УДК 532.5:532.517.4

ЛИНЕЙНАЯ УСТОЙЧИВОСТЬ ТЕЧЕНИЯ КУЭТТА КОЛЕБАТЕЛЬНО-ВОЗБУЖДЕННОГО ГАЗА. 1. НЕВЯЗКАЯ ЗАДАЧА

Ю. Н. Григорьев, И. В. Ершов*

Институт вычислительных технологий СО РАН, 630090 Новосибирск

* Новосибирский государственный архитектурно-строительный университет, 630008 Новосибирск

E-mails: grigor@ict.nsc.ru, i_ershov@ngs.ru

В рамках линейной теории исследована устойчивость течения Куэтта колебательновозбужденного двухатомного газа с параболическим профилем статической температуры. Для невязких возмущений, описываемых системой линеаризованных уравнений двухтемпературной газовой динамики, в явном виде получен ряд асимптотических оценок. Показано, что для неустойчивых мод выполняется первое условие (теорема) Рэлея и справедлива классификация невязких мод на четные и нечетные. Получено обобщенное условие наличия точки перегиба на профиле скорости, необходимое для развития неустойчивостей. Уточнено достаточное условие в теореме о полукруге. Выполнены численные расчеты комплексных фазовых скоростей двумерных четных и нечетных невязких мод в зависимости от числа Маха, степени возбуждения колебательных уровней энергии и характерного времени релаксации. Отмечено, что в отличие от случая свободного сдвигового слоя в задаче Куэтта с увеличением числа Маха инкремент нарастания наиболее неустойчивой моды II возрастает, стремясь к некоторому пределу, для которого получена асимптотика в форме обыкновенного дифференциального уравнения. Результаты расчетов показывают, что в рассмотренном диапазоне параметров течения четко выражен эффект уменьшения инкрементов нарастания на фоне релаксационного процесса.

Ключевые слова: линейная теория устойчивости, колебательная релаксация, уравнения двухтемпературной аэродинамики, невязкие моды возмущений.

Введение. В работах [1, 2] устойчивость плоского дозвукового течения Куэтта термически неравновесного молекулярного газа рассматривалась на основе нелинейной энергетической теории. Проведенное в этих работах обобщение теории на случай сжимаемых течений позволило получить критические числа Рейнольдса Re_{cr}, в том числе для слабонеравновесного газа. Найденные значения Re_{cr} по порядку величины совпадают с критическими числами Рейнольдса, полученными в аналогичной постановке для несжимаемого течения [3]. Этот результат подтверждает известное представление о том, что дозвуковое течение Куэтта можно считать практически несжимаемым. Вместе с тем в обоих случаях экспериментально полученные значения Re_{cr} превышают расчетные значения на несколько порядков. При этом для несжимаемой жидкости в настоящее время отсутствуют подходы, позволяющие сблизить данные теории и эксперимента. До последнего времени единственной альтернативой энергетической теории была классическая линейная теория

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 11-01-00064).

[©] Григорьев Ю. Н., Ершов И. В., 2014

устойчивости, в рамках которой плоское течение Куэтта несжимаемой жидкости изучалось во многих работах (см. [4]). В [5] показана абсолютная устойчивость этого течения при всех числах Рейнольдса и произвольных длинах волн возмущений.

Для случая течения Куэтта сжимаемого газа к настоящему времени сложилась не столь определенная ситуация. Приложению линейной теории устойчивости к исследованию плоского течения Куэтта с учетом сжимаемости посвящено значительно меньшее число работ. В ранних публикациях (см. работу [4] и библиографию к ней) рассматривались упрощенные модели, более общие результаты получены в работах [4, 6] и сравнительно недавно изданной работе [7], объединенных общей постановкой задачи. Результаты асимптотических исследований устойчивости в невязком пределе, а также при больших, но конечных числах Рейнольдса представлены только в работе [4]. При этом для нахождения асимптотики спектра собственных мод для конечных чисел Рейнольдса использовался метод возмущений, отличающийся от традиционного подхода, применяемого в линейной теории [8]. В частности, не рассматривалось асимптотическое построение кривой нейтральной устойчивости.

В работах [4, 6, 7] основные результаты численных расчетов получены методом коллокаций с использованием QZ-алгоритма для нахождения спектра фазовых скоростей возмущений. Тем не менее результаты работ [6, 7] противоречат более ранним результатам [4]. В [4] выявлены сильное стабилизирующее влияние вязкости и отсутствие растущих вязких мод вплоть до значений числа Рейнольдса $\text{Re} = 5 \cdot 10^6$ при числах Маха $M_{\infty} \leq 5$. Отсутствие растущих вязких мод было зафиксировано также на основе асимптотических поправок к результатам исследований, полученным в невязком пределе. В то же время в численных расчетах [6, 7] найдены неустойчивые вязкие моды при близких числах Маха $M_{\infty} = 8 \div 12$. Более того, в [6] обнаружено, что в некотором диапазоне длин волн, чисел Рейнольдса и Маха вязкость оказывает дестабилизирующее воздействие, в частности возникает неустойчивость выделенной моды, устойчивой в невязком пределе.

Возможной причиной указанного различия является несовершенство реализации численного метода в работе [4], в которой использовалась авторская разработка, в отличие от работ [6, 7], в которых применялось профессиональное математическое обеспечение (в [6] оно дополнительно тестировалось на основе альтернативного конечно-разностного метода). Однако в [6, 7] не рассматривалась невязкая задача и отсутствуют какие-либо асимптотические оценки, подтверждающие результаты численных расчетов.

Общие характеристики линейной устойчивости плоскопараллельных течений колебательно-возбужденного газа рассматривались в работе [9], в которой показано значительное стабилизирующее воздействие релаксационного процесса. Линейная устойчивость течения Куэтта в условиях его существенного отклонения от термодинамического равновесия до последнего времени не исследовалась. Следует отметить, что в работах [4, 6, 7] влияние объемной вязкости, отражающей слабую неравновесность внутренних степеней свободы молекул газа, исключалось с помощью соотношения Стокса. Поэтому представляет интерес использование линейной теории с целью исследования влияния термической неравновесности на характеристики устойчивости классического течения. Результаты, полученные на основе линейной теории для невозбужденного газа, свидетельствуют о возможности достижения лучшего соответствия по порядку величины расчетных и экспериментальных критических чисел Рейнольдса по сравнению с результатами [1, 2], по крайней мере для сверхзвуковых чисел Маха. Кроме того, целью данной работы является устранение противоречия результатов работ [4] и [6, 7], а также получение корректных асимптотических оценок характеристик устойчивости для невязкого и вязкого случаев течения невозбужденного газа.

1. Основные уравнения. Рассматривается задача линейной устойчивости плоского сжимаемого течения Куэтта колебательно-возбужденного молекулярного газа. В координатной плоскости поток ограничен двумя бесконечными параллельными плоскостями, расстояние между которыми равно h. Считается, что плоскость y = 0 покоится, а граница y = h движется равномерно в собственной плоскости со скоростью U_0 . Течение описывается в рамках модели двухтемпературной аэродинамики [10, 11]. В качестве характерных величин для обезразмеривания были выбраны ширина канала h, скорость границы U_0 , плотность ρ_0 и температура T_0 основного течения на движущейся границе канала, время $t_0 = L/U_0$ и давление $p_0 = \rho_0 U_0^2$. В безразмерных переменных система уравнений двухтемпературной аэродинамики имеет вид

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = 0, \qquad \rho \Big(\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} \Big) = -\frac{\partial p}{\partial x_i} + \frac{1}{\operatorname{Re}} \frac{\partial^2 u_i}{\partial x_j^2} + \frac{1}{\operatorname{Re}} \Big(\alpha_1 + \frac{1}{3} \Big) \frac{\partial^2 u_j}{\partial x_i \partial x_j},$$

$$\rho \Big(\frac{\partial T}{\partial t} + u_j \frac{\partial T}{\partial x_j} \Big) + (\gamma - 1)\rho T \frac{\partial u_i}{\partial x_i} = \frac{\gamma}{\operatorname{Re}\operatorname{Pr}} \frac{\partial^2 T}{\partial x_i^2} + \frac{\rho \gamma_v (T_v - T)}{\tau} + \frac{\gamma (\gamma - 1) \operatorname{M}^2}{2\operatorname{Re}} \Big[\Big(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \Big)^2 + 2\Big(\alpha_1 - \frac{2}{3} \Big) \Big(\frac{\partial u_i}{\partial x_i} \Big)^2 \Big], \qquad (1)$$

$$\gamma_v \rho \Big(\frac{\partial T_v}{\partial t} + u_j \frac{\partial T_v}{\partial x_j} \Big) = \frac{20}{33} \frac{\gamma \gamma_v}{\operatorname{Re}\operatorname{Pr}} \frac{\partial^2 T_v}{\partial x_i^2} - \frac{\gamma_v \rho (T_v - T)}{\tau},$$

$$\gamma \operatorname{M}^2 p = \rho T, \qquad i = 1, 2, \quad j = 1, 2,$$

где $x_1 = x, x_2 = y$; по повторяющимся индексам подразумевается суммирование.

В уравнениях системы (1) $\alpha_1 = \eta_b/\eta$ — отношение объемной вязкости к сдвиговой; $\gamma = c_p/c_V$ — показатель адиабаты; $c_V = c_{V,t} + c_{V,r}$, $c_p = c_V + R$ — соответственно удельные теплоемкости при постоянных объеме и давлении, представленные в виде суммы теплоемкостей, обусловленных поступательным и вращательным движением молекул; $\gamma_v = c_{V,v}/(c_{V,t} + c_{V,r})$ — параметр, характеризующий степень неравновесности колебательной моды; $c_{V,v}$ — удельная теплоемкость при постоянном объеме, соответствующая релаксирующей колебательной моде; τ — характерное время релаксации колебательной моды; R — газовая постоянная; $\text{Re} = \rho_0 h U_0/\eta$ и $M = U_0/\sqrt{\gamma RT_0}$ — соответственно числа Рейнольдса и Маха несущего потока; $\Pr = \eta c_V/\lambda$ — число Прандтля; $\lambda = \lambda_t + \lambda_r$ теплопроводность, определяемая поступательными и вращательными степенями свободы молекул.

Предполагается, что в невозмущенном стационарном потоке все параметры зависят только от поперечной координаты y. Принимается, что статическая T_s и колебательная $T_{v,s}$ температуры равны: $T_s(y) = T_{v,s}(y)$. Для исходного течения ставятся следующие граничные условия:

$$U_s(0) = 0, \quad U_s(1) = 1, \quad \frac{dT_s}{dy}\Big|_{y=0} = 0, \quad T_s(1) = 1.$$

При этом точное решение системы (1) задается соотношениями

$$U_s(y) = y, \quad T_s(y) = T_{v,s}(y) = 1 + \frac{(\gamma - 1) \operatorname{Pr} \operatorname{M}^2}{2} (1 - y^2), \quad \rho_s(y) = \frac{1}{T_s(y)}, \quad p_s(x_2) = \frac{1}{\gamma \operatorname{M}^2}.$$
 (2)

Мгновенные значения полей возмущенного потока представляются в виде суммы исходных значений (2) и малых пульсаций, зависящих от времени и обеих координат в плоскости течения:

$$u_1 = U_s + \hat{u}_x, \quad u_2 = \hat{u}_y, \quad \rho = \rho_s + \hat{\rho}, \quad T = T_s + \hat{T}, \quad T_v = T_{v,s} + \hat{T}_v, \quad p = p_s + \hat{p}.$$
 (3)

Подставляя (3) в систему (1) и линеаризуя ее относительно стационарного решения (2), в первом приближении получаем систему уравнений для малых возмущений

$$\begin{aligned} \frac{\partial \hat{\rho}}{\partial t} + U_s \frac{\partial \hat{\rho}}{\partial x} + \rho_s \Big(\frac{\partial \hat{u}_x}{\partial x} + \frac{\partial \hat{u}_y}{\partial y} \Big) + \hat{u}_y \frac{\partial \rho_s}{\partial y} &= 0, \\ \rho_s \Big(\frac{\partial \hat{u}_x}{\partial t} + U_s \frac{\partial \hat{u}_x}{\partial x} + \hat{u}_y \frac{\partial U_s}{\partial y} \Big) &= -\frac{\partial \hat{p}}{\partial x} + \frac{1}{\text{Re}} \Big(\frac{\partial^2 \hat{u}_x}{\partial x^2} + \frac{\partial^2 \hat{u}_x}{\partial y^2} \Big) + \frac{1}{\text{Re}} \Big(\alpha_1 + \frac{1}{3} \Big) \Big(\frac{\partial^2 \hat{u}_x}{\partial x^2} + \frac{\partial^2 \hat{u}_y}{\partial x \partial y} \Big), \\ \rho_s \Big(\frac{\partial \hat{u}_y}{\partial t} + U_s \frac{\partial \hat{u}_y}{\partial y} \Big) &= -\frac{\partial \hat{p}}{\partial y} + \frac{1}{\text{Re}} \Big(\frac{\partial^2 \hat{u}_y}{\partial x^2} + \frac{\partial^2 \hat{u}_y}{\partial y^2} \Big) + \frac{1}{\text{Re}} \Big(\alpha_1 + \frac{1}{3} \Big) \Big(\frac{\partial^2 \hat{u}_x}{\partial x \partial y} + \frac{\partial^2 \hat{u}_y}{\partial y^2} \Big), \\ \rho_s \Big(\frac{\partial \hat{T}}{\partial t} + U_s \frac{\partial \hat{T}}{\partial x} + \hat{u}_y \frac{\partial T_s}{\partial y} \Big) + \gamma(\gamma - 1) M^2 p_s \Big(\frac{\partial \hat{u}_x}{\partial x} + \frac{\partial \hat{u}_y}{\partial y} \Big) = \end{aligned}$$
(4)
$$&= \frac{\gamma}{\text{Re} \text{Pr}} \Big(\frac{\partial^2 \hat{T}}{\partial x^2} + \frac{\partial^2 \hat{T}}{\partial y^2} \Big) + \frac{\gamma_v \rho_s (\hat{T}_v - \hat{T})}{\tau} + \frac{2\gamma(\gamma - 1) M^2}{\text{Re}} \Big(\frac{\partial \hat{u}_x}{\partial y} + \frac{\partial \hat{u}_y}{\partial x} \Big) \frac{dU_s}{dy}, \\ \gamma_v \rho_s \Big(\frac{\partial \hat{T}_v}{\partial t} + U_s \frac{\partial \hat{T}_v}{\partial x} + \hat{u}_y \frac{\partial T_{v,s}}{\partial y} \Big) = \frac{20}{33} \frac{\gamma \gamma_v}{\text{Re} \text{Pr}} \Big(\frac{\partial^2 \hat{T}_v}{\partial x^2} + \frac{\partial^2 \hat{T}_v}{\partial y^2} \Big) - \frac{\gamma_v \rho_s (\hat{T}_v - \hat{T})}{\tau}, \\ \gamma M^2 \hat{p} = \rho_s \hat{T} + \hat{\rho} T_s. \end{aligned}$$

Предполагается, что на границах канала при y = 0 и y = 1 все возмущения обращаются в нуль и периодичны по продольной координате x.

2. Необходимые условия неустойчивости невязких мод. Периодические по *х* возмущения рассматривались в виде бегущих плоских волн:

 $q(x, y, t) = q_0(y)e^{i\alpha(x-ct)}, \quad q(x, y, t) = (\hat{u}_x, \hat{u}_y, \hat{\rho}, \hat{T}, \hat{T}_v, \hat{p}), \quad q_0(y) = (u, \alpha v, \rho, \theta, \theta_v, p).$ (5) Здесь α — волновое число; $c = c_r + ic_i$ — комплексная фазовая скорость; i — мнимая единица.

Подставляя (5) в уравнения системы (4), для вектора амплитуд $q_0(y)$ получаем систему уравнений, в которой при рассмотрении невязких возмущений опущены диссипативные слагаемые, что эквивалентно нулевому приближению в асимптотическом разложении решения (5) по степеням малого параметра Re^{-1} . Полученная таким образом система имеет вид

$$D\rho + \alpha \rho'_{s}v + \rho_{s}\sigma = 0, \qquad \rho_{s}Du + \alpha \rho_{s}vU'_{s} + i\alpha p = 0, \qquad \alpha \rho_{s}Dv + p' = 0,$$

$$\rho_{s}D\theta + \alpha \rho_{s}vT'_{s} + (\gamma - 1)\sigma - \frac{\gamma_{v}\rho_{s}}{\tau}(\theta_{v} - \theta) = 0, \qquad \rho_{s}D\theta_{v} + \alpha \rho_{s}vT'_{s} + \frac{\rho_{s}}{\tau}(\theta_{v} - \theta) = 0, \quad (6)$$

$$\gamma M^{2}p = \rho_{s}\theta + \rho T_{s}, \qquad D = i\alpha(U_{s} - c), \qquad \sigma = \alpha(v' + iu)$$

(штрихи означают дифференцирование по переменной y). На стенках канала амплитудные функции принимают нулевые значения.

После частичного исключения зависимых переменных система (6) сводится к двум уравнениям для амплитудных функций возмущений поперечной скорости и давления:

$$v' - \frac{vU'_s}{W} - \frac{ipT_s}{W} \left(1 - \frac{M^{*2}W^2}{T_s}\right) = 0, \qquad p' + \frac{i\alpha^2 W}{T_s} v = 0,$$

$$v|_{y=0} = v|_{y=1} = 0, \qquad p|_{y=0} = p|_{y=1} = 0.$$
(7)

Здесь

$$W = U_s - c,$$
 $M^{*2} = m^2 M^2,$ $m^2 = m_r^2 + i m_i^2,$

$$m_r^2 = \frac{R_1(1+\gamma_v+\alpha\tau c_i)+\Delta^2}{R_1^2+\Delta^2}, \qquad m_i^2 = -\frac{\gamma_v}{\gamma} \frac{(\gamma-1)\Delta}{R_1^2+\Delta^2},$$
$$R_1 = 1+\gamma_v/\gamma+\alpha\tau c_i, \qquad \Delta = \alpha\tau W_r, \qquad W_r = U_s - c_r.$$

Из (7) путем дифференцирования получаются замкнутые уравнения для v и p.

В самосопряженной форме уравнение для амплитудной функции возмущения давления записывается в виде (ср. [9])

$$\left(\frac{T_s p'}{W^2}\right)' - \alpha^2 \left(\frac{T_s}{W^2} - \mathcal{M}^{*2}\right) p = 0.$$
(8)

Рассмотрим квадратичную форму для (8), которая получается в результате умножения уравнения на комплексно-сопряженную функцию \bar{p} и интегрирования по y в интервале [0,1] с граничными условиями (7). После интегрирования по частям эта форма принимает вид

$$A \equiv \int_{0}^{1} \left[\frac{T_s}{W^2} |p'|^2 + \alpha^2 \left(\frac{T_s}{W^2} - M^{*2} \right) |p|^2 \right] dy = 0.$$
(9)

Действительная часть (9) есть

$$\operatorname{Real}(A) \equiv A_r = \int_0^1 [W_r^2 - c_i^2] Q \, dy - K = 0, \qquad K = \alpha^2 \operatorname{M}^2 \int_0^1 m_r^2 |p|^2 \, dy, \tag{10}$$

а мнимая часть определяется выражением

Imag
$$(A) \equiv A_i = \int_0^1 W_r [2c_iQ + \alpha^2 M^2 Q_1 |p|^2] dy = 0.$$
 (11)

В (10), (11) введены следующие обозначения:

$$Q = \frac{T_s(|p'|^2 + \alpha^2 |p|^2)}{|W|^4}, \qquad Q_1 = \frac{\gamma_v(\gamma - 1)\alpha\tau}{\gamma(R_1^2 + \Delta^2)}.$$

Для данной постановки представляет интерес проверка выполнения первого и второго необходимых условий (теорем) Рэлея существования возрастающих невязких возмущений, а также теоремы о полукруге [9, 12–14], поскольку в [12], а также в [9] эти условия были получены для постоянных профилей исходных термодинамических параметров $T_s = \rho_s = 1$, а профиль скорости не конкретизировался.

Для проверки первого условия Рэлея достаточно заметить, что выражение в квадратных скобках в (11) неотрицательно. Поэтому для возрастающих возмущений при $c_i > 0$ мнимая часть $A_i = 0$ тогда и только тогда, когда разность $W_r = U_s - c_r$ меняет знак в поле течения. Следовательно, для рассматриваемого течения Куэтта с параболическим профилем температуры первое условие Рэлея сохраняет обычную форму

$$\min U_s \equiv u < c_r < U \equiv \max U_s,$$

т. е. для любого возрастающего невязкого возмущения значения комплексной фазовой скорости c должны находиться в верхней полуплоскости $c_i > 0$ в полуполосе [u, U] (в данном случае — в интервале [0, 1]).

Второе условие Рэлея (обобщенное условие точки перегиба [13, 14]) в [9] получено при рассмотрении квадратичной формы (9) в труднообозримом виде. В качестве альтернативы

можно использовать уравнение для амплитуды возмущения v, которое представляется в дивергентной форме

$$\frac{d}{dy} \left(\frac{Wv' - vU'_s}{\chi} \right) = \frac{\alpha^2 W}{T_s} v,$$

$$v|_{y=0} = v|_{y=1} = 0, \qquad \chi = T_s - M^{*2} W^2.$$
(12)

Если умножить уравнение (12) на комплексно-сопряженную функцию \bar{v} и вычесть из него комплексно-сопряженное уравнение, умноженное на v, то получится уравнение

$$\bar{v}\frac{d}{dy}\left(\frac{v'}{\chi}\right) - v\frac{d}{dy}\left(\frac{\bar{v}'}{\bar{\chi}}\right) = \frac{|v|^2}{|W|^2} \left[\bar{W}\frac{d}{dy}\left(\frac{U'_s}{\chi}\right) - W\frac{d}{dy}\left(\frac{U'_s}{\bar{\chi}}\right)\right],\tag{13}$$

где $\bar{\chi} = T_s - \mathcal{M}^{*2} \overline{W^2}.$

Чтобы упростить дальнейшие выкладки, следует заметить, что при $c_i \to 0$ можно положить ~ 2

$$\chi \approx \tilde{\chi} = \tilde{\chi}_r + i\tilde{\chi}_i = T_s - \tilde{m}_r^2 M^2 W_r^2 - i\tilde{m}_i^2 M^2 W_r^2 = T_s - \tilde{m}_r^2 M^2 W_r^2 \left(1 + i\frac{m_i^2}{\tilde{m}_r^2}\right),$$
(14)

где

$$\tilde{m}_r^2 = \frac{\tilde{R}_1(1+\gamma_v) + \Delta^2}{\tilde{R}_1^2 + \Delta^2}, \qquad \tilde{m}_i^2 = -\frac{\gamma_v}{\gamma} \frac{(\gamma - 1)\Delta}{\tilde{R}_1^2 + \Delta^2}, \qquad \tilde{R}_1 = 1 + \frac{\gamma_v}{\gamma}$$

В рассматриваемых условиях течения Куэтта двухатомного газа имеет место оценка

$$\frac{|\tilde{m}_i^2|}{\tilde{m}_r^2} = \frac{\gamma_v}{\gamma} \frac{(\gamma - 1)\Delta}{(1 + \gamma_v)(1 + \gamma_v/\gamma) + \Delta^2} \leqslant \frac{\gamma_v}{\gamma} \frac{\gamma - 1}{(1 + \gamma_v)(1 + \gamma_v/\gamma)} \approx 5 \cdot 10^{-2}.$$

Это позволяет в первом приближении пренебречь мнимой частью в (14). В результате (13) преобразуется к виду

$$\frac{d\tilde{H}}{dy} = \frac{2ic_i|v|^2}{|W|^2} \frac{d}{dy} \left(\frac{U'_s}{\tilde{\chi}_r}\right), \qquad \tilde{H}(y) = \frac{\bar{v}v' - v\bar{v}'}{\tilde{\chi}_r}.$$
(15)

Из последнего уравнения следует, что непрерывно дифференцируемая функция H(y) на границах интервала определения $0 \leq y \leq 1$ принимает нулевые значения. Поэтому согласно известной теореме математического анализа ее производная (левая часть (15)) должна обращаться в нуль в некоторой внутренней точке \tilde{y} интервала [0, 1]. Для возрастающих возмущений $c_i > 0$ это достигается, если

$$\frac{d}{dy} \left(\frac{U'_s}{\tilde{\chi}_r} \right) \Big|_{y=\tilde{y}} = 0.$$
(16)

Полученное соотношение является очевидным обобщением второго условия (теоремы) Рэлея о необходимости наличия точки перегиба на неустойчивом профиле в идеальной жидкости. (В работе [6] обобщенное условие наличия точки перегиба ошибочно трактуется как необходимое для нейтральной устойчивости.)

Следует отметить, что в случае идеального газа при анализе уравнения, соответствующего (15), в [4] была допущена ошибка. Для невозбужденного газа $M^* = M$ и при $c_i \to 0$ уравнение (13) принимает вид (15), где $\tilde{\chi}_r = T_s - M^2 W_r^2$. Отсюда на основе аналогичных рассуждений следует условие вида (16) (ср. (5.11) в [4]). В частности, при заданных распределениях T_s , U_s (2) для идеального газа нетрудно показать, что обобщенная точка перегиба определяется выражением

$$\tilde{y} = c_r \left(1 + \frac{(\gamma - 1)\operatorname{Pr}}{2} \right)^{-1}$$

и с учетом первого условия Рэлея для c_r действительно находится в интервале $0 \leq y \leq 1$.

При доказательстве теоремы о полукруге в качестве исходного соотношения рассматривается неравенство [9, 14]

$$\int_{0}^{1} (U_s - u)(U_s - U)Q \, dy = I_2 - (U + u)I_1 + uUI_0 \leqslant 0.$$
(17)

С учетом заданного линейного профиля скорости интегралы в (17)определяются выражениями

$$I_0 = \int_0^1 Q \, dy, \qquad I_1 = \int_0^1 y Q \, dy, \qquad I_2 = \int_0^1 y^2 Q \, dy.$$

Кроме того, эти интегралы выражаются из (10), (11) в виде

$$I_1 = c_r I_0 - \frac{J}{2c_i}, \qquad J = \alpha^2 M^2 \int_0^1 (y - c_r) Q_1 |p|^2 dy, \qquad I_2 = 2c_r I_1 - (c_r^2 - c_i^2) I_0 + K.$$

Подстановка этих выражений в неравенство (17) позволяет преобразовать его к виду

$$\left[\left(c_r - \frac{1}{2}\right)^2 + c_i^2 - \frac{1}{4}\right]I_0 + \frac{1}{c_i}\left(\frac{1}{2} - c_r\right)J + K \leqslant 0.$$

Очевидно, что при условии

$$\left(\frac{1}{2} - c_r\right)J + c_i K \ge 0 \tag{18}$$

для любой неустойчивой невязкой моды при $c_i > 0$ значения комплексной фазовой скорости лежат в верхней полуплоскости в полукруге радиусом $r_0 = 1/2$ с центром в точке $c_r = 1/2$, т. е. условие (18) является достаточным для справедливости теоремы о полукруге.

В случае идеального газа J = 0, $c_i K \ge 0$ и теорема о полукруге, доказанная в [12], справедлива также для течения Куэтта с параболическим профилем температуры. В [9] отмечено, что в силу непрерывности неравенство (18) выполнено также при малых степенях возбуждения для $\gamma_v \to 0$, но в общем случае в [9] неравенство (18) было включено в формулировку теоремы в качестве достаточного условия.

При заданных исходных профилях скорости и температуры можно получить более корректную оценку условия (18). Для возрастающих возмущений первое условие Рэлея в данном случае определяется неравенством $0 < c_r < 1$, поэтому условие (18) следует рассмотреть отдельно для $0 < c_r < 1/2$ и $1/2 \leq c_r < 1$. При $0 < c_r < 1/2$ из (18) можно получить оценку снизу

$$\begin{split} \left(\frac{1}{2} - c_r\right) J + c_i K &= \left(\frac{1}{2} - c_r\right) \alpha^2 \mathcal{M}^2 \int_0^1 \frac{\gamma_v (\gamma - 1)\alpha\tau}{\gamma (R_1^2 + \Delta^2)} \left(y - c_r\right) |p|^2 \, dy + \\ &+ \alpha^2 \mathcal{M}^2 c_i \int_0^1 \frac{R_1 (1 + \gamma_v + \alpha\tau c_i) + \Delta^2}{R_1^2 + \Delta^2} |p|^2 \, dy \geqslant \\ &\geqslant \left(\frac{1}{2} - c_r\right) \alpha^4 \mathcal{M}^2 \tau^2 c_i \int_0^1 \frac{|p|^2}{R_1^2 + \Delta^2} \Big[\left(y - \frac{1}{2}\right)^2 + \left(y - \frac{1}{2}\right) \frac{\gamma_v (\gamma - 1)}{\gamma \alpha \tau} + \frac{R_1 c_i}{\alpha \tau} \Big] \, dy. \end{split}$$

Из последнего интеграла следует, что неравенство (18) выполнено, если квадратный трехчлен в подынтегральном выражении не имеет действительных корней в интервале $0 \leq y \leq 1/2$. Для этого достаточно, чтобы выполнялось неравенство

$$y^2 + ry + q \ge 0, \qquad 0 \le y \le 1/2,$$

где

$$r = \frac{\gamma_v(\gamma - 1)}{\gamma \alpha \tau} - 1, \qquad q = \frac{1}{4} - \frac{\gamma_v(\gamma - 1)}{2\gamma \alpha \tau} + \frac{R_1 c_i}{\alpha \tau}.$$

Условие комплексной сопряженности (кратности) корней выражается неравенствами

$$\frac{\gamma_v(\gamma-1)}{\gamma\alpha\tau} < 1, \qquad \frac{R_1}{\alpha\tau} < 1.$$
(19)

После исключения из (19) комплекса $\alpha \tau$ получается неравенство

$$\gamma_v(1-2/\gamma) < 1$$

которое при рассматриваемых степенях возбуждения всегда выполнено.

При $1/2 \leq c_r < 1$ для (18) оценка снизу получается в виде

$$\begin{split} \left(\frac{1}{2}-c_r\right)J+c_iK &= \left(\frac{1}{2}-c_r\right)\alpha^2 \mathcal{M}^2 \int_0^1 \frac{\gamma_v(\gamma-1)\alpha\tau}{\gamma(R_1^2+\Delta^2)}(y-c_r) \left|p\right|^2 dy + \\ &+ \alpha^2 \mathcal{M}^2 c_i \int_0^1 \frac{R_1(1+\gamma_v+\alpha\tau c_i)+\Delta^2}{R_1^2+\Delta^2} \left|p\right|^2 dy \geqslant \\ &\geqslant \left(c_r-\frac{1}{2}\right)\alpha^4 \mathcal{M}^2 \tau^2 c_i \int_0^1 \frac{\left|p\right|^2}{R_1^2+\Delta^2} \Big[(y-c_r)^2 - (y-c_r) \frac{\gamma_v(\gamma-1)}{\gamma\alpha\tau} + \frac{R_1 c_i}{\alpha\tau}\Big] dy. \end{split}$$

В данном случае для выполнения неравенства (18) достаточно, чтобы выделенный в подынтегральном выражении квадратный трехчлен не обращался в нуль на интервале $1/2 < y \leq 1$. Из условия комплексной сопряженности (кратности) корней этого трехчлена также следуют неравенства (19), не налагающие строгие ограничения на комплекс $\alpha \tau$, так как при $\alpha \tau \to 0$ неравенство (18) будет выполнено. Кроме того, из (19) не следует ограничения на степень возбуждения γ_v . Можно добавить, что в данном случае доказательство теоремы о полукруге имеет скорее престижный характер, так как расчетные значения мнимой составляющей комплексной скорости (инкремента нарастания) для растущих мод имеют порядок 10^{-4} .

3. Спектральная задача. Система (6) с однородными граничными условиями представляет собой спектральную задачу, в которой собственными значениями являются комплексные фазовые скорости возмущений $c = c_r + ic_i$, а число Маха М и волновое число α служат параметрами. Для расчета собственных значений $c = c_r + ic_i$ невязких мод спектральная задача (6) с однородными граничными условиями решалась численно в среде пакета Matlab. Использовался метод коллокаций [15], ранее примененный в работах [1, 2]. Следует отметить, что в работах [4, 6, 7], посвященных исследованию линейной устойчивости течения Куэтта в невозбужденном совершенном газе, также использовался метод коллокаций. В данном случае спектральная задача записывалась в матричном представлении:

$$A\boldsymbol{\varphi}' + B\boldsymbol{\varphi} = cK\boldsymbol{\varphi}, \qquad \boldsymbol{\varphi}\big|_{\boldsymbol{y}=0} = \boldsymbol{\varphi}\big|_{\boldsymbol{y}=1} = 0.$$
⁽²⁰⁾

Здесь $\boldsymbol{\varphi} = (\rho, u, v, \theta, \theta_v); A, B, K$ — матрицы размером 5 × 5:

$$A = \begin{pmatrix} 0 & 0 & \rho_s & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ -a_1 & 0 & 0 & -b_1 & 0 \\ 0 & 0 & -c_1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -iU_s & -i\rho_s & -\rho'_s & 0 & 0 \\ -ia_1 & -i\rho_s U_s & -\rho_s U'_s & -ib_1 & 0 \\ -ia'_1 & 0 & -\alpha a_2 & -ib'_1 & 0 \\ 0 & -ic_1 & -c_2 & -(a_2+b_2) & b_2 \\ 0 & 0 & -\gamma_v c_2 & b_2 & b+\gamma_v a_2 \end{pmatrix},$$
$$K = \begin{pmatrix} -i & 0 & 0 & 0 & 0 \\ 0 & -i\rho_s & 0 & 0 & 0 \\ 0 & 0 & -i\alpha^2 \rho_s & 0 & 0 \\ 0 & 0 & 0 & -i\alpha \rho_s & 0 \\ 0 & 0 & 0 & -i\alpha \gamma_v \rho_s \end{pmatrix},$$
$$a_1 = \frac{T_s}{\gamma M^2}, \quad a_2 = i\alpha \rho_s U_s, \quad b_1 = \frac{\rho_s}{\gamma M^2}, \quad b_2 = \frac{\gamma_v \rho_s}{\tau}, \quad c_1 = \alpha(\gamma - 1), \quad c_2 = \alpha \rho_s T'_s.$$

В качестве узлов коллокации выбирались точки Гаусса — Лобатто

$$y_n = \frac{1}{2} \left[1 + \cos\left(\frac{\pi n}{N}\right) \right], \qquad n = 0, 1, \dots, N,$$

в которых полином Чебышева N-й степени $T_N(x_2)$ имеет экстремумы на отрезке $y \in [0, 1]$. Дифференциальные операторы первого порядка, входящие в спектральную задачу, аппроксимируются на данной сетке матрицей коллокационных производных D_N^1 [15] размером $(N+1) \times (N+1)$.

Построенная таким образом дискретная аппроксимация позволяет свести задачу (20) к обобщенной задаче на собственные значения относительно спектрального параметра *c*:

$$\sum_{j=0}^{5N+4} (G_{ij} - cF_{ij})z_j = 0, \qquad i = 0, 1, \dots, 5N+4.$$
(21)

Здесь вектор неизвестных \boldsymbol{z} размером 5(N+1) состоит из значений собственных функций в узлах коллокации:

$$\boldsymbol{z} = (\rho_0, \rho_1, \dots, \rho_N, u_0, u_1, \dots, u_N, v_0, v_1, \dots, v_N, \theta_0, \theta_1, \dots, \theta_N, \theta_{v,0}, \theta_{v,1}, \dots, \theta_{v,N}),$$

матрицы G, F размером 5(N+1) × 5(N+1) вычисляются с использованием специальной процедуры Matlab по формулам

$$G = A \otimes D_N^1 + B \otimes I_N, \qquad F = K \otimes I_N,$$

знак " \otimes " обозначает прямое (тензорное) произведение матриц [16]; I_N — единичная матрица размером $(N+1) \times (N+1)$.

Однородные граничные условия для уравнения (21) учитываются неявно через оператор D_N^1 [15] и на дискретном уровне реализуются заменой матрицы D_N^1 на окаймленную матрицу размером $(N-1) \times (N-1)$. Последняя получается при выполнении условий

$$D_{0,j}^1 = D_{N,j}^1 = 0, \qquad D_{i,0}^1 = D_{i,N}^1 = 0, \qquad i = 0, \dots, N, \quad j = 0, \dots, N$$

Для нахождения всех собственных значений и соответствующих собственных функций обобщенной спектральной задачи (21) использовалась процедура Matlab, реализующая QZ-алгоритм, который позволяет одновременным ортогональным преобразованием привести пару матриц G, F к обобщенной верхней треугольной форме. В результате применения данной процедуры для фиксированных значений числа Maxa M, степени неравновесности

	$\gamma_v = 0$			$\gamma_v = 0,667, \tau = 1$		
М	α	$c_i^{\max}\cdot 10^4$	$\omega^{\max}\cdot 10^3$	α	$c_i^{\max} \cdot 10^4$	$\omega^{\max}\cdot 10^3$
0	12,9870	0,0248	0,0322	12,9760	0,0198	0,0257
0,5	8,5405	0,1296	$0,\!1107$	8,5476	0,1102	0,0942
1	$6,\!4498$	0,4112	0,2652	$6,\!4504$	0,3485	0,2248
2	4,9681	1,5962	0,7930	4,9713	1,4002	$0,\!6961$
3	4,3550	4,2418	$1,\!8473$	4,3575	$3,\!3785$	$1,\!4722$
4	$3,\!9102$	6,7012	$2,\!6203$	3,9186	5,8698	$2,\!3001$
5	$3,\!5973$	8,8636	$3,\!1885$	$3,\!6017$	8,3005	2,9896
10	$3,\!1250$	$14,\!2480$	$4,\!4525$	$3,\!1295$	$13,\!9480$	4,3650
20	$3,\!0055$	$16,\!2490$	4,8836	2,9918	16,0490	$4,\!8016$
30	2,9690	16,5490	4,9134	2,9710	$16,\!2490$	$4,\!8476$
40	$2,\!9644$	$16,\!6980$	4,9499	2,9698	$16,\!3980$	4,8699
∞	$2,\!9555$	17,0000	5,0244	2,9585	16,5000	4,8815

Максимальные значения инкрементов роста ω^{\max} и соответствующие им значения волновых чисел α

колебательной энергии γ_v , времени колебательной релаксации τ и волнового числа α получался набор N+1 собственных значений $c = c_r + ic_i$.

В предварительных расчетах число узлов коллокации на интервале $y \in [0, 1]$ изменялось от N + 1 = 30 до N + 1 = 250. Отмечено, что при N + 1 < 60 варьирование параметра γ_v не влияет на значения мнимой фазовой скорости c_i . Однако при $N + 1 \ge 60$ варьирование значений γ_v приводит к изменению значений c_i , при этом $c_i \sim 10^{-4}$ (см. таблицу). В дальнейших расчетах число узлов коллокации на интервале $y \in [0, 1]$ принималось равным N + 1 = 152.

Для проверки точности используемого метода проведены расчеты собственных значений с помощью метода "стрельбы". Для этого уравнения (7) заменялись уравнениями и граничными условиями для вещественных и мнимых частей функций v и p. Полученная таким образом система при фиксированных наборах параметров M, Pr, γ_v , τ интегрировалась численно с помощью процедуры Рунге — Кутты четвертого порядка на интервалах $y \in [0; 0, 5]$ и $y \in [0, 5; 1, 0]$ с шагом $\Delta y = 10^{-3}$. Точкой "прицеливания" служила середина канала (y = 0, 5). Значения c_r и c_i подбирались таким образом, чтобы вычисленные "слева" и "справа" в точке y = 0, 5 значения функций v_r , p_r , v_i , p_i совпадали с точностью до 10^{-8} . Соответствующее такому совпадению значение c принималось в качестве собственного значения при заданном наборе параметров M, Pr, γ_v , τ . Сравнение результатов, полученных с помощью методов коллокаций и "стрельбы", показало, что различия значений $c = c_r + ic_i$ наблюдаются лишь в шестом-седьмом десятичных знаках после запятой. Таким образом была обеспечена необходимая точность вычисления инкрементов (декрементов) возмущений.

4. Результаты расчетов. Параметрические расчеты спектральной задачи показали, что изменение значений времени колебательной релаксации в диапазоне $10^{-2} \leq \tau \leq 10$ оказывает слабое влияние на поведение кривых $c_r(\alpha, \gamma_v, M)$ и $c_i(\alpha, \gamma_v, M)$. Поэтому ниже расчетные данные приведены для одного значения характерного времени $\tau = 1$.

Классификация невязких мод на четные и нечетные и характер их поведения в случае идеального газа [4, 6, 7] сохраняются и для колебательно-возбужденного газа [11]. Характерные графики зависимостей $c_r(\alpha)$ для мод обоих семейств приведены на рис. 1. Видно, что для нечетных мод при $\alpha \to 0$ $c_r > 1$ и для всех мод, кроме моды I, $c_r \to \infty$. В то же время для четных мод при $\alpha \to 0$ $c_r < 0$ и для всех мод, за исключением моды II, $c_r \to -\infty$. Выделенные моды I и II при $\alpha = 0$ имеют конечные пределы. Для этих пределов

Рис. 1. Зависимость $c_r(\alpha)$ для чисел Маха M = 2 (a) и M = 5 (б): 1, 1' — мода I, 2, 2' — мода II, 3, 3' — мода III, 4, 4' — мода IV, 5, 5' — мода V, 6, 6' — мода VI, 7, 7' — мода VII, 8, 8' — мода VIII; сплошные линии — $\gamma_v = 0$, штриховые — $\gamma_v = 0,667, \tau = 1$

можно получить алгебраическое уравнение, которое позволяет вычислить их значения, не решая спектральную задачу. Действительно, при $\alpha = 0$ уравнение (12) переходит в однородное дифференциальное уравнение второго порядка

$$\frac{d}{dy}\left(\frac{Wv'-vU'_s}{\chi}\right) = 0,$$

имеющее очевидный первый интеграл в форме уравнения первого порядка, которое легко интегрируется. В результате для амплитуды поперечных пульсаций получается выражение

$$v = CW \int_{0}^{y} \left(\frac{T_s}{W^2} - M^2 \frac{1 + \gamma_v}{1 + \gamma_v/\gamma}\right) dy,$$

где профили U_s и T_s задаются соотношениями (2); C — константа интегрирования. При y = 0 нулевое граничное условие (7) для v выполнено. Для того чтобы граничное условие (7) выполнялось при y = 1, аналогично [4] необходимо положить

$$\int_{0}^{1} \frac{T_s}{W^2} \, dy = \mathcal{M}^2 \, \frac{1 + \gamma_v}{1 + \gamma_v / \gamma}.$$
(22)

Для заданных профилей скорости и температуры (2) интеграл в левой части (22) вычисляется в явном виде. В результате получается нелинейное алгебраическое уравнение для значения c при $\alpha = 0$:

$$\frac{1}{c(c-1)} - \frac{(\gamma-1)\Pr M^2}{2} \left(\frac{1}{c} + 2c\ln\left|\frac{c-1}{c}\right|\right) = M^2 \left(\frac{1+\gamma_v}{1+\gamma_v/\gamma} + (\gamma-1)\Pr\right).$$

Корни этого уравнения находятся методом Ньютона. При М = 2, $\gamma_v=0$

$$c_r^{\rm I} = 1,2464, \quad c_i^{\rm I} = -0,074\,490\cdot 10^{-10} \quad \text{m} \quad c_r^{\rm II} = -0,2935, \quad c_i^{\rm II} = -0,864\,249\cdot 10^{-10},$$

Рис. 2. Зависимость $c_i(\alpha)$ для наиболее неустойчивой моды II: 1, 1' — M = ∞ , 2, 2' — M = 20, 3, 3' — M = 10, 4, 4' — M = 5, 5, 5' — M = 2, 6, 6' — M = 0,5, 7, 7' — M = 0; сплошные линии — $\gamma_v = 0$, штриховые — $\gamma_v = 0,667$, $\tau = 1$

при
$$\gamma_v = 0,667$$

 $c_r^{\text{I}} = 1,2211, \quad c_i^{\text{I}} = -0,181\,863 \cdot 10^{-10}$ и $c_r^{\text{II}} = -0,2663, \quad c_i^{\text{II}} = -0,685\,248 \cdot 10^{-10}.$

Абсолютное отклонение найденных корней от соответствующих собственных значений, полученных при решении спектральной задачи (6), не превышает величины 10^{-8} . Для других значений параметров получены отклонения того же порядка. Это подтверждает точность расчета собственных значений. Из рис. 1 следует, что в диапазоне волновых чисел $0 \leq \alpha < 3,4$ при M = 2 и в диапазоне $0 \leq \alpha < 2$ при M = 5 значения c_r для всех мод находятся вне интервала [0, 1], в котором в соответствии с первым условием Рэлея возможно развитие неустойчивости. Устойчивость всех мод в этом диапазоне волновых чисел подтверждается соответствующими отрицательными расчетными значениями c_i . Вместе с тем в данном случае $|c_i| \ll |c_r|$, что делает устойчивость этих мод близкой к нейтральной. Тем не менее расчеты показали, что моды I и II в диапазоне $0 \leq \alpha < 3,4$ не являются нейтрально-устойчивыми, как утверждалось в [4, 6].

При $c_r < 1$ мода II становится неустойчивой во всем диапазоне чисел Маха (рис. 2). Следует отметить, что в отличие от работы [4] в данном случае в области волновых чисел $\alpha = 8 \div 10$ на расчетных кривых отсутствуют пики, не имеющие физического смысла. Четные моды с большими номерами также имеют положительные значения $c_i > 0$, которые, однако, являются величинами второго порядка малости по отношению к моде II. Нечетные моды I, III и т. д. при выполнении для них первого условия Рэлея $0 < c_r < 1$ остаются устойчивыми. При этом для фиксированных чисел Маха в области волновых чисел α , в которой достигаются максимальные значения $c_i > 0$ для моды II, имеют место соотношения $c_i^{II} \simeq |c_i^{I}|$.

Расчеты линейной устойчивости свободного сдвигового слоя по отношению к невязким возмущениям в идеальном [12] и колебательно-возбужденном [9] газах показали, что возрастание числа Маха приводит к уменьшению значений мнимой части фазовой скорости c_i (инкрементов нарастания $\omega = \alpha c_i$). В то же время в [4] для течения Куэтта идеального газа установлено, что инкременты наиболее неустойчивой моды II, наоборот, увеличиваются с возрастанием сжимаемости, асимптотически стремясь к определенному конечному пределу при $M \to \infty$. В случае колебательно-возбужденного газа наблюдается аналогичное поведение инкрементов роста (см. рис. 2). На рис. 2 шкала значений c_i при M = 0.5; 0 расположена справа.

В предельных случаях $M \to \infty$ и M = 0 спектральная задача (12) упрощается. При больших значениях M выражение для профиля температуры приближенно представляется в виде

$$T_s \to \mathrm{M}^2 \tilde{T}_s(y), \qquad \tilde{T}_s(y) = \frac{(\gamma - 1)\mathrm{Pr}}{2} (1 - y^2).$$

При М $\rightarrow \infty$ из (12) следует

$$\frac{d}{dy} \left(\frac{Wv' - vU'_s}{\tilde{T}_s - m^2 W^2} \right) = \frac{\alpha^2 W}{\tilde{T}_s} v, \qquad v \big|_{y=0} = v \big|_{y=1} = 0.$$
(23)

При M = 0 в случае идеальной несжимаемой жидкости из (12) получается вариант уравнения Рэлея [17] для амплитуды возмущения поперечной скорости

$$(Wv' - vU'_s)' - \alpha^2 Wv = 0, \qquad v\big|_{y=0} = v\big|_{y=1} = 0.$$
(24)

Полученные из (23), (24) предельные значения инкрементов нарастания также приведены на рис. 2.

На рис. 2 видно, что наличие колебательной неравновесности, описываемой параметром γ_v , приводит к уменьшению значений мнимых частей фазовых скоростей $c_i(\alpha, \gamma_v)$ по сравнению со значениями $c_i(\alpha)$ для идеального газа ($\gamma_v = 0$). В таблице приведены максимальные значения мнимых частей фазовой скорости c_i^{\max} и инкрементов роста $\omega^{\max} = \alpha c_i^{\max}$ в широком диапазоне чисел Маха М при $\gamma_v = 0$; 0,667 и $\tau = 1$. Заметим, что при больших значениях числа Маха М ≥ 20 , при которых существенны эффекты реального газа и обе модели не имеют физического смысла, полученные данные являются качественными. Вместе с тем полученные результаты показывают, что в течении Куэтта четко выражен эффект понижения инкрементов нарастания неустойчивых невязких мод на фоне релаксационного процесса.

ЛИТЕРАТУРА

- 1. Григорьев Ю. Н., Ершов И. В. Энергетическая оценка критических чисел Рейнольдса в сжимаемом течении Куэтта. Влияние объемной вязкости // ПМТФ. 2010. Т. 51, № 5. С. 59–67.
- Григорьев Ю. Н., Ершов И. В. Критические числа Рейнольдса в течении Куэтта колебательно-возбужденного двухатомного газа. Энергетический подход // ПМТФ. 2012. Т. 53, № 4. С. 57–73.
- Гольдштик М. А. Гидродинамическая устойчивость и турбулентность / М. А. Гольдштик, В. Н. Штерн. Новосибирск: Наука. Сиб. отд-ние, 1977.
- Duck P. W., Erlebacher G., Hussaini M. Y. On the linear stability of compressible plane Couette flow // J. Fluid Mech. 1994. V. 258. P. 131–165.
- 5. Романов В. А. Устойчивость плоскопараллельного течения Куэтта // Докл. АН СССР. 1971. Т. 196, № 5. С. 1049–1051.
- Hu S., Zhong X. Linear stability of viscous supersonic plane Couette flow // Phys. Fluids. 1998.
 V. 10, N 3. P. 709–729.
- 7. Malik M., Dey J., Alam M. Linear stability, transient energy growth, and the role of viscosity stratification in compressible plane Couette flow // Phys. Rev. E. 2008. V. 77, iss. 3. P. 036322(15).
- 8. Линь Цзя-цзяо. Теория гидродинамической устойчивости. М.: Изд-во иностр. лит., 1958.

- Григорьев Ю. Н., Ершов И. В. Линейная устойчивость невязкого сдвигового течения колебательно-возбужденного двухатомного газа // Прикл. математика и механика. 2011. Т. 45, вып. 4. С. 581–593.
- 10. Нагнибеда Е. А. Кинетическая теория процессов переноса и релаксации в потоках неравновесных реагирующих газов / Е. А. Нагнибеда, Е. В. Кустова. СПб.: Изд-во С.-Петерб. гос. ун-та, 2003.
- 11. **Григорьев Ю. Н.** Устойчивость течений релаксирующих молекулярных газов / Ю. Н. Григорьев, И. В. Ершов. Новосибирск: Изд-во СО РАН, 2012.
- Blumen W. Shear layer instability of an inviscid compressible fluid // J. Fluid Mech. 1970. V. 40, pt 4. P. 769–781.
- 13. Drazin P. G., Howard L. N. Hydrodynamic stability of parallel flow of inviscid fluid // Adv. Appl. Mech. V. 9 / Ed. by G. G. Chernyi et al. N. Y.: Acad. Press, 1966.
- 14. Howard L. N. Note on a paper of John W. Miles // J. Fluid Mech. 1961. V. 10. P. 509–512.
- Canuto C. Spectral methods in fluid dynamics / C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang. Berlin: Springer-Verlag, 1988.
- 16. Корн Г. Справочник по математике / Г. Корн, Т. Корн. М.: Наука, 1973.
- Michalke A. On the inviscid instability of the hyperbolic-tangent velocity profile // J. Fluid Mech. 1964. V. 19. P. 543–556.

Поступила в редакцию 24/V 2013 г.