$, а координатные линии $\beta = \text{const}$ образуют семейство прямых линий, ортогональных L.

2. Уравнения плоской задачи теории упругости в криволинейной системе координат (α, β). Рассмотрим уравнения плоской задачи теории упругости в ортогональной криволинейной системе координат (α, β).

Напряжения $\sigma_{\alpha\alpha}$, $\sigma_{\alpha\beta}$, $\sigma_{\beta\beta}$ удовлетворяют уравнениям равновесия

$$\frac{\partial \sigma_{\alpha\alpha}}{\partial \alpha} + \frac{1}{\rho + \alpha} \frac{\partial \sigma_{\alpha\beta}}{\partial \beta} + \frac{\sigma_{\alpha\alpha} - \sigma_{\beta\beta}}{\rho + \alpha} = 0, \qquad \frac{\partial \sigma_{\alpha\beta}}{\partial \alpha} + \frac{1}{\rho + \alpha} \frac{\partial \sigma_{\beta\beta}}{\partial \beta} + \frac{2\sigma_{\alpha\beta}}{\rho + \alpha} = 0.$$

Тензор деформации определяется через компоненты вектора перемещений $\boldsymbol{u} = u_{\alpha}\boldsymbol{n} + u_{\beta}\boldsymbol{t}$ (u_{α}, u_{β} — функции α, β) в виде

$$e_{\alpha\alpha} = \frac{\partial u_{\alpha}}{\partial \alpha}, \quad e_{\beta\beta} = \frac{1}{\rho + \alpha} \frac{\partial u_{\beta}}{\partial \beta} + \frac{1}{\rho + \alpha} u_{\alpha}, \quad e_{\alpha\beta} = \frac{1}{2} \Big(\frac{\partial u_{\beta}}{\partial \alpha} + \frac{1}{\rho + \alpha} \frac{\partial u_{\alpha}}{\partial \beta} - \frac{u_{\beta}}{\rho + \alpha} \Big).$$

Деформации и напряжения связаны законом Гука

$$e_{\alpha\alpha} = \frac{1-\nu^2}{E} \left(\sigma_{\alpha\alpha} - \frac{\nu}{1-\nu} \sigma_{\beta\beta} \right), \quad e_{\beta\beta} = \frac{1-\nu^2}{E} \left(\sigma_{\beta\beta} - \frac{\nu}{1-\nu} \sigma_{\alpha\alpha} \right),$$

$$2e_{\alpha\beta} = \sigma_{\alpha\beta}/\mu, \quad 2\mu = E/(1+\nu).$$
 (2.1)

Здесь Е, μ — модули Юнга и сдвига соответственно; ν — коэффициент Пуассона.

3. Уравнения упругого деформирования цилиндрической оболочки овального профиля. Рассмотрим упругое тело бесконечной длины толщиной 2h, ограниченное координатными поверхностями $\alpha_1, \alpha_2, \beta_1, \beta_2: 0 < \alpha_1 < \alpha_2 = \alpha_1 + 2h; \pi/2 \leq \beta_1 < \beta_2 < 5\pi/2$. В направлении α введем координату $\xi \in [-1, 1], \alpha = (\alpha_1 + \alpha_2)/2 + \xi(\alpha_2 - \alpha_1)/2$.

В соответствии с [4–7] напряжения аппроксимируются отрезками рядов по полиномам Лежандра $P_k(\xi)$:

$$2h\sigma_{\beta\beta} = N + (3M/h)P_{1}(\xi), \quad \sigma_{\alpha\alpha} = p_{0} + \Delta pP_{1}(\xi),$$

$$2h\sigma_{\alpha\beta} = Q + 2h\Delta qP_{1}(\xi) + (2hq_{0} - Q)P_{2}(\xi),$$

$$\Delta q = (q^{+} - q^{-})/2, \quad q_{0} = (q^{+} + q^{-})/2, \quad \Delta p = (p^{+} - p^{-})/2, \quad p_{0} = (p^{+} + p^{-})/2.$$
Здесь $N = h \int_{-1}^{1} \sigma_{\beta\beta} d\xi$ — усилие; $M = h^{2} \int_{-1}^{1} \sigma_{\beta\beta} \xi d\xi$ — момент; $Q = h \int_{-1}^{1} \sigma_{\alpha\beta} d\xi$ — перерезы-

вающая сила; $q^{\pm} = \sigma_{\alpha\beta}|_{\xi=\pm 1}$ — касательные и $p^{\pm} = \sigma_{\alpha\alpha}|_{\xi=\pm 1}$ — нормальные напряжения на граничных поверхностях $\alpha = \alpha_1, \alpha = \alpha_2$.

Перемещения u_{β}, u_{α} аппроксимируются отрезками рядов

$$u_{\beta} = u + \psi P_{1}(\xi) + (u_{0} - u)P_{2}(\xi) + (\Delta u - \psi)P_{3}(\xi), \qquad u_{\alpha} = v + \Delta v P_{1}(\xi) + (v_{0} - v)P_{2}(\xi),$$

$$\Delta u = (u^{+} - u^{-})/2, \quad u_{0} = (u^{+} + u^{-})/2, \quad \Delta v = (v^{+} - v^{-})/2, \quad v_{0} = (v^{+} + v^{-})/2.$$

Здесь $u = \frac{1}{2} \int_{-1}^{1} u_{\beta} d\xi$ — осредненное по толщине перемещение по координате $\beta; v =$

 $\frac{1}{2}\int_{-1}^{1}u_{\alpha}\,d\xi$ — осредненное по толщине перемещение по координате α ; $u^{\pm} = u_{\beta}|_{\xi=\pm 1}$ —

касательные и $v^{\pm} = u_{\alpha}|_{\xi=\pm 1}$ — нормальные перемещения на границах $\alpha = \alpha_1, \alpha = \alpha_2$. Деформации аппроксимируются отрезками рядов

$$e_{\beta\beta} = \frac{1}{\rho_0} \left(\frac{du}{d\beta} + v + \frac{d\psi}{d\beta} P_1(\xi) \right), \qquad e_{\alpha\alpha} = \frac{\Delta v}{h} + 3 \frac{v_0 - v}{h} P_1,$$

$$2e_{\alpha\beta} = \frac{\Delta u}{h} + \frac{1}{\rho_0} \left(\frac{dv}{d\beta} - u \right) + 3P_1 \frac{u_0 - u}{h} + 5P_2 \frac{\Delta u - \psi}{h}.$$
(3.2)

Здесь $\rho_0 = \rho + h = (\alpha_1 + \alpha_2)/2.$

Подставим напряжения (3.1) и деформации (3.2) в закон Гука (2.1) и приравняем коэффициенты при одинаковых полиномах Лежандра $P_k(\xi)$. В результате получим

$$\frac{1}{\rho_0} \left(\frac{du}{d\beta} + v \right) = \frac{N}{2hE^*} - \frac{\nu^* p_0}{E^*}, \quad \frac{1}{\rho_0} \frac{d\psi}{d\beta} = \frac{3M}{2h^2E^*} - \frac{\nu^*\Delta p}{E^*}, \\
\frac{1}{\rho_0} \left(\frac{dv}{d\beta} - u \right) + \frac{\Delta u}{h} = \frac{1}{2h\mu} Q;$$
(3.3)
$$\frac{3u_0 - u}{h} = \frac{\Delta q}{\mu}, \qquad 5\frac{\Delta u - \psi}{h} = \frac{q_0}{\mu} - \frac{Q}{2h\mu}, \\
\frac{\Delta v}{h} = \frac{p_0}{E^*} - \frac{\nu^*}{E^*}\frac{N}{2h}, \qquad 3\frac{v_0 - v}{h} = \frac{\Delta p}{E^*} - \frac{\nu^*}{E^*}\frac{3}{2h^2}M.$$
(3.4)

Здесь $E^* = E/(1 - \nu^2); \nu^* = \nu/(1 - \nu).$ Уравнения равновесия имеют вид

$$\frac{1}{\rho_0} \left(\frac{dN}{d\beta} + Q \right) + 2\Delta q = 0, \quad \frac{1}{\rho_0} \left(\frac{dQ}{d\beta} - N \right) + 2\Delta p = 0, \quad \frac{1}{\rho_0} \frac{dM}{d\beta} - Q + 2hq_0 = 0. \tag{3.5}$$

При заданных внешних напряжениях $\{p^{\pm}, q^{\pm}\}$ уравнения (3.3), (3.5) образуют замкнутую систему обыкновенных дифференциальных уравнений относительно неизвестных функций N, M, Q, u, ψ, v . Неизвестные функции u^{\pm}, v^{\pm} (перемещения на границах $\xi = \pm 1$) определяются из алгебраических уравнений (3.4).

4. Уравнения слоистого тела, составленного из эквидистантных слоев. Рассмотрим кривую L_0 с опорной функцией $F_0(\beta)$. Кривые L_i , $i = \overline{1, n}$ с опорными функциями $F_i(\beta) = F_{i-1}(\beta) + 2h^i$ образуют семейство эквидистантных кривых, причем расстояние между соседними кривыми L_i , L_{i-1} равно $2h^i$. Радиус кривизны $L_i \rho_i = \rho_{i-1} + 2h^i$, $i = \overline{1, n}$.

Пусть B — сплощное тело, составленное из монослоев B_i , $i = \overline{1, n}$, ограниченных кривыми L_{i-1} , L_i . Контур L_i является линией межслойного контакта слоев B_i , B_{i+1} , $i = \overline{1, n}$. При этом линия L_0 совпадает с L.

Обозначим верхним индексом *i* величины, относящиеся к слою B_i . Тогда из алгебраических уравнений (3.4) можно получить выражения для $(u^+)^i$, $(v^+)^i$, $(p^+)^i$, $(q^+)^i$:

$$(p^{+})^{i} = -\frac{3(E^{*})^{i}}{h^{i}} (v^{-})^{i} - 2(p^{-})^{i} + \frac{3(E^{*})^{i}}{h^{i}} v^{i} + \frac{3\nu^{i}}{2h^{i}} \left(N^{i} - \frac{M^{i}}{h^{i}}\right),$$

$$(q^{+})^{i} = \frac{15\mu^{i}}{h^{i}} (u^{-})^{i} + 4(q^{-})^{i} + \frac{15\mu^{i}}{h^{i}} (-u^{i} + \psi^{i}) - \frac{3Q^{i}}{2h^{i}},$$

$$(v^{+})^{i} = -2(v^{-})^{i} + 3v^{i} - \frac{h^{i}}{(E^{*})^{i}} (p^{-})^{i} + \frac{(\nu^{*})^{i}}{2(E^{*})^{i}} \left(N^{i} - \frac{3M^{i}}{h^{i}}\right),$$

$$(u^{+})^{i} = 4(u^{-})^{i} + \frac{h^{i}}{\mu^{i}} (q^{-})^{i} - 3u^{i} + 5\psi^{i} - \frac{Q^{i}}{2\mu^{i}}.$$

$$(4.1)$$

На линиях межслойного контакта $L_i, i = \overline{1, n-1}$ должны быть выполнены условия

$$(q^+)^i = (q^-)^{i+1}, \quad (p^+)^i = (p^-)^{i+1}, \quad (u^+)^i = (u^-)^{i+1}, \quad (v^+)^i = (v^-)^{i+1}.$$
 (4.2)

В дальнейшем ограничимся случаем, когда на лицевых линиях $L_0,\,L_n$ слоистого телаBзаданы напряжения

.

$$(q^{-})^{1} = Q_{0}, \quad (q^{+})^{n} = Q_{n}, \quad (p^{-})^{1} = P_{0}, \quad (p^{+})^{n} = P_{n}.$$
 (4.3)

Из системы линейных алгебраических уравнений (4.1)-(4.3) находим

$$(p^{+})^{i} = A_{1}^{i}P_{n} + A_{2}^{i}P_{0} + \sum_{k=1}^{i} (a_{1k}^{i}v^{k} + a_{2k}^{i}N^{k} + a_{3k}^{i}M^{k}),$$

$$(v^{+})^{i} = B_{1}^{i}P_{n} + B_{2}^{i}P_{0} + \sum_{k=1}^{i} (b_{1k}^{i}v^{k} + b_{2k}^{i}N^{k} + b_{3k}^{i}M^{k}),$$

$$(q^{+})^{i} = C_{1}^{i}Q_{n} + C_{2}^{i}Q_{0} + \sum_{k=1}^{i} (c_{1k}^{i}u^{k} + c_{2k}^{i}\psi^{k} + c_{3k}^{i}Q^{k}),$$

$$(u^{+})^{i} = D_{1}^{i}Q_{n} + D_{2}^{i}Q_{0} + \sum_{k=1}^{i} (d_{1k}^{i}u^{k} + d_{2k}^{i}\psi^{k} + d_{3k}^{i}Q^{k}),$$

$$V_{n} = (v^{+})^{n} = B_{1}^{n}P_{n} + B_{2}^{n}P_{0} + \sum_{k=1}^{n} b_{1k}^{n}v^{k} + b_{2k}^{n}N^{k} + b_{3k}^{n}M^{k}),$$

$$V_{0} = (v^{-})^{1} = B_{1}^{0}P_{n} + B_{2}^{0}P_{0} + \sum_{k=1}^{n} (b_{1k}^{0}v^{k} + b_{2k}^{0}N^{k} + b_{3k}^{0}M^{k}),$$

$$U_{n} = (u^{+})^{n} = D_{1}^{n}Q_{n} + D_{2}^{n}Q_{0} + \sum_{k=1}^{n} d_{1k}^{n}u^{k} + d_{2k}^{n}\psi^{k} + A_{3k}^{n}Q^{k}),$$

$$U_{0} = (u^{-})^{1} = D_{1}^{0}Q_{n} + D_{2}^{0}Q_{0} + \sum_{k=1}^{n} (d_{1k}^{0}u^{k} + d_{2k}^{0}\psi^{k} + d_{3k}^{0}Q^{k}).$$

$$U_{0} = (u^{-})^{1} = D_{1}^{0}Q_{n} + D_{2}^{0}Q_{0} + \sum_{k=1}^{n} (d_{1k}^{0}u^{k} + d_{2k}^{0}\psi^{k} + d_{3k}^{0}Q^{k}).$$

Подставляя выражения (4.4) в уравнения (3.3), (3.5), получим систему линейных обыкновенных дифференциальных уравнений

$$\frac{d\boldsymbol{X}}{d\beta} = A\boldsymbol{X} + B,\tag{4.5}$$

где $X = (u^1, \ldots, u^n, \psi^1, \ldots, \psi^n, Q^1, \ldots, Q^n, v^1, \ldots, v^n, N^1, \ldots, N^n, M^1, \ldots, M^n)$ — вектор неизвестных функций.

5. Примеры решений. В качестве примера рассмотрим задачу упругого деформирования бесконечной слоистой трубы с внутренней поверхностью, имеющей эллиптический контур. В этом случае опорная функция $F(\beta)$ и радиус кривизны $\rho(\beta)$ равны

$$F(\beta) = \sqrt{a^2 \sin^2 \beta + b^2 \cos^2 \beta}, \quad \rho(\beta) = a^2 b^2 / F(\beta), \tag{5.1}$$

где *a*, *b* — полуоси эллипса.

Труба находится под действием внутреннего давления. Соответствующие граничные условия (4.3) имеют вид

$$Q_0 = 0, \quad Q_n = 0, \quad P_0 = -100 \text{ MIIa}, \quad P_n = 0.$$
 (5.2)

Из (5.1), (5.2) следует, что рассматриваемая задача симметрична относительно координатных осей Ox, Oy. Поэтому для дифференциальных уравнений (4.5) ставятся следующие граничные условия:

$$X_i(\pi/2) = 0, \qquad X_i(\pi) = 0, \qquad i = \overline{1, 3n}.$$
 (5.3)

Краевая задача (4.5), (5.3) решается численно методом Годунова [10].

Для оценки эффективности работы алгоритма решена тестовая задача деформирования однослойной трубы (n = 1), точное решение которой согласно уравнениям (3.3)–(3.5) для усилия N и перерезывающей силы Q имеет вид

$$N = -P_0 F(\beta), \qquad Q = P_0 \frac{dF(\beta)}{d\beta}.$$
(5.4)

Расчеты проводились при следующих физических и геометрических параметрах: $E = 2.1 \cdot 10^5$ МПа, $\nu = 0.3$ (сталь), h = 0.05 м, a = 1.5 м, b = 0.5 м.

Максимальное отклонение расчетных значений N и Q от вычисленных по формулам (5.4) составляет 0,1 и 0,15 % соответственно. Зависимости нормального v и касательного u перемещений точек срединной поверхности от угла β приведены на рис. 2.

Решена задача упругого деформирования трехслойной трубы со следующими значениями параметров: для внутреннего слоя $E = 2,1 \cdot 10^5$ МПа, $\nu = 0,3$ (сталь); для среднего слоя $E = 2,7 \cdot 10^3$ МПа, $\nu = 0,27$ (сферопластик); для внешнего слоя $E = 1,2 \cdot 10^5$ МПа, $\nu = 0,32$ (титановый сплав). Геометрические параметры принимались равными $h^i = 1/60$ м, $i = \overline{1,3}, a = 1,1$ м, b = 0,9 м. На рис. 3 приведены зависимости усилий N^i от угла β при i = 1,2,3 (кривые 1–3). Для решения рассмотренных выше примеров использовался компьютер Pentium-II.

ЛИТЕРАТУРА

- 1. **Григолюк Э. И., Чулков П. П.** Устойчивость колебания трехслойных оболочек. М.: Машиностроение, 1973.
- 2. Болотин В. В., Новичков Ю. Н. Механика многослойных конструкций. М.: Машиностроение, 1980.
- Дудченко А. А., Лурье С. А., Образцов И. Ф. Анизотропные многослойные пластины и оболочки. М.: ВИНИТИ, 1983. С. 3–86. (Итоги науки и техники. Сер. Механика деформируемого твердого тела; Т. 15).
- 4. Иванов Г. В. Теория пластин и оболочек. Новосибирск: Изд-во Новосиб. ун-та, 1980.
- Алексеев А. Е. Уравнения упругого деформирования слоя переменной толщины // Динамика сплошной среды: Сб. науч. тр. / АН СССР. Сиб. отд-ние. Ин-т гидродинамики. 1987. Вып. 81. С. 3–13.
- 6. Волчков Ю. М., Дергилева Л. А., Иванов Г. В. Численное моделирование напряженных состояний в плоских задачах упругости методом слоев // ПМТФ. 1994. Т. 35, № 6. С. 129–135.
- 7. Алексеев А. Е. Изгиб трехслойной ортотропной балки // ПМТФ. 1995. Т. 36, № 3. С. 158–166.
- 8. Алехин В. В., Аннин Б. Д., Колпаков А. Г. Синтез слоистых материалов и конструкций. Новосибирск: Ин-т гидродинамики СО АН СССР, 1988.
- 9. Бляшке В. Дифференциальная геометрия. М.: ОНТИ, 1935.
- 10. Годунов С. К. О численном решении краевых задач для систем линейных обыкновенных дифференциальных уравнений // Успехи мат. наук. 1961. Т. 16, вып. 3. С. 171–174.

Поступила в редакцию 25/VI 2001 г.