УДК 544.452:546.05

ГОРЕНИЕ ТЕРМИТНЫХ СИСТЕМ НА ОСНОВЕ ОКСИДА ТИТАНА С КОМПЛЕКСНЫМ ВОССТАНОВИТЕЛЕМ И ЭНЕРГЕТИЧЕСКОЙ ДОБАВКОЙ ПОД ВОЗДЕЙСТВИЕМ ПЕРЕГРУЗКИ

В. И. Юхвид, Д. Е. Андреев, Д. М. Икорников, В. Н. Санин, Н. В. Сачкова, И. Д. Ковалев

Институт структурной макрокинетики и проблем материаловедения им. А. Г. Мержанова РАН 142432 Черноголовка, yukh@ism.ac.ru

Выявлены закономерности и механизм горения термитных систем на основе TiO₂ с комплексным восстановителем (Al и Ca) под воздействием перегрузки. Термитная система включает в себя базовый состав, продуктами горения которого являются целевые элементы (Ti, Al, Nb, Cr), и высокоэнергетическую добавку (CaO₂, Al, Ca) для реализации высокой температуры горения. При введении энергетической добавки система приобретает способность к горению, и при достаточном содержании добавки продукты горения (Ti_xAl_y и оксидные растворы Al₂O₃ и CaO) плавятся. С ростом доли Ca в составе базовой смеси скорость горения снижается, а полнота восстановления целевых оксидов возрастает. При оптимальном соотношении Ca и Al в смеси выход целевых элементов в слиток близок к расчетному значению.

Ключевые слова: композиционный материал, комплексный восстановитель, базовый состав, энергетический состав, флюс, перегрузка.

DOI 10.15372/FGV20190606

ВВЕДЕНИЕ

Для синтеза многих литых тугоплавких и композиционных материалов (КМ) в режиме горения могут быть использованы смеси оксидов металлов с алюминием (смеси термитного типа), температура горения которых превышает температуру плавления конечных продуктов [1, 2]. Существует группа материалов, например алюминиды Ti, Zr, Hf и др., для которых смеси их оксидов (TiO_2 , ZrO_2 , HfO_2 и др.) с алюминием не способны к горению. В предшествующих работах [3, 4] авторы для получения алюминилов титана и КМ на их основе использовали смеси Ті и Al. В смесь вводили высокоэнергетическую добавку пероксида кальция с алюминием. При этом смесь приобретает способность к горению, а при достаточном содержании добавки продукты горения (КМ на основе TiAl и оксидные растворы на основе Al_2O_3 и СаО) плавятся. Под центробежным воздействием происходит расслоение продуктов горения. При перегрузке $(200 \div 300)q$ полнота гравитационной сепарации достигает максимального значения и близка к расчетной величине.

Следует отметить, что KM на основе TiAl являются перспективными материалами для создания газотурбинных двигателей нового поколения [5–8]. Высокие удельная прочность, сопротивление ползучести и жаростойкость при повышенных температурах ($T = 600 \div 850$ °C) делают их пригодными для изготовления компрессорных и бандажированных турбинных лопаток ступени низкого давления. Для получения KM на основе Ti—Al и изделий из них наиболее часто используют методы порошковой металлургии и классической металлургии.

В настоящей работе проведены исследования возможности получения методами горения под воздействием перегрузки KM на основе TiAl из термитных систем на основе оксида титана с комплексным восстановителем (Al и Ca) и энергетической добавкой. Изучены закономерности и механизм горения таких систем.

МЕТОДИКИ ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТОВ

Эксперименты проводили на центробежной установке под воздействием перегрузки до 300g. Исходная смесь для получения литых KM на основе TiAl состояла из трех частей: 58.3 % базового состава, 38.8 % энергетического состава и 2.9 % флюса. Соотношение базового и энер-

[©] Юхвид В. И., Андреев Д. Е., Икорников Д. М.,

Санин В. Н., Сачкова Н. В., Ковалев И. Д., 2019.

Таблица 2

гетического составов в экспериментах варьировалось. В общем случае в базовый состав входили TiO_2 , Nb_2O_5 , Cr_2O_3 , Al, Ca, из которых при горении формировался целевой KM и шлаковый (оксидный) продукт. Энергетический состав содержал CaO_2 и Al. В качестве флюса в работе использовали CaF_2 [9, 10].

Смеси сжигали в кварцевых стаканчиках диаметром 20 мм ($m = 15 \div 20$ г), в графитовых формах диаметром 40 мм ($m = 100 \div 115$ г) с защитным покрытием из MgO и в медных формах диаметром 40 мм. Более подробно методика экспериментов описана в публикациях [3, 4]. По результатам экспериментов определяли линейную скорость горения (u), относительную потерю массы при горении (η_1) и полноту выхода целевых элементов в слиток (η_2) : $u = h/t, \eta_1 = [(m_1 - m_2)/m_1] \cdot 100 \%, \eta_2 =$ $(m_{exp}/m_{calc})\cdot 100$ %, где \tilde{h} — высота слоя исходной смеси, t — время горения слоя, m₁ и m₂ — массы исходной смеси и продуктов горения, *m_{exp}* и *m_{calc}* — экспериментальная и расчетная массы слитка.

Для исследования химического состава и структуры продуктов синтеза использовали автоэмиссионный сканирующий электронный микроскоп Carl Zeiss Ultra plus на базе Ultra 55. Фазовый состав конечных продуктов горения определяли на дифрактометре ДРОН-3М, источником излучения служила рентгеновская трубка типа БСВ-27 с медным анодом ($\lambda =$ 1.54178 Å).

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

Экспериментально установлено, что при замене Ti на TiO₂ исходная смесь для получения KM на основе TiAl способна гореть. Составы, базовый и энергетический, представлены в табл. 1. В смесь дополнительно вводили 2.9 % флюса (CaF₂). Анализ процесса и продуктов горения показал, что после сгорания смеси фор-

Таблица 1

ав	исходной	смеси
uъ	исходнои	CINCCH

Содержание компонентов, $\%$								
	базовый	энергетический состав						
TiO_2	Nb_2O_5	$\mathrm{Cr}_2\mathrm{O}_3$	Al	CaO_2	Al			
51.6	3.3	2.0	43.1	80	20			

Сост

Состав	Содержание целевых элементов в KM, %				
	Ti	Al	Nb	Cr	
Расчетный	59.1	33.4	4.8	2.7	
Экспериментальный	52.0	39.4	5.1	3.5	

Состав целевого продукта горения

базовой смеси (КМ)

Рис. 1. Рентгенограмма шлакового продукта горения смеси ($\alpha = 0$)

мируется двухфазный расплав, в котором продукты (Al₂O₃, CaO, CaF₂) образуют сплошную среду — шлак, а в шлаке распределены капли целевого продукта — KM. Под действием перегрузки расплавы шлака и KM расслаиваются. В процессе охлаждения формируются состав и структура литых слоев: нижний — KM, верхний — шлак. В табл. 2 приведены расчетный и экспериментальный составы KM. Видно, что содержание Ti в синтезированном KM заметно меньше, чем получено в расчете. Рентгенофазовый анализ шлакового слоя (рис. 1) показал, что причиной дефицита Ti в сплаве является неполное восстановление TiO₂, который растворяется в шлаковом слое.

Термодинамический расчет равновесного состава и температуры продуктов восстановления с использованием схем

$$3\text{TiO}_2 + 7\text{Al} \rightarrow 3\text{TiAl} + 2\text{Al}_2\text{O}_3,$$
 (1)

$$TiO_2 + 2Ca + Al \rightarrow TiAl + 2CaO,$$
 (2)

проведенный по программе «Термо» [11], подтвердил, что при замене Al в составе восстановителя на Ca достигается полная конверсия TiO₂ (табл. 3).

u, моль Состав продуктов горения, %)	πv			
${\rm TiO}_2$	Ca	Al	TiAl	Al	TiO	$\mathrm{Al}_2\mathrm{O}_3$	Ti	CaO	$T_{\rm r}, {\rm K}$
1		7/3	30.3	27.5	16.5	25.7			1700
1	2	1		14.4	_	_	25.6	60.0	2030

 $T\,aблица\,\,3$ Влияние состава восстановителя на полноту конверсии TiO $_2$

В экспериментах для увеличения полноты восстановления TiO_2 часть Al в смеси заменяли эквивалентным количеством более активного Ca, соотношение Al и Ca (α_{Ca}) варьировали. Расчет α_{Ca} проводили по формуле

$$\alpha_{\rm Ca} = \frac{M({\rm Ca})}{M({\rm Al}) + M({\rm Ca})} \, 100 \, \%,$$
(3)

где M(Ca), M(Al) — масса Ca в массе Al в базовой смеси. При $\alpha_{Ca} = 78.4 \%$ в базовой смеси содержится минимальное количество Al, необходимое для образования TiAl.

С ростом α_{Ca} от 0 до 78.4 % скорость горения u изменяется мало, потеря массы η_1 возрастает, а полнота выхода в слиток η_2 падает (рис. 2). Продукты горения имеют литой вид, сформированный из двух слоев: верхний слой — из оксидных продуктов, нижний — из целевых элементов. Расплав продуктов горения под действием перегрузки разделяется на два слоя и при охлаждении кристаллизуется. Влияние соотношения Al и Ca в базовом составе на химический состав α_i целевого продукта (KM) иллюстрирует рис. 3. Видно, что с ростом α_{Ca} от 0 до 5.2 % содержание Ti, Nb и Cr в KM заметно возрастает, а содержание Al уменьшается. При $\alpha_{Ca} > 5.2$ % состав KM меняется слабо.

Из анализа микроструктуры сплава (рис. 4) следует, что КМ имеет ламельную структуру. На шлифе рис. 4,6 видны матрица (серого цвета) и выделения более темного и более светлого цвета. Из анализа карты распределения целевых элементов — Ті, Al, Nb, Cr (puc. 4, a, e, c, e) и примесных — Cr, O (рис. $4, \partial, \mathcal{H}$) по структурным составляющим на шлифе следует, что матрица и темные выделения сформированы из Ті и Аl, причем в темных образованиях содержание титана повышенное. Согласно диаграмме состояния Ti—Al и результатам химического анализа эти структурные составляющие представляют собой TiAl и Ti₃Al: области локализации Ti—Al, Nb и Cr совпадают, т. е. Nb и Cr растворены

Рис. 2. Влияние соотношения α_{Ca} на скорость горения, потерю массы и полноту выхода в слиток (исходная смесь 58.3 % (TiO₂/Nb₂O₅/Cr₂O₃/Ca/Al) + 38.8 % (CaO₂/Al) + 2.9 % CaF₂)

Рис. 3. Влияние соотношения α_{Ca} в базовой смеси на состав KM

 $O K_{a1}$

*a*1

в матрице, примесные фазы образуют мелкие сферические частицы и представляют собой шлаковую фазу (Al₂O₃—CaO).

Сжигание смесей на основе TiO_2 в медной форме позволяет осуществить закалку продуктов горения. Так, в экспериментах со смесью с $\alpha_{Ca} = 23.9$ % полнота гравитационной сепарации металлической и оксидной фаз снижается почти в два раза по сравнению с полнотой выхода при сжигании в графитовой форме (табл. 4). При этом химические составы KM, полученных в медной и графитовой формах, мало отличаются.

На шлифе образца, полученного в медной форме и вырезанного из центральной части шлакового слоя, видно, что в темной оксид-

 ${\rm T}\,{\rm a}\,{\rm б}\,{\rm л}\,{\rm u}\,{\rm t}\,{\rm a}\,4$ Влияние материала формы для сжигания на выход

элементов в слиток и химическии состав сплава	а

Тип форми	Выход	Состав слитка*, %				
тип формы	в слиток	Ti	Al	Nb	Cr	
Графитовая	0.72	64.0	25.5	6.1	4.4	
Медная	0.41	63.9	26.1	5.9	4.1	

*Все результаты получены методами аналитической химии.

ной матрице распределены светлые металлические частицы округлой формы (рис. 5). Основная доля металлических частиц имеет размеры $10 \div 50$ мкм. Состав металлической и оксидной

Рис. 5. Микроструктура шлакового слоя (эксперимент в медной форме)

	Таблица 5
Химический состав око	сидной
и металлической фаз в шлако	вом слое (%)

Зона*	Ti	Al	Nb	Cr	Ca	Ο
1	63.8	26.0	5.7	4.5	_	_
2	64.6	25.7	5.0	4.7		
3		30.5			31.1	38.4
4		0.5			56.4	43.1
5	_	25.6			34.3	40.1
6	_	25.1			34.1	40.8
7		0.4			54.1	45.5
8		0.3			49.9	49.8

*Номера зон соответствуют рис. 5, б.

фаз приведен в табл. 5. Состав металлической фазы (зоны 1 и 2 на рис. 5,6) мало отличается от состава слитка KM (см. рис. 3). Оксидная фаза (матрица, зоны 3–8) содержит Al, Ca и O в различном соотношении и представляет собой раствор Al₂O₃ и CaO.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Исходя из разработанных ранее представлений [1–4] о горении смесей термитного типа, проведем анализ полученных результатов. После воспламенения смеси формируется фронт горения, который перемещается по смеси. В волне горения происходит высокоэкзотермическое химическое превращение исходной смеси (TiO₂/Nb₂O₅/Cr₂O₃/CaO₂/Al/Ca) в продукты горения (целевой Ti—Al—Nb—Cr и шлаковый Al₂O₃—CaO). Оксидный расплав образует сплошную среду, в которой распределены капли металла. Под действием центробежной силы расплавы расслаиваются и образуется двухслойный продукт. В процессе охлаждения формируются фазовый состав и структура металлического и оксидного продуктов.

Интегральную схему химического превращения исходной смеси в продукты горения можно представить в следующем виде:

$$\begin{split} \mathrm{TiO}_2/\mathrm{Nb}_2\mathrm{O}_5/\mathrm{Cr}_2\mathrm{O}_3/\mathrm{CaO}_2/\mathrm{Ca}/\mathrm{Al}/\mathrm{CaF}_2 \rightarrow \\ \rightarrow \mathrm{Ti}-\mathrm{Al}-\mathrm{Nb}-\mathrm{Cr} + \mathrm{Al}_2\mathrm{O}_3-\mathrm{CaO}-\mathrm{CaF}_2. \end{split}$$

При детальном рассмотрении динамики процессов, протекающих в волне горения по мере роста температуры от начального значения ($\approx 300 \text{ K}$) до конечного ($\approx 3000 \text{ K}$), можно разделить их на ряд стадий. При $T \approx 550 \text{ K}$ происходит разложение пероксида кальция:

$$CaO_2 \rightarrow CaO + O_2.$$
 (5)

Кислород фильтруется в порошковой исходной среде навстречу фронту горения, и его химическое взаимодействие приводит к воспламенению и последующему горению частиц Al и Ca:

$$Al/Ca + O_2 \rightarrow Al_2O_3$$
—CaO. (6)

Теплообмен высокотемпературных продуктов горения и оставшихся Al и Ca с пористой оксидной средой приводит к ее разогреву, воспламенению и последующему горению, в процессе которого образуются целевые продукты (KM) и шлак:

$$TiO_2/Al/Ca \rightarrow Ti + Al_2O_3-CaO,$$
 (7)

$$Nb_2O_5/Al/Ca \rightarrow Nb + Al_2O_3-CaO,$$
 (8)

$$Cr_2O_3/Al/Ca \rightarrow Cr + Al_2O_3-CaO,$$
 (9)

$$Ti/Al/Nb/Cr \rightarrow Ti-Al-Nb-Cr,$$
 (10)

$$Al_2O_3/CaO/CaF_2 \rightarrow Al_2O_3-CaO-CaF_2.$$
 (11)

Таким образом, реализуется сложная схема химического превращения исходной смеси, когда в волне горения совмещаются фильтрационное окисление активных элементов кислородом и восстановление стабильных оксидов. В зависимости от соотношения дисперсности реагентов стадии могут быть пространственно разделены или совмещены.

Распространение горения по высокоэкзотермической исходной смеси с жидкофазными продуктами горения приводит к росту слоя расплава над фронтом горения. Градиент температуры в столбе расплава и перегрузка приводят к формированию интенсивного конвективного движения, в процессе которого увеличиваются полнота химического превращения смеси и гомогенизация химического состава металлической и оксидной фаз. Следует отметить, что горение сопровождается фильтрацией расплава продуктов горения в поры исходной смеси [2]. Кроме того, конвективное движение может приводить к столкновению металлических капель и укрупнению их размеров.

После завершения горения и выравнивания температуры под воздействием перегрузки реализуется гравитационная сепарация фаз: более тяжелая металлическая фаза накапливается в донной части формы и образует металлический слой, а более легкая оксидная фаза вытесняется в верхний слой. В экспериментах (см. табл. 4) было установлено, что в образцах, полученных в медной форме, в условиях быстрого охлаждения существенно снижается полнота сепарации КМ и шлака. Следует отметить, что химический состав металлической фазы слитка и капель металла, «замороженных» в оксидном слое, одинаков. Это свидетельствует в пользу того, что химическое превращение смесей завершается в волне горения и в постпроцессах практически отсутствует.

выводы

1. Проведенное экспериментальное исследование показало, что термитные смеси $TiO_2/Nb_2O_5/Cr_2O_3/Al/Ca$ способны гореть в широком интервале соотношений Al и Ca. При увеличении доли Ca в соотношении c Al до 80 % потеря смеси при горении достигает 40 %, относительный выход композиционного материала в слиток заметно снижается, а скорость горения меняется слабо и составляет около 5 см/с.

2. Методом закалки расплава продуктов горения в медной форме детализирован механизм формирования химического состава целевого продукта. Показано, что формирование химического состава в основном завершается после окончания горения. В постпроцессах (на стадиях гравитационной сепарации и кристаллизации) химический состав металлической и оксидной (шлаковой) фаз практически не меняется.

3. Замена доли Al на Ca в смеси приводит к увеличению полноты восстановления диоксида титана. Оптимальным для синтеза композиционного материала является замена 10÷15 % Al на Ca.

4. Оптимизация состава смеси позволяет получать литые композиционные материалы на основе TiAl, легированные Nb и Cr, которые имеют перспективу промышленного освоения для изготовления компрессорных и бандажированных турбинных лопаток газотурбинных авиационных двигателей нового поколения.

ЛИТЕРАТУРА

- 1. Юхвид В. И. Высокотемпературные жидкофазные СВС-процессы: новые направления и задачи // Цв. металлургия. — 2006. — № 5. — С. 62–78.
- Hibino A., Watanabe R. Reaction mechanism of combustion synthesis of TiAl intermetallic compound // J. Jpn Inst. Metals and Mater. — 1991. — V. 55, N 11. — P. 1256–1262.
- 3. Андреев Д. Е., Санин В. Н., Юхвид В. И. Получение литых сплавов на основе алюминидов титана методом центробежного CBC // Неорган. материалы. 2009. Т. 45, № 8. С. 934–940.
- Yukhvid V. I., Andreev D. E., Sanin V. N., Sentyurina Zh. A., Pogozhev Yu. S., Levashov E. A. Centrifugal SHS of cast Ti—Al— Nb—Cr alloys // Int. J. SHS. — 2015. — V. 24, N 4. — P. 177–181.

- 5. Авиационные материалы: науч.-техн. сб. / под ред. Е. Н. Каблова. М.: ВИАМ, 2007.
- Имаев В. М., Имаев Р. М., Оленева Т. И. Современное состояние исследований и перспективы развития технологий интерметаллидных γ-TiAl сплавов // Письма о материалах. — 2011. — Т. 1, № 1. — С. 25–31.
- Thomas M., Bacos M.-P. Processing and characterization of TiAl-based alloys: Towards an industrial scale // J. AerospaceLab. 2011. N 3. — P. 1–11.
- Brotzu A., Felli F., Pilone D. Fracture toughness of TiAl—Cr—Nb—Mo alloys produced via centrifugal casting // Frattura ed Integrità Strutturale. — 2012. — N 22. — P. 20–25.
- Donchev A., Braun R., Schütze M. Optimizing thermally grown oxide for thermal barrier coatings on TiAl components via fluorine treatment // JOM. — 2010. — V. 62, N 1. — P. 70–74.
- Braun R., Fröhlich M., Leyens C. Oxidation behaviour of TiAl-based intermetallic coatings on γ-TiAl alloys // Int. J. Mater. Res. — 2010. — V. 101, N 5. — P. 637–647.
- Shiryaev A. A. Thermodynamics of SHS: Modern approach // Int. J. SHS. — 1995. — V. 4, N 4. — P. 351–362.

Поступила в редакцию 20.08.2018. После доработки 15.11.2018. Принята к публикации 28.11.2018.