2014. Том 55, № 3

Май – июнь

C. 439 – 447

УДК 541.7/.73

НОВЫЕ ПОЛИМОРФНЫЕ РАЗНОВИДНОСТИ АЛМАЗА

Е.А. Беленков, В.А. Грешняков

Челябинский государственный университет, Челябинск E-mail: belenkov@niic.csu.ru

Статья поступила 16 мая 2013 г.

С доработки — 5 июня 2013 г.

В статье приведены результаты расчетов методами РМЗ и LDA—DFT структуры и свойств шести новых полиморфных разновидностей алмаза, в которых все атомные позиции кристаллографически эквивалентные. Структуры фаз LA5 (*Cmca*), LA7 (*Cmcm*) и LA8 ($I4_1/amd$) получены в результате сшивки графеновых слоев, CA9 ($Fd\bar{3}m$), CA10 ($R\bar{3}m$) и CA11 ($P6_3/mmc$) — сшивкой фуллереноподобных кластеров. Для этих фаз были рассчитаны геометрически оптимизированные структуры и определены структурные параметры, плотность, энергия сублимации, объемный модуль, электронная плотность состояний и рентгенограмма. Установлено, что свойства полиморфных разновидностей алмаза зависят от степени деформации их структуры по сравнению со структурой кубического алмаза.

Ключевые слова: моделирование, алмаз, полиморфы алмаза, энергия сублимации, объемный модуль, электронная плотность состояний, рентгенограмма.

введение

Кристаллическая структура кубического алмаза сформирована 4-координированными углеродными атомами в состоянии sp^3 -гибридизации так, что все длины межатомных связей и углы между ними являются одинаковыми. В полиморфных разновидностях алмаза равенство длин межатомных связей и углов между ними нарушается. Структура таких фаз может быть как аморфной [1], так и упорядоченной [2]. Полиморфы алмаза с упорядоченной структурой можно разделить на две группы [3, 4]: первая — фазы, состоящие из атомов в кристаллографически эквивалентных позициях; вторая — фазы из атомов, находящихся в различных позициях. Количество фаз второй группы не ограничено, и все их описать не представляется возможным. Поэтому наибольший интерес представляет исследование фаз первой группы. Ряд фаз этой группы ранее был исследован экспериментально и теоретически.

Помимо кубического алмаза экспериментально и теоретически исследован ряд гексагональных и ромбоэдрических политипов, из которых наиболее известным является 2H политип — лонсдейлит [5—8]. Лонсдейлит впервые был синтезирован Банди и Каспером из графита при постоянном давлении 13 ГПа и температуре > 1000 °C [5]. Лонсдейлит также был обнаружен в ударных кратерах [6] и межпланетной пыли [7]. Среди всех политипов алмаза только лонсдейлит (наряду с кубическим алмазом) содержит атомы, находящиеся в эквивалентных кристаллографических состояниях.

Вторая из полиморфных разновидностей алмаза впервые была экспериментально получена Аустом и Дрикамером из графита при низких температурах (T = 77 и 296 K) и давлении P > 15 МПа [9]. Структура этой фазы была расшифрована в работе [10] как структура, получающаяся в результате полимеризации кластеров C₂₄, имеющих вид усеченных октаэдров.

[©] Беленков Е.А., Грешняков В.А., 2014

Фаза высокой плотности C_8 является третьей полиморфной разновидностью алмаза, которая была исследована экспериментально. Эта фаза впервые была синтезирована Матюшенко с соавторами [11], а также позже в работе [12] в результате осаждения углерода из плазмы.

Кроме синтезированных полиморфов алмаза имеется ряд теоретически исследованных фаз с эквивалентными атомными позициями.

Суперкубан — первая из этих предсказанных фаз. Эта фаза была предложена Бердетом и Ли в работе [13]. Объемно-центрированную кристаллическую структуру суперкубана можно представить в виде полимеризованных молекул кубана.

Боманом и Гальвао в работе [14] были предложены и теоретически исследованы 6 тубулановых фаз, которые модельно получаются в результате продольной сшивки жгутов однослойных углеродных нанотрубок (УНТ) одинаковой хиральности.

Следующая фаза — полициклопропановая hcp C_3 — впервые была теоретически исследована Шульцем с соавторами в работе [15]. Гексагональная плотноупакованная решетка этой фазы может быть модельно сформирована в результате сшивки углеродных каркасов циклопропановых колец.

Структура другого полиморфа алмаза, впервые предложенного Домингосом [16], теоретически может быть получена путем продольной сшивки жгута УНТ (4,0).

Следующая фаза из *sp*³-гибридизированных атомов углерода была предложена Пикардом и Нидсом [17] и обозначена как хиральная каркасная структура C-CFS.

На основе предложенной в работах [3, 18] схемы модельного получения структур, состоящих из 4-координированных атомов, находящихся в кристаллографически эквивалентных позициях, была установлена возможность существования 32 полиморфных разновидностей алмаза. Эти фазы могут иметь карбидокремниевые и кремниевые структурные аналоги [19, 20]. Из 32 теоретически предсказанных по этой схеме полиморфов алмаза ранее другими авторами были экспериментально и теоретически исследованы 13 фаз [5—17, 21]. Еще 3 фазы, впервые описанные в работах [3, 4], были позднее теоретически исследованы в работах других авторов [22—24]. В данной работе приводятся результаты подробного исследования структуры и свойств шести новых полиморфных разновидностей алмаза, которые получаются в результате сшивки графеновых слоев или фуллереноподобных кластеров.

МЕТОДЫ РАСЧЕТА

Расчеты геометрически оптимизированных структур углеродных фаз были выполнены полуэмпирическим квантово-механическим методом PM3 (Parametric Method Number 3) [25]. В качестве критерия завершения геометрической оптимизации структуры при расчетах было принято значение изменения градиента энергии 0,002 ккал/(Å·моль). Значения структурных параметров были измерены по методике, описанной в работе [3].

Электронные плотности состояний (e-DOS) фаз были рассчитаны, используя программный пакет Quantum ESPRESSO [26], в рамках теории функционала плотности (DFT) [27] при использовании приближения локальной плотности с функционалом обменно-корреляционной энергии в форме Педью—Зангера (LDA-PZ) [28]. Вычисления проводили только для электронов незаполненных электронных оболочек, влияние ионных остовов учитывали по методу псевдопотенциала: был использован сохраняющий норму псевдопотенциал Труллера—Мартинса [29]. Для определения плотности электронных состояний каждой из фаз использовали следующий набор *k*-точек: $20 \times 20 \times 20$. Волновые функции раскладывали по усеченному базисному набору плоских волн. Для ограничения размерности набора базисных функций значение E_{cutoff} было принято равным 1,4 кэВ. При расчете плотностей состояний методом DFT были использованы координаты атомов, полученные при оптимизации структур методом РМЗ.

Объемные модули были рассчитаны по следующей формуле [30]:

$$K = 4\Delta E_{\text{tot}} / 3V(3(V / V_0)^{1/3} - 4) + 3V_0,$$

где $\Delta E_{\text{tot}} = E_{\text{tot}} \Big|_{V_0}^{V \neq V_0}$ — приращение полной энергии кристалла при деформации; V_0 и V — объе-

Рис. 1. Различные способы получения структуры фазы LA5 из графеновых слоев *L*₆ (*a*) и *L*_{4—8} (*б*) (черным цветом выделены связи между двумя слоями)

мы кристалла в недеформированном и деформированном состояниях соответственно. Полные энергии в деформированном и недеформированном состоянии были рассчитаны полуэмпирическим методом PM3.

Расчет рентгенограмм выполнен согласно стандартной методике, описанной в работе [31].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Кристаллическая структура фазы LA5 модельно может быть получена в результате сшивки с последующей геометрической оптимизацией гексагональных (L_6) или тетрагональных (L_{4-8}) графеновых слоев таким образом, что половина атомов каждого графенового слоя образует сшивки с атомами верхнего слоя, а оставшиеся атомы сшиваются с атомами нижнего слоя (рис. 1). Аналогичным способом можно получить структуру фазы LA7 при сшивке слоев L_6 или L_{4-8} . Получение структуры фазы LA8 возможно только одним способом — в результате сшивки слоев L_{4-8} . Геометрически оптимизированные структуры фаз, полученные в результате сшивки графеновых слоев, приведены на рис. 2.

Следующие 3 полиморфа алмаза относятся к семейству фаз, образующихся путем сшивки фуллереноподобных кластеров: СА9, СА10, СА11 (рис. 3). Так, структура фазы СА9 модельно может быть сформирована из углеродных кластеров С₂₄. Другие две фазы модельно получаются при сшивке кластеров С₁₂, имеющих форму гексагональных призм.

Кристаллические структуры полиморфных разновидностей алмаза могут быть охарактеризованы длинами четырех ковалентных связей, которые образованы каждым атомом: L_1 , L_2 , L_3 , L_4 (табл. 1). Для фаз LA5, LA7, CA9, CA10 и CA11 каждая из четырех связей имеет различную длину. В фазе LA8 имеются две различные длины межатомных связей: $L_1 = L_2$, $L_3 = L_4$.

Рис. 2. Геометрически оптимизированные структуры полиморфов алмаза, получающиеся в результате сшивки графеновых слоев: LA5 (*a*), LA7 (*б*), LA8 (*в*)

Рис. 3. Фрагменты геометрически оптимизированных структур полиморфов алмаза, получающихся путем сшивки фуллереноподобных кластеров: СА9 (а), СА10 (б), СА11 (в)

1	Т	а	б	Л	И	ц	а	1
---	---	---	---	---	---	---	---	---

Таблица 2

Углы между углерод-углеродными связями (β_{ij} , град.) в структурах полиморфных разновидностей алмаза

Длины углерод-углеродных связей (L _i , Å)
в полиморфных разновидностях алмаза

Фаза	L_1	L ₂	L ₃	L_4
LA5 LA7 LA8 CA9 CA10	1,525 1,479 1,498 1,539 1,496	1,523 1,545 1,498 1,483 1,506	1,572 1,542 1,579 1,614 1,609	1,564 1,588 1,579 1,511 1,577
CA11	1,497	1,506	1,604	1,582

Фаза	β_{12}	β_{13}	β_{14}	β_{23}	β_{24}	β_{34}
LA5	108,20	113,37	113,86	113,40	117,28	90,00
LA7	116,64	117,61	121,36	115,47	90,00	90,00
LA8	132,81	90,00	124,48	124,48	90,00	90,00
CA9	143,08	88,08	91,92	90,00	120,00	120,00
CA10	133,65	90,00	126,09	120,00	91,87	88,13
CA11	133,42	90,00	127,46	120,00	90,00	90,00

* Расчет выполнен методом РМЗ.

* Расчет выполнен методом РМЗ.

Структуры полиморфных разновидностей алмаза также характеризуются значениями шести углов между ковалентными связями: β_{12} , β_{13} , β_{14} , β_{23} , β_{24} , β_{34} (табл. 2). Для фаз LA5 и CA10 все 6 углов имеют различные значения. В фазах LA7 и CA9 величины углов β_{24} и β_{34} равны друг другу, поэтому общее число различных углов равно пяти. Фаза CA11 характеризуется четырьмя разными длинами связей С—С ($\beta_{13} = \beta_{24} = \beta_{34}$). Для фазы LA8 имеется 3 разных значения углов, так как $\beta_{13} = \beta_{24} = \beta_{34}$, $\beta_{14} = \beta_{23}$.

Элементарные ячейки новых полиморфов алмаза (табл. 3) относятся к следующим сингониям: кубической — фаза СА9, тетрагональной — LA8, гексагональной — CA11, тригональной — CA10, орторомбической — LA5 и LA7. Рассчитанные значения параметров элементарных ячеек приведены в табл. 3.

В табл. 4 даны рассчитанные значения некоторых структурных параметров и свойств различных полиморфных разновидностей алмаза. В этой же таблице для сравнения представлены вычисленные для кубического алмаза (LA1) и полициклобутановой фазы bct C₄ (LA3) значения структурных параметров и свойств.

В структурах всех новых полиморфов алмаза содержатся 4-членные циклы, тогда как 6-членные кольца встречаются в пяти фазах, 8-членные — в четырех фазах и кольца из 12 звеньев — в одной фазе (см. параметр Rng, табл. 4). Из шести новых фаз фаза LA5 имеет кольцевой параметр, наиболее близкий к алмазному параметру Rng.

Таблица 4

Характеристика кристаллических решеток полиморфных разновидностей алмаза: пространственная группа, параметры элементарной ячейки (a, b, c, Å) u число атомов в них (Z)

Фаза	Простран- ственная группа	а	b	С	Ζ
LA5	Cmca	4.353	5.034	4.357	16
LA7	Стст	4,935	4,715	4,416	16
LA8	$I4_1/amd$	4,854	4,854	4,939	16
CA9	$Fd\overline{3}m$	12,244	12,244	12,244	192
CA10	$R\overline{3}m$	6,715	6,715	7,376	36
CA11	$P6_3/mmc$	6,674	6,674	4,985	24

 Δ^{**} K* Фаза Def E_{sub}* Rng D_{pore} ρ 6⁶ LA1 0.00 1,546 3,503 167.3 483 5.7 4¹6⁵ 37,45 1,880 3,356 163,7 LA3 427 3.9 $4^{1}6^{5}$ 40,76 1,808 3,342 163,5 419 LA5 3.6 72,13 2,202 3,106 159,9 373 LA7 $4^{2}6^{3}8^{1}$ 3,6 $4^{3}8^{3}$ 111,8 2,861 2,742 152,1 342 LA8 3.9 CA9 $4^{3}6^{2}12^{1}$ 113,08 3,765 2,086 147,9 215 3,9 $4^{3}6^{1}8^{2}$ 109,74 3,872 2,493 153,0 319 4,0 CA10 CA11 $4^{3}6^{1}8^{2}$ 110,89 3,784 2,489 153,0 306 4,0

Кольцевые (Rng) и деформационные (Def, град.)

параметры, диаметр максимальных пор $(D_{\text{pore}}, \text{\AA})$,

плотность (р, г/см³), энергия сублимации

(*E*_{sub}, ккал/моль), объемный модуль (*K*, ГПа)

и ширина запрещенной зоны (Δ , \Im B) полиморфных разновидностей алмаза

* Расчет методом РМЗ.

* Расчет методом РМЗ.

** Расчет методом DFT.

Длины и углы между связями в полиморфных разновидностях алмаза отличаются от соответствующих структурных характеристик кубического алмаза, поэтому структуры этих фаз можно рассматривать как деформированные по сравнению с алмазной структурой. В работе [3] для характеристики этой деформации был введен деформационный параметр (Def), рассчитываемый по следующей формуле:

Def =
$$\sum_{i=1}^{3} \sum_{j>i}^{4} |\beta_{ij} - \beta_{aлмa3}|$$
, где $\beta_{aлмa3} = 109,47^{\circ}$.

Значения деформационного параметра фаз, исследованных в данной работе, находятся в пределах от 40,76 (LA5) до 113,08° (СА9) (см. табл. 4). Параметр деформации алмазоподобной фазы увеличивается при возрастании числа 4-членных колец в параметре Rng. Диаметры максимальных пор (D_{pore}), приведенные в табл. 4, увеличиваются при возрастании деформационного параметра.

Энергии сублимации (E_{sub}) полиморфных разновидностей алмаза, рассчитанные методом РМЗ, приведены в табл. 4. О корректности выполненных расчетов свидетельствует хорошее соответствие, наблюдаемое между рассчитанным (167,3 ккал/моль [3]) и экспериментальным (170 ккал/моль [32, 33]) значениями E_{sub} для кубического алмаза. Сублимационные энергии всех новых фаз меньше E_{sub} кубического алмаза, а их значения принадлежат интервалу от 147,9 (СА9) до 163,5 ккал/моль (LA5).

В табл. 4 представлены результаты расчета методом РМЗ объемных модулей (К) полиморфов алмаза. Корректность расчета К подтверждается достаточно хорошим соответствием между теоретически рассчитанным (*K*_{LA1} = 483 ГПа [3]) и экспериментальным (442 ГПа [34]) значениями объемного модуля кубического алмаза. Минимальный объемный модуль (215 ГПа) соответствует фазе СА9, максимальный (419 ГПа) — фазе LA5, которые уступают значению К_{LA1} на 55 и 13 % соответственно.

Плотность электронных состояний в зоне Бриллюэна кубического алмаза, рассчитанная методом LDA—DFT, приведена на рис. 4, a. Значение ширины запрещенной зоны (Δ) в электронной структуре алмаза (разность между энергиями электронов дна зоны проводимости и вершины валентной зоны) составила 5,7 эВ, что хорошо согласуется с экспериментально ус-

443

1,353	5,034	4,357	16	
1,935	4,715	4,416	16	
1,854	4,854	4,939	16	

Таблица З

Рис. 4. Электронные плотности состояний полиморфных разновидностей алмаза (энергия Ферми показана пунктирной линией): LA1 (кубический алмаз) (*a*), LA5 (*b*), LA7 (*b*), LA8 (*c*), CA9 (*d*), CA10 (*e*), CA11 (*ж*)

тановленным значением 5,48 эВ [35]. Для предложенных в работе LA5, LA7, LA8, CA9, CA10 и CA11 фаз также были рассчитаны плотности электронных состояний (рис. 4, δ — \mathscr{R}). Установлено, что ширина запрещенной зоны новых полиморфных разновидностей алмаза меньше Δ_{LA1} на 1,7÷2,1 эВ. Полученные в результате расчетов значения ширины запрещенной зоны указы-

Рис. 5. Теоретически рассчитанные порошковые рентгенограммы углеродных фаз ($\lambda = 1,5405$ Å, T = 298 K): LA1 (кубический алмаз) (*a*), гексагональный графит (δ), LA5 (ϵ), LA7 (ϵ), LA8 (∂), CA9 (e), CA10 (κ), CA11 (3)

вают на то, что предложенные впервые фазы — LA5, LA7, LA8, CA9, CA10, CA11 — являются широкозонными полупроводниками.

Сравнительный анализ результатов, полученных в данной работе, показал, что плотность, энергия сублимации и объемный модуль полиморфных разновидностей алмаза линейно уменьшается при увеличении параметра деформации. Имеется также корреляция между шириной запрещенной зоны и деформационным параметром — Δ уменьшается при увеличении Def.

Для возможности идентификации новых полиморфов алмаза при их поиске в синтезированных углеродных материалах были рассчитаны теоретические порошковые рентгенограммы, изображения которых показаны на рис. 5. Расчетные рентгенограммы кубического алмаза (рис. 5, *a*) и гексагонального графита (см. рис. 5, *б*) хорошо соответствуют экспериментально определенным рентгенограммам [36, 37]. Координаты атомов, использованные для построения всех теоретических рентгенограмм, были рассчитаны полуэмпирическим методом PM3.

ЗАКЛЮЧЕНИЕ

В результате проведенных исследований получены геометрически оптимизированные структуры шести новых полиморфных разновидностей алмаза: LA5, LA7, LA8, CA9, CA10 и CA11. Для этих фаз были рассчитаны структурные параметры, плотность, энергия сублимации, объемный модуль, электронная плотность состояний и рентгенограмма. Установлено, что свойства полиморфов алмаза изменяются в зависимости от степени деформации ее структуры по сравнению со структурой кубического алмаза.

Сублимационные энергии новых LA5 и LA7 фаз меньше E_{sub} кубического алмаза лишь на 2,3 и 4,4 % соответственно, что указывает на то, что эти фазы должны быть достаточно устойчивыми, и вероятность их синтеза высока. Наиболее вероятный способ экспериментального получения фаз LA5 и LA7 — сильное статическое или ударное сжатие кристаллов графита вдоль оси, перпендикулярной графеновым слоям. Возможно, эти фазы могут быть получены в области давлений > 18 ГПа. Стоит отметить, что новая фаза LA5 и исследованная ранее bct C₄ (LA3) [3, 4, 14—16, 21, 22] имеют очень близкие структурные характеристики и свойства. Новая фаза LA5 должна быть не менее устойчивой, чем bct C₄, поскольку эти фазы обладают близкими значениями сублимационных энергий (разница в энергиях не превышает 0,2 ккал/моль).

Наличие в структурах фаз LA8, CA9, CA10 и CA11 большой доли 4-членных и плоских 6-членных колец обуславливает относительно низкие значения энергии сублимации, что говорит о меньшей устойчивости этих фаз по сравнению с кубическим алмазом, bct C₄, LA5 и LA7. Отсутствие в структурах этих новых полиморфных разновидностях алмаза структурных звеньев в виде гофрированных графеновых слоев затрудняет их синтез из графита. Наиболее вероятные способы синтеза фаз LA8, CA9, CA10 и CA11 — осаждение углерода из плазмы на подложку с определенной морфологией или фотополимеризация ненасыщенных углеводородов (например, циклобутадиена или циклооктадиена). Другой возможный путь экспериментального получения фаз LA8, CA10 и CA11 заключается в полимеризации графеноподобных слоев L_{4-8} [38, 39] или L_{4-6-12} [38, 40] под давлением, однако такие слои пока еще не были синтезированы.

Рассчитанные величины ширины запрещенной зоны фаз LA5, LA7, LA8, CA9, CA10 и CA11 достаточно большие (3,6÷4,0 эВ), поэтому углеродные кристаллы с такими структурами могут быть прозрачными.

Рентгенограммы новых полиморфных разновидностей алмаза достаточно сильно отличаются от рентгенограмм кубического алмаза [36] и гексагонального графита [37], поэтому экспериментальная идентификация этих фаз не должна вызвать затруднений.

СПИСОК ЛИТЕРАТУРЫ

- 1. Robertson J. // Prog. Solid St. Chem. 1991. 21. P. 199.
- 2. Ивановский А.Л. // Сверхтвердые материалы. 2013. **35**, № 1. С. 3. [*Ivanovskii A.L.* // J. Superhard Materials. 2013. **35**, N 1. Р. 1.]
- 3. Грешняков В.А., Беленков Е.А. // ЖЭТФ. 2011. **140**, № 1. С. 99. [Greshnyakov V.A., Belenkov E.A. // J. Exp. Theor. Phys. 2011. **113**, N 1. P. 86.]
- 4. Грешняков В.А., Беленков Е.А., Березин В.М. Кристаллическая структура и свойства углеродных алмазоподобных фаз. – Челябинск: ЮУрГУ, 2012.
- 5. Bundy F.P., Kasper J.S. // J. Chem. Phys. 1967. 46, N 9. P. 3437.
- 6. Frondel C., Marvin U.B. // Nature. 1967. 214, N 5088. P. 587.
- 7. Rietmeijer F.J.M., Mackinnon I.D.R. // Nature. 1987. **326**, N 6109. P. 162.
- 8. Wen B., Zhao J., Bucknum M.J. et al. // Diamond Relat. Mater. 2008. 17, N 3. P. 356.
- 9. Aust R.B., Drickamer H.G. // Science. 1963. 140, N 3568. P. 817.
- 10. Покропивный В.В., Покропивный А.В. // ФТТ. 2004. 46, № 2. С. 380. [Pokropivny V.V., Pokropivny A.V. // Phys. Solid State. – 2004. – **46**, N 2. – Р. 392.]

- 11. Матюшенко Н.Н., Стрельницкий В.Е., Гусев В.А. // Письма в ЖЭТФ. 1979. **30**, № 4. С. 218. [Matyushenko N.N., Strel'nitskii V.E., Gusev V.A. // JETP Lett. 1979. **30**, N 4. Р. 199.]
- 12. Johnston R.L., Hoffmann R. // J. Amer. Chem. Soc. 1989. 111, N 3. P. 810.
- 13. Burdett J.K., Lee S. // J. Amer. Chem. Soc. 1985. 107, N 11. P. 3063.
- 14. Baughman R.H., Galvao D.S. // Chem. Phys. Lett. 1993. 211, N 1. P. 110.
- 15. Schultz P.A., Leung K., Stechel E.B. // Phys. Rev. B. 1999. **59**, N 2. P. 733.
- 16. *Domingos H.S.* // J. Phys.: Condens. Matter. 2004. **16**. P. 9083.
- 17. *Pickard C.J., Needs R.J.* // Phys. Rev. B. 2010. **81**. 014106.
- Беленков Е.А., Грешняков В.А. // ФТТ. 2013. 55, № 8. С. 1640. [Belenkov E.A., Greshnyakov V.A. // Phys. Solid State. 55, N 8. Р. 1754.]
- 19. Беленков Е.А., Агалямова Э.Н., Грешняков В.А. // ФТТ. 2012. **54**, № 2. С. 404. [Belenkov E.A., Agalyamova E.N., Greshnyakov V.A. // Phys. Solid State. 2012. **54**, № 2. Р. 433.]
- 20. Грешняков В.А., Беленков Е.А. // Вестник ЧелГУ. Физика. 2012. 14, № 30 (284). С. 5. [Greshnyakov V.A., Belenkov E.A. // Chelyabinsk State University Bulletin: Physics. 2012. 14, N 30 (284). Р. 5. (in Russian)].
- 21. Strong R.T., Pickard C.J., Milman V. et al. // Phys. Rev. B. 2004. 70. P. 045101.
- 22. Sheng X.-L., Yan Q.-B., Ye F. et al. // Phys. Rev. Lett. 2011. 106. P. 155703.
- 23. Hu M., Tian F., Zhao Z. et al. // J. Phys. Chem. C. 2012. 116. P. 24233.
- 24. Stewart J.J.P. // J. Comput. Chem. 1989. 10, N 2. P. 209.
- 25. Pokropivny A., Volz S. // Phys. Status Solidi B. 2012. 249, N 9. P. 1704.
- 26. Giannozzi P., Baroni S., Bonini N. et al. // J. Phys.: Condens. Matter. 2009. 21, N 39. P. 395502.
- 27. Hohenberg P. // Phys. Rev. 1964. 136, N 3B. P. 864.
- 28. Perdew J.P., Zunger A. // Phys. Rev. B. 1981. 23, N 10. P. 5048.
- 29. Troullier N., Martins J.L. // Phys. Rev. B. 1991. 43, N 3. P. 1993.
- Грешняков В.А., Беленков Е.А. // Тез. докл. международной конф. "Фазовые переходы, критические и нелинейные явления в конденсированных средах". – Махачкала, 2009. – С. 137. [Greshnyakov V.A., Belenkov E.A., in Proceedings of the Traditional International Conference on Phase Transitions and Related Critical and Nonlinear Phenomena in Condensed Media. – Makhachkala, 2009. – Р. 137. (in Russian)].
- 31. Уманский Я.С., Скаков Ю.А., Иванов А.Н., Расторгуев Л.Н. Кристаллография, рентгенография и электронная микроскопия. М.: Металлургия, 1982.
- 32. *Pierson H.O.* Handbook of carbon, graphite, diamond, and fullerenes: properties, processing and applications. Park Ridge: Noyes, 1993.
- 33. Fahy S., Louie S.G. // Phys. Rev. B. 1987. 36, N 6. P. 3373.
- 34. Grimsditch M.H., Ramdas A.K. // Phys. Rev. B. 1975. 11, N 8. P. 3139.
- 35. Kittel C. Introduction to solid state physics. New York: Wiley, 1996.
- 36. Swanson H.E., Fuyat R.K. // Natl. Bur. Stand. (New York: Wiley). 1955. Circ. 539, V. II. P. 5.
- 37. *Sanc I.* Pattern: 00-041-1478, graphite-2H, polytechna // Panska (Czechoslovakia): Foreign Trade Corporation, ICDD Grant-in-Aid. 1990.
- 38. Enyashin A.N., Ivanovskii A.L. // Phys. Status Solidi B. 2011. 248, N 8. P. 1879.
- 39. Nisar J., Jiang X., Pathak B. et al. // Nanotechnology. 2012. 23, N 38. P. 385704.
- 40. Song Q., Wang B., Deng K. et al. // J. Mater. Chem. C. 2013. 1, N 1. P. 38.