СИБИРСКОЕ ОТДЕЛЕНИЕ

РОССИЙСКОЙ АКАЛЕМИИ НАУК

НАУЧНЫЙ ЖУРНАЛ ГЕОЛОГИЯ И ГЕОФИЗИКА

Геология и геофизика, 2008, т. 49, № 3, с. 207—213

http://www.izdatgeo.ru

УДК 549.67 + 541.66 + 548.735

ПЕТРОЛОГИЯ, ГЕОХИМИЯ И МИНЕРАЛОГИЯ

ТЕРМИЧЕСКОЕ ПОВЕДЕНИЕ ВТОРИЧНОГО АНАЛЬЦИМА КАК ПРОИЗВОДНОГО ЛЕЙЦИТА И ЕГО СТРУКТУРНАЯ ИНТЕРПРЕТАЦИЯ

Ю.В. Серёткин^{1,2}, В.В. Бакакин³

¹ Институт геологии и минералогии СО РАН, 630090, Новосибирск, просп. Коптюга, 3, Россия

² Новосибирский государственный университет, 630090, Новосибирск, ул. Пирогова, 2, Россия

³ Институт неорганической химии СО РАН, 630090, Новосибирск, просп. Лаврентьева, 3, Россия

Методами термомеханического анализа, термогравиметрии и рентгеновской порошковой дифрактометрии исследованы два образца Na-замещенного лейцита с соотношением Na/(Na + K) 0.74 и 0.89. Первый (1) представлен смесью анальцима и незамещенного лейцита, второй (2) — только анальцимом. Оценочно смесимость K^+ и Na $^+$ в гидратированном анальциме составляет 15—20 ат.% K^+ . Установлена разница в термическом поведении образцов с разным соотношением Na/K. Обнаружено тригональное искажение структуры при дегидратации (Na,K)-анальцима, предложена структурная модель дегидратированной формы. Отмеченные ранее различия в термическом поведении первичных и вторичных (т. е. образованных из лейцита замещением K^+ на Na $^+$) анальцимов могут быть объяснены влиянием незамещенных катионов K^+ .

Цеолиты, анальцим, лейцит, дегидратация, структурные превращения.

THE THERMAL BEHAVIOR OF SECONDARY ANALCIME AS LEUCITE DERIVATE AND ITS STRUCTURAL INTERPRETATION

Yu.V. Servotkin and V.V. Bakakin

Two samples of Na-substituted leucite with Na/(Na+K)=0.74 (1) and 0.89 (2) were studied by dilatometry, thermogravimetry, and X-ray powder diffraction method. Sample 1 is a mixture of analcime and leucite, and sample 2 consists of analcime only. The miscibility of K^+ and Na^+ in hydrated analcime is estimated at 15–20 at.% K^+ . The thermal behavior of the samples varies depending on their Na/K ratio. Dehydrated Na,K-analcime undergoes a trigonal distortion; its structural model is proposed. The earlier recognized difference in the thermal behavior of primary and secondary (obtained from leucite through K^+ -Na $^+$ exchange) analcimes might be due to the influence of unsubstituted K^+ .

Zeolites, analcime, leucite, dehydration, structural transformations

ВВЕДЕНИЕ

Анальцим — каркасный водосодержащий алюмосиликат натрия — $Na[AlSi_2O_6]\cdot H_2O$ —широко распространен как продукт низкотемпературной гидротермальной деятельности. Однако, известны находки анальцима в изверженных породах. Вопрос о его генезисе дискутировался на протяжении ряда лет. Возможность происхождения анальцима из типичного минерала эффузивов лейцита $K[AlSi_2O_6]$, имеющего каркас той же топологии, показана замещением в лейците K на $Na(H_2O)$ в гидротермальных условиях [Gupta, Fyfe, 1975; Taylor, MacKenzie, 1975]. На сегодняшний день можно считать доказанным, что "магматический" анальцим является вторичным минералом, образованным из лейцита [Karlsson, Clayton, 1991, 1993; Putnis et al., 1994].

Природные анальцимы разного происхождения нередко содержат калий, количество которого может превышать 20 % от суммы Na + K + Ca [Дир и др., 1966, табл. 44, № 10]. Заметим, что и лейциты, как правило, содержат натрий — до Na/(Na + K) = 0.16 [Дир и др., 1966, табл. 33].

Исследования анальцимов разного генезиса показали различия в их термическом поведении. Так, обнаружена разница в кинетических параметрах дегидратации гидротермального и "магматического" анальцимов [Giampaolo, Lombardi, 1994; Line et al., 1995]. Кроме того, на кривых дифференциального термического анализа (ДТА) ряда магматических образцов, в отличие от таковых для гидротермальных, присутствует пик теплопоглощения в области температур, отвечающей концу дегидратации [Giampaolo,

Lombardi, 1994]. Авторы объясняют этот эффект присутствием в образцах небольшого количества галлуазита. Однако значение температуры экстремума (~430 °C) заметно ниже, чем в галлуазите (483 °C, [Horvath et al., 2003]). Надо отметить, что эндотермический пик в той же области температур, хоть и меньшей мощности, наблюдался и в мономинеральном магматическом обр. G1 [Giampaolo, Lombardi, 1994]. Можно предположить, что данный эффект связан с перестройкой структуры "магматического" анальцима, происходящей на последнем этапе дегидратации. Известно, что в первичном (гидротермальном) анальциме изменения при дегидратации сводятся к регулярному сжатию структуры и перераспределению катионов Na внутри стандартных *M*-позиций [Бакакин и др., 1994; Cruciani, Gualtieri, 1999].

Данная работа посвящена исследованию термического поведения вторичного анальцима (Na-замещенного лейцита) в сравнении с гидротермальным анальцимом.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

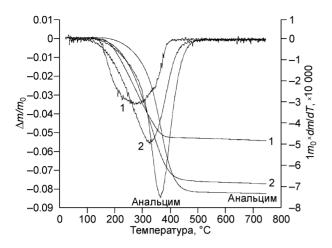
Для эксперимента использован природный лейцит из Орвието, Италия. Его Na-замещенные формы получены при следующих условиях: обр. 1 получен выдержкой кристаллов лейцита фракции <0.25 мм в расплаве NaNO $_3$ при 325 °C в течение 6 суток с заменой соли через 3 суток, а обр. 2 — в расплаве NaCl при 850 °C в течение 2.5 ч. Оба образца после замещения были отмыты от солей в горячей дистиллированной воде и автоклавированы при 300 °C в течение 27 ч для удаления остатков соли и гидратирования. Химический состав замещенных образцов определен методом рентгенофлуоресцентного анализа. Содержание $_2$ 0 определено по потере веса при нагревании образцов до 750 °C.

Термогравиметрические измерения (ТГ) проводились на термовесах ТG-50 термоаналитического комплекса Mettler TA-3000 в процессе нагревания образца со скоростью 5 °С/мин. Навеска составляла около 50 мг.

Термомеханический анализ (ТМА) выполнен с использованием дилатометра ТМА-40 комплекса Mettler TA-3000 по методике, описанной в работе [Дементьев и др., 1990]. Скорость изменения температуры образцов 5 °С/мин. Измерения проведены как при нагревании, так и при охлаждении образцов. Образцы взвешивались до и после эксперимента для контроля восстановления веса при охлаждении.

Исходные и обезвоженные образцы рентгенографически изучены при комнатной температуре на порошковом дифрактометре Bruker D8 Discover с двухкоординатным детектором GADDS, излучение CuK_{α} . Суммарное время накопления дифракционного профиля 15 мин, область накопления 4—50°20. Параметры элементарной ячейки (э.я.) уточнялись методом Ритвельда с использованием программы GSAS [Larson, Von Dreele, 2000].

Для сравнения методами ТГ и ТМА изучено термическое поведение гидротермального анальцима (р. Нидым, Восточная Сибирь). Его состав и параметры э.я. даны в таблице.


РЕЗУЛЬТАТЫ И ИХ ОБСУЖЛЕНИЕ

Результаты химического и рентгенографического анализов замещенных образцов приведены в таблице. Образец 2 — однофазный, метрика ячейки (псевдо)кубическая, ее параметры близки к параметрам э.я. природного анальцима. Присутствие малоинтенсивных рефлексов, индицированных как (023) и (114), свидетельствует о симметрии ниже $Ia\bar{3}d$, в частности, об отклонении от I-центрировки.

Состав и метрика элементарной ячейки исходного лейцита, его замещенных форм и природного гидротермального анальцима

Образец	Кристаллохимическая формула	Na/(Na + K)	Метрика э.я. (Å, град.)	V , \mathring{A}^3
Лейцит	$\{K_{0.93}^{W}Na_{0.04}^{M}(H_{2}O)_{0.08}^{W}\} [Al_{0.96}Si_{2.04}O_{6}]$	0.04	a = 13.074(3), c = 13.742(4)	2349
1, анальцим (0.88) + лейцит (0.12)	$\{K_{0.25}Na_{0.71}(H_2O)_{0.70}\}[Al_{0.97}Si_{2.03}O_6]$	0.74	_	_
Анальцим из обр. 1	$\{K_{0.16}^{W} Na_{0.80}^{M} (H_{2}O)_{0.79}^{W}\} [Al_{0.97}Si_{2.03}O_{6}]$	0.83	a = 13.7020(3)	2572
2, анальцим	$\{K_{0.11}^{W} Na_{0.88}^{M}(H_{2}O)_{0.93}^{W}\} [Al_{0.98}Si_{2.02}O_{6}]$	0.89	a = 13.7138(6)	2579
Гидротермальный анальцим	${\rm \{Na_{0.94}^{\it M}(H_{2}O)^{\it W}\}\ [Al_{0.94}Si_{2.06}O_{6}]}$	1	a = 13.708	2576
1, дегидрат. фаза	$\{K_{0.25}^{W}Na_{0.71}^{W'}\}[Al_{0.97}Si_{2.03}O_{6}]$	0.74	$a = 13.357$, $\alpha = 88.97$	2382
2, дегидрат. фаза	$\{K_{0.11}^{W}Na_{0.88}^{W'}\}\ [Al_{0.98}Si_{2.02}O_{6}]$	0.89	$a = 13.377$, $\alpha = 88.91$	2392

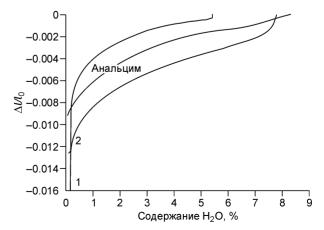
П р и м е ч а н и е . Для обр. 1 приведен валовый состав. Для гидротермального анальцима приведенное значение *а*-параметра получено псевдокубическим усреднением ромбической метрики [Бакакин и др., 1994].

0--0.01--0.02--0.03 0 100 200 300 400 500 600 Температура, °C

Рис. 1. Зависимости потери веса $\Delta m/m_0$ и скорости потери веса dm/dT от температуры для природного анальцима и замещенных форм лейцита (обр. 1 и 2).

Рис. 2. Зависимости величины сжатия $\Delta I/I_0$ природного анальцима и замещенных форм лейцита от температуры.

Стрелками показано направление изменения температуры.


Образец 1 представляет собой смесь анальцима и лейцита. Согласно данным микроспектроскопии комбинационного рассеяния, микродомены лейцита наблюдаются по всему объему кристаллов с небольшим (до полуторного) увеличением концентрации от края к центру. Оценка концентрации лейцита по данным порошковой дифрактометрии дает значение около 12 %. Оцененный с учетом этого состав замещенной фазы приведен в таблице. Расчет выполнен в предположении неизменности состава лейцита. Нет сомнения, что некоторая смесимость (Na, K) наличествует и в лейците, так что в расчетном составе замещенной формы содержание натрия оценено сверху. Рефлексы (023) и (114) на дифрактограмме обр. 1 также присутствуют.

Зависимости потери веса и изменения размера образцов от температуры представлены на рис. 1 и 2. Результаты термогравиметрии подтверждают данные работ [Giampaolo, Lombardi, 1994; Line et al., 1995]. Дегидратация замещенных образцов начинается при меньшей температуре, нежели гидротермального анальцима. Температура максимума скорости потери массы уменьшается с увеличением содержания калия в образце (см. рис. 1): 366 °C для гидротермального анальцима, \approx 330 и 280 °C для образцов 2 и 1 соответственно. По данным ТМА, изменение размера $\Delta l/l_0$ обр. 2 при дегидратации около -0.01, что сравнимо со сжатием гидротермального анальцима (см. рис. 2). Несмотря на некоторые различия между кривыми ТГ и ТМА для природного анальцима и обр. 2, их поведение при дегидратации сходно. На рис. 3 представлены зависимости величины сжатия образца от содержания H_2 О. Для природного анальцима и обр. 2 они близки. Можно сделать вывод, что термическое поведение гидратированных форм анальцимового типа в первую очередь определяется составом обменных катионов.

Термическое поведение обр. 1 кардинально отличается от поведения гидротермального анальцима (см. рис. 2 и 3). При 330 °C образец потерял 80 % воды, величина $\Delta l/l_0$ составила ≈ -0.01 . В области

330—410 °С (конец дегидратации, см. рис. 1) образец испытывает резкое сжатие. По данным ТМА, величина $\Delta l/l_0$ в конце дегидратации составила приблизительно -0.02. При дальнейшем нагревании безводный образец начинает расширяться, и при температуре 510—570 °С наблюдается резкое расширение, которое можно интерпретировать как фазовый переход с увеличением объема. Изменение $\Delta l/l_0$ составило +0.006.

Рис. 3. Степень сжатия природного анальцима и замещенных форм лейцита при дегидратации в зависимости от содержания ${
m H_2O}$.

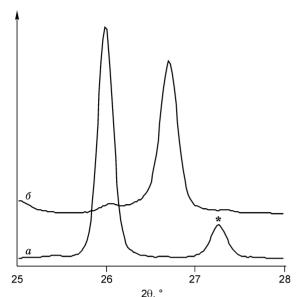


Рис. 4. Участок дифракционного профиля гидратированного (a) и дегидратированного (δ) обр. 1.

Звездочкой показано положение рефлекса (040) лейцита.

Исследование поведения образцов, нагретых до $600\,^{\circ}\mathrm{C}$ (1) и $500\,^{\circ}\mathrm{C}$ (2), при их охлаждении дало весьма нетривиальные результаты (см. рис. 2). Так, зависимости $\Delta l/l_0(T)$, полученные при нагревании и охлаждении обр. 1, совпадают только в интервале температур $600-530\,^{\circ}\mathrm{C}$; при более низких температурах образец демонстрирует существенно большую степень сжатия в процессе охлаждения, нежели расширение при нагревании. Несовпадение имеет место не только ниже точки перехода, связанного с дегидратацией, что, очевидно, должно наблюдаться с учетом медленной кинетики регидратации анальцима, но и при более высокой температуре.

Еще более необычное поведение при охлаждении демонстрирует прокаленный до 500 °C обр. 2. Пример-

но до 250 °C его размер практически не меняется. В области температур 240—150 °C наблюдается резкое сжатие образца (см. рис. 2), что интерпретировано как структурное превращение с уменьшением объема. Суммарная степень сжатия при охлаждении образцов 1 и 2 сравнима.

Контроль восстановления веса образцами при их охлаждении с заданной скоростью показал, что обр. 1 остался безводным, обр. 2 сорбировал 7.6 % $\rm H_2O$ от исходного количества.

Результаты рентгенографического исследования прокаленных образцов свидетельствуют о тригональном искажении структуры дегидратированных форм обоих образцов. На дифрактограмме дегидратированного обр. 1 (рис. 4) отсутствуют рефлексы лейцита, хотя в непрокаленном образце его примесь была зафиксирована в заметном количестве. Исчезновение лейцитовой фазы может быть связано с увеличением подвижности катионов в дегидратированной форме при высокой температуре и, соответственно, с усреднением катионного состава по зерну. Видимо, при замещении калия на натрий лимитирующей стадией обмена является диффузия катионов через границу твердое тело—расплав. Очевидно, в безводной форме смесимость катионов натрия и калия существенно выше, чем в присутствии воды. При гидратации же образца происходит распад твердого раствора на две фазы, различающиеся как составом, так и симметрией структуры — тетрагональный лейцит и псевдокубический анальцим. Этот вывод подтверждается распределением доменов лейцита по всему объему кристаллов гидратированной замещенной формы. Таким образом, обезвоженный образец представлен одной фазой состава $K_{0.25} Na_{0.71} [Al_{0.97} Si_{2.03} O_6]$.

На дифрактограмме прокаленного обр. 2 кроме рефлексов, отвечающих сжатой тригональной фазе, присутствуют малоинтенсивные пики, которые можно отнести к гидратированному анальциму. Очевидно, это связано с частичной регидратацией образца при охлаждении. Несмотря на разницу в катионном составе образцов 1 и 2, дифракционные профили их дегидратированных форм очень близки. Это согласуется с результатами ТМА о сравнимой степени сжатия образцов при охлаждении. Параметры стандартной для анальцима псевдокубической э.я. (в ромбоэдрическом искажении) дегидратированных форм представлены в таблице. В тригональной метрике параметры э.я. равны: для обр. 1 — a = 18.719 (2), c = 11.772 (2) Å, V = 3572 Å³, для обр. 2 — a = 18.736 (2), c = 11.801 (2) Å, V = 3588 Å³.

Аналогичный характер искажения наблюдался в структуре дегидратированного (Li,Na)-анальцима [Серёткин и др., 2005], где катионы Na^+ частично мигрировали в окрестности W-позиций, исходно занятых молекулами H_2O , в плоскую тройную координацию по O-атомам каркаса с расстояниями Na—O 2.48—2.78 \mathring{A} . Это привело к псевдотригональному искажению структуры с существенным уменьшением объема э.я. Дифрактометрия дегидратированных Na-замещенных форм лейцита показала высокое сходство дифрактограмм исследованных образцов и дегидратированной формы (Li,Na)-анальцима. Из аналогии в поведении и характеристиках рассмотренных соединений следует вывод, что при дегидратации вторичного (K,Na)-анальцима катионы Na^+ мигрируют в W-полости, тригонально деформируя и существенно сжимая структуру. Первопричина этого — наличие в W-позициях некоторого количества "опорных" незамещенных катионов K^+ . Для обеспечения нормальных межатомных расстояний K—O необходимо значительное сжатие анальцимового каркаса, что видно на примере лейцита (см. таблицу). В анальциме катионы Na^+ расположены в M-позициях в "окнах" каркаса на стыке W-полостей и связаны в систему

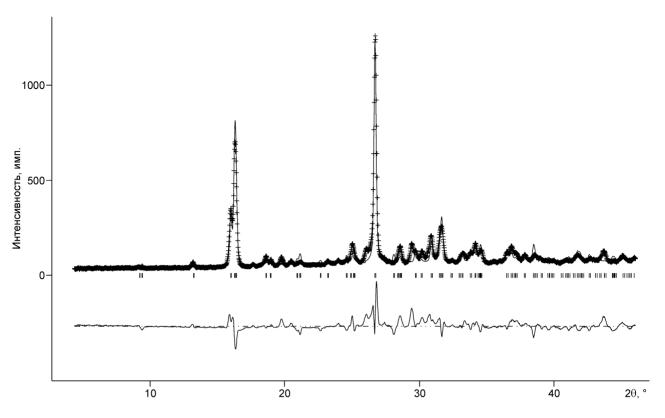


Рис. 5. Результаты уточнения структуры дегидратированной формы ($K_{0.26}$ Na $_{0.74}$)-замещенного лейцита в пространственной группе R3 методом Ритвельда.

Экспериментальный и расчетный профили показаны плюсами (+) и сплошной линией соответственно. Штрихи под профилями показывают положение рефлексов в выбранной пр. группе. Разностная кривая (эксперимент минус расчет) дана внизу.

 \cdots H_2O —Na— H_2O —Na \cdots , что принципиально ограничивает сжатие структуры. В отсутствие молекул H_2O становится возможной деформация, обеспечивающая катионам K^+ нормальную координацию. Однако она приводит к значительному искажению координационного окружения M-позиций и, соответственно, миграции катионов Na^+ в новые положения.

Уточнение структурной модели дегидратированной ($K_{0.26}$ Na $_{0.74}$)-формы выполнялось с использованием программы GSAS [Larson, Von Dreele, 2000]. Выбор пространственной (пр.) группы с учетом тригонального искажения э.я. невелик — R3 или P3. Центросимметричные варианты не могут быть приняты, поскольку в них не реализуется тригональная деформация 6-членных колец каркаса. Уточнение выполнялось в обеих пр. группах. В R3 ряд малоинтенсивных пиков, присутствующих на дифракционном профиле, не описывается. При выборе пр. группы РЗ все рефлексы индицируются; однако прийти к кристаллохимически приемлемому результату в этом случае не удалось. Значения межатомных расстояний (Si,Al)—О и углов О—(Si,Al)—О в каркасе далеки от стандартных, несмотря на введение ограничения их вариаций. Видимо, стартовая модель структуры недостаточно близка к решению, и большое количество варьируемых параметров (96 независимых атомных позиций ×3) существенно затрудняет получение искомого результата. Уточнение в пр. группе R3 проведено до значений $R_p = 0.12$, $wR_p = 0.15$, $R(F^2) = 0.32$. При таких показателях можно говорить лишь о модельном представлении структуры. Экспериментальный и расчетный профили приведены на рис. 5, проекция структуры в тригональной установке на плоскость (001) и ее трубочный фрагмент вдоль с-оси — на рис. 6. Вдоль тройной оси, проходящей по оси трубки из 6-членных колец, чередуются изометричные и тригонализованные кольца. На с-трансляции трубки расположены две катионные позиции. Одна занята К+ в координации 6+3 (3.00-3.12 Å + 3.38 Å, см. рис. 6, 6); катион расположен вблизи центра W-полости. Вторая (W) позиция оккупирована Na+; ее координация близка к плоской тройной (Na—O 2.72 Å) подобно координации Na-позиций в структуре дегидратированного (Li,Na)-анальцима [Серёткин и др., 2005]. Можно утверждать, что тригональное искажение структуры определяется именно таким положением Na⁺. Вдоль других

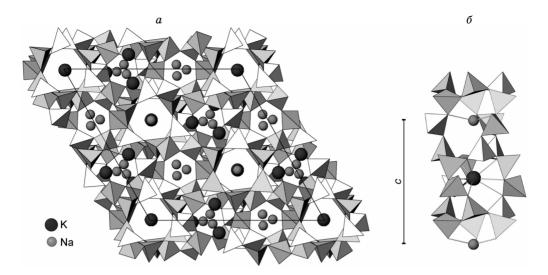


Рис. 6. Проекция структуры дегидратированной формы ($K_{0.26}$ Na_{0.74})-замещенного лейцита на плоскость (001) (a) и трубочный фрагмент вдоль c-оси (δ).

направлений трубок картина не столь отчетливая; K-позиции также расположены в центре W-полости. Две Nа-позиции смещены к центру W-полости, занимая промежуточное положение между позициями M и W.

Высокое сходство дифракционных профилей Na-замещенных форм позволяет утверждать, что в структуре и с меньшим содержанием калия картина аналогичная.

ЗАКЛЮЧЕНИЕ

По результатам исследования вторичного анальцима можно сделать следующие выводы и предположения. Наличие оставшегося незамещенным калия практически не сказывается на структуре гидратированной формы; оценочно смесимость K^+ и Na^+ в присутствии молекул H_2O составляет 15—20 ат.% K^+ . Здесь, скорее, следует говорить о смесимости водно-катионных комплексов — островных катионов K^+ и цепочек (\cdots H_2O —Na— H_2O —Na— \cdots) в анальцимовой структуре. При дегидратации присутствие калия провоцирует сильное анизотропное сжатие структуры; катионы Na^+ мигрируют в новые низкокоординированные позиции на осях трубок из 6-членных колец, тригонально деформируя каркас. Смесимость калия и натрия в отсутствие H_2O существенно увеличивается, и фазы анальцима и лейцита, образовавшиеся вследствие распада твердого раствора при гидратации образца, за счет миграции катионов через межфазовые границы переходят в одну фазу с усредненным составом. Высокотемпературное поведение (Na,K)-анальцима определяется количеством содержащегося в нем калия.

Таким образом, отмеченная в литературе разница в поведении первичных и вторичных (т. е. образованных из лейцита замещением K^+ на Na^+) анальцимов может быть объяснена неполным замещением катионов K^+ и, соответственно, их влиянием на термические свойства соединения.

Авторы выражают благодарность к.ф.-м.н. С.В. Горяйнову за помощь в проведении спектроскопии комбинационного рассеяния и интерпретации результатов. Авторы также благодарны д.г.-м.н. Э.П. Солотчиной за ценные замечания.

Работа выполнена при поддержке РФФИ (грант 07–05–00742).

ЛИТЕРАТУРА

Бакакин В.В., Алексеев В.И., Серёткин Ю.В., Белицкий И.А., Фурсенко Б.А., Балко В.П. Кристаллическая структура дегидратированного анальцима. Плоская четверная координация натрия // Докл. РАН, 1994, т. 339, № 4, с. 520—524.

Дементьев С.Н., Дребущак В.А., Серёткин Ю.В. Диагностика гейландит-клиноптилолитовых туфов с использованием термомеханического анализа // Геология и геофизика, 1990 (2), с. 17—21.

Дир У.А., Хауи Р.А., Зусман Дж. Породообразующие минералы. М., Мир, 1966, 482 с.

Серёткин Ю.В., Бакакин В.В., Бажан И.С. Структура дегидратированного ($Li_{0.7}Na_{0.3}$)-анальцима: тригональная деформация ANA-каркаса и новые низкокоординированные внекаркасные позиции // Журнал структ. химии, 2005, т. 46, N 4, с. 681—693.

Cruciani G., Gualtieri A. Dehydration dynamics of analcime by *in situ* synchrotron powder diffraction // Amer. Miner., 1999, v. 84, p. 112—119.

Giampaolo C., Lombardi G. Thermal behaviour of analcime from two different genetic environments // Eur. J. Miner., 1994, v. 6, p. 285—289.

Gupta A.K., Fyfe W.S. Leucite survival: the alternation to analcime // Canad. Miner., 1975, v. 13, p. 361—363.

Horvath E., Kristof J., Frost R.L., Redey A., Vagvolgyi V., Cseh T. Hydrazine-hydrate interacalated halloysite under controlled-rate thermal analysis conditions // J. Therm. Anal. Calorim., 2003, v. 71, p. 707—714.

Karlsson H.P., Clayton R.N. Analcime phenocrysts in igneous rocks: primary or secondary? // Amer. Miner., 1991, v. 76, p. 189—199.

Karlsson H.P., Clayton R.N. Analcime phenocrysts in igneous rocks: primary or secondary? // Amer. Miner., 1993, v. 78, p. 230—232.

Larson A.C., Von Dreele R.B. General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748, 2000, 223 p.

Line C.M.B., Putnis A., Putnis C., Giampaolo C. The dehydration kinetics and microtexture of analcime from two parageneses // Amer. Miner., 1995, v. 80, p. 268—279.

Putnis A., Putnis C., Giampaolo G. The microtexture of analcime phenocrysts in igneous rocks // Eur. J. Miner., 1994, v. 6, p. 627—632.

Taylor D., MacKenzie W.S. A contribution to the pseudoleucite problem // Contr. Miner. Petrol., 1975, v. 49, p. 321—333.

Рекомендована к печати 18 июля 2007 г. В.В. Ревердатто Поступила в редакцию 15 декабря 2006 г., после доработки — 25 июня 2007 г.