УДК 533+517.9

ЧАСТИЧНО ИНВАРИАНТНЫЕ РЕШЕНИЯ В ГАЗОВОЙ ДИНАМИКЕ И НЕЯВНЫЕ УРАВНЕНИЯ

А. М. Барлукова, А. П. Чупахин

Новосибирский государственный университет, 630090 Новосибирск Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск E-mail: ayuna.barlukova@gmail.com

Исследуется небарохронное регулярное частично инвариантное решение (подмодель) ранга один и дефекта два уравнений газовой динамики, описывающее неустановившиеся пространственные движения газа. Уравнения газовой динамики редуцируются к неявному обыкновенному дифференциальному уравнению первого порядка для вспомогательной функции и к интегрируемой системе. Приведена полная классификация неправильных особых точек ключевого уравнения в зависимости от параметра, характеризующего поток газа, а также найдены преобразования неправильных особых точек при изменении параметра. Исследованы качественные свойства решения и в терминах движения газа дана их физическая интерпретация. Показано, что существует два режима движения, один из которых является сверхзвуковым, а во втором возможен непрерывный переход через скорость звука.

Ключевые слова: частично инвариантное решение, неявные уравнения, неправильные особые точки, дозвуковой и сверхзвуковой режимы движения газа, преобразования неправильных особых точек.

Введение. Частично инвариантные решения порождают широкие классы точных решений дифференциальных уравнений [1–3]. В моделях механики сплошной среды частично инвариантные решения описывают многомерные движения, представляющие большой интерес как при проведении теоретических исследований, так и при решении конкретных газодинамических задач [4]. Особенностью регулярных частично инвариантных решений уравнений газовой динамики является возможность их представления в виде объединения интегрируемой неинвариантной подсистемы и инвариантного неявного дифференциального уравнения [5]. В настоящее время исследование таких уравнений получило значительное развитие [6–9], что обусловлено их геометрической трактовкой, которая дает представление о структуре множества ветвлений решений, а также разнообразными приложениями таких уравнений в механике и физике. В настоящей работе исследуется решение, приводимое к инвариантному неявному уравнению, в котором при различных значениях физических параметров происходят перестройка многообразия ветвления интегральных кривых и смена типа неправильных особых точек (HOT). Решение описывает многомерное неустановившееся движение газа, в котором источники и стоки расположены на движущихся поверхностях.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 11-01-00026), Совета по грантам Президента РФ по государственной поддержке ведущих научных школ РФ (грант № НШ 6706.2012.1), а также в рамках Интеграционного проекта СО РАН № 44 и Программы Отделения энергетики, машиностроения и процессов управления РАН № 2.13.4.

1. Описание решения. Рассматривается частично инвариантное решение уравнений газовой динамики с политропным уравнением состояния, задаваемое подалгеброй $L_{5.18}$ из оптимальной системы подалгебр алгебры симметрии L_{11} [1, 2]:

$$H_1 = \partial_y, \quad H_2 = \partial_z, \quad H_3 = t \,\partial_y + \partial_v, \quad H_4 = t \,\partial_z + \partial_w, H_5 = \beta(t \,\partial_x + \partial_u + \partial_t) + y \,\partial_z - z \,\partial_y + v \,\partial_w - w \,\partial_v.$$
(1.1)

Алгебра (1.1) имеет универсальный инвариант $\lambda = x - t^2/2, u - t, p, \rho, S$ и порождает частично инвариантное регулярное решение [3] ранга один и дефекта два [4, 5]. Функции v, w являются неинвариантными, решение имеет представление

$$u = t + U(\lambda), \quad v = v(t, x, y, z), \quad w = w(t, x, y, z), \quad (\rho, S, p)|\lambda.$$
 (1.2)

Подставляя (1.2) в уравнения газовой динамики и проводя замену $x \to \lambda$, получаем факторсистему

$$UU' + 1 + \rho^{-1}p' = 0; (1.3)$$

$$v_t + Uv_\lambda + vv_y + wv_z = 0; (1.4)$$

$$w_t + Uw_\lambda + vw_y + ww_z = 0; (1.5)$$

$$U\rho' + \rho(U' + v_y + w_z) = 0; (1.6)$$

$$US' = 0, (1.7)$$

где штрих означает производную инвариантных функций по λ .

Из равенства (1.7) следует, что при $U \neq 0$ энтропия постоянна: $S = S_0$. Введем лагранжеву координату

$$\xi = t - \int \frac{d\lambda}{U(\lambda)}.$$

Тогда система (1.4)–(1.6) принимает вид

$$v_t + vv_y + wv_z = 0,$$
 $w_t + vw_y + ww_z = 0,$
 $v_y + w_z = h(\lambda),$ $v_yw_z - v_zw_y = k(\lambda),$
(1.8)

где $h(\lambda) = -[U(\ln \rho)' + U']$ — след; k — определитель матрицы Якоби $J = \partial(v, w)/\partial(y, z)$. Система (1.8) переопределена и состоит из четырех уравнений для двух искомых функций v и w. В работе [5] система (1.8) приведена в инволюцию и проинтегрирована.

Приведем необходимые для дальнейшего изложения формулы. После введения новой переменной $X = X(\lambda)$, выпрямляющей производную:

$$U(\lambda) \frac{d}{d\lambda} = \frac{d}{dX}, \qquad \frac{dX}{d\lambda} = \frac{1}{U(\lambda)}, \qquad U(\lambda) = \frac{d\lambda}{dX} = \frac{1}{dX_{\lambda}},$$

условия совместности системы (1.8) приводятся к системе уравнений

 $h_X + h^2 = 2k, \qquad k_X + hk = 0,$

проинтегрировав которую получаем

$$h = \frac{Q_X}{Q}, \quad k = \frac{Q_{XX}}{2Q}, \quad Q = 1 + h_0 X + k_0 X^2, \quad h_0 = \text{const}, \quad k_0 = \text{const}.$$
 (1.9)

Функции плотности ρ и инвариантной компоненты скорост
иUв (1.3)–(1.7) задаются формулами

$$\rho = \frac{\rho_0}{\lambda_X Q}, \qquad U = \lambda_X. \tag{1.10}$$

Заметим, что в этом случае лагранжева переменная равна $\xi = t - X$. Функция $\lambda = \lambda(X)$ служит своеобразным потенциалом решения, поскольку через нее и ее производные определяются все искомые функции [5], и является решением уравнения (1.3), которое после подстановки в него выражений (1.10) и представления $p = S \rho^{\gamma}$ принимает вид

$$Q^{\gamma-1}(\lambda_X^{\gamma+1} - 2(b_0 - y)\lambda_X^{\gamma-1}) + \varkappa_0 = 0.$$
(1.11)

В (1.11) многочлен Q задается формулой (1.9); b_0 — постоянная, соответствующая энергии газа; \varkappa_0 — параметр, характеризующий поток газа:

$$\varkappa_0 = \frac{2\gamma S_0 \rho_0^{\gamma - 1}}{\gamma - 1}.$$

Уравнение (1.11) относится к классу неявных дифференциальных уравнений [6–8], или, менее точно, уравнений, не разрешенных относительно производной. В последнее время уравнения такого типа вызывают большой интерес как математиков, так и механиков. При классификации возможных особенностей неявных уравнений были выявлены их интересные геометрические свойства. Неявные уравнения используются в теории управления, газовой динамике, теории плазмы.

Уравнения данного вида возникают при отыскании частично инвариантных регулярных решений уравнений газовой динамики и, как правило, представляют собой интеграл энергии, записанный в виде неявного уравнения для вспомогательной функции (обобщенного потенциала), задающей решение. Исследование решения таких уравнений основано на существовании неправильных особых точек и их классификации. В данной работе проведено исследование решения уравнения (1.11) и показано, каким образом при изменении параметров задачи (преобразования особых точек) меняется тип HOT.

2. Инвариантное решение системы подмодели $\Pi(5.18)$. Найдем инвариантное решение системы (1.3)–(1.7), где все функции зависят лишь от λ . Полагаем, что в этом случае $v = v_0 = \text{const}$, $w = w_0 = \text{const}$. Тогда h = 0, следовательно,

$$h = \frac{Q_X}{Q} = \frac{h_0 + 2k_0 X}{Q} = 0 \quad \Leftrightarrow \quad h_0 = 0, \quad k_0 = 0.$$

Значит, в качестве полинома можно выбрать Q = 1. Далее получаем

$$U\rho' + \rho U' = 0 \quad \Rightarrow \quad (\rho U)' = 0 \quad \Rightarrow \quad \rho = \frac{q_0}{U}, \quad q_0 = \text{const};$$
 (2.1)

$$UU' + 1 + \varkappa_0 (\rho^{\gamma - 1})' = 0.$$
(2.2)

Подставляя в (2.2) выражение для ρ , полученное из (2.1):

$$UU' + 1 + \varkappa_0 q_0^{\gamma - 1} \left(\frac{1}{U^{\gamma - 1}}\right)' = 0, \qquad (2.3)$$

и интегрируя уравнение (2.3), имеем

$$\frac{1}{2}U^2 + \lambda + \varkappa_0 q_0^{\gamma - 1} \frac{1}{U^{\gamma - 1}} = b_0.$$

Рассмотрим полученное выражение для случая $\gamma = 3$:

$$U^4 - 2(b_0 - \lambda)U^2 + \varkappa_0 = 0.$$

Решаем биквадратное уравнение относительно U:

$$U^{2} = b_{0} - \lambda \pm \sqrt{(b_{0} - \lambda)^{2} - \varkappa_{0}}.$$
(2.4)

Таким образом, в рассматриваемом случае решение определяется явными формулами (2.1), (2.4).

3. Неправильные особые точки неявных дифференциальных уравнений. Приведем некоторые сведения из теории неявных дифференциальных уравнений [6–8]. Уравнение

$$F(x, y, p) = 0, \qquad p = \frac{dy}{dx}$$
(3.1)

задает в пространстве $\mathbb{R}^3(x, y, p)$ поверхность уравнения Σ , которая состоит из нескольких компонент и проецируется на плоскость Oxy. Кривая K в $\mathbb{R}^3(x, y, p)$, на которой $F_p = 0$, т. е. уравнение (3.1) не разрешается относительно производной p, называется криминантой, а ее проекция на плоскость $\mathbb{R}^2(x,y)$ — дискриминантной кривой D. Кривая K представляет собой множество ветвлений интегральных кривых уравнения (3.1), которые расположены на различных листах поверхности Σ. Неединственность решения, т. е. пересечение интегральных кривых, имеет место при проецировании различных листов Σ на плоскость $\mathbb{R}^2(x, y)$. На кривой K могут быть расположены HOT уравнения (3.1), которые определяются из системы уравнений

$$F = 0, F_p = 0, F_x + pF_y = 0.$$
 (3.2)

Для классификации этих точек целесообразно с уравнением (3.1) связать систему обыкновенных дифференциальных уравнений, введя новую независимую переменную τ :

$$\frac{dx}{d\tau} = F_p, \qquad \frac{dy}{d\tau} = pF_p, \qquad \frac{dp}{d\tau} = -(F_x + pF_y), \tag{3.3}$$

где $x = x(\tau); y = y(\tau); p = p(\tau)$. Такая форма записи, предложенная Ж. А. Пуанкаре, делает переменные x, y, p равноправными. Тогда неправильные особые точки — это невырожденные особые точки системы (3.3). Их классификация аналогична традиционной, за исключением того, что к названию особой точки добавляется термин "сложенный": сложенный узел, сложенный фокус и т. д. Особенностью НОТ является то, что при прохождении через них интегральная кривая уравнения (3.1) перемещается с одного листа на другой. Используем полученные результаты для анализа уравнения (1.11).

4. Анализ особых точек уравнения (1.11). В работе [10] показано, что для качественного анализа решений неявных уравнений, возникающих при исследовании частично инвариантных решений, можно выбрать простейшее значение $\gamma = 3$. Тогда уравнение (1.11) является биквадратным, что делает анализ более наглядным, но не ограничивает общности рассмотрения. Не ограничивая общности анализа, зададим $b_0 = 2$. Тогда уравнение (1.11) принимает вид

$$F \equiv p^4 - 2(2 - \lambda)p^2 + \frac{\varkappa_0}{Q^2} = 0, \qquad p = \lambda_X, \qquad Q = 1 + h_0 X + k_0 X^2.$$
(4.1)

В зависимости от вида, к которому приводится многочлен Q, выделяются три канонических случая:

- 1) эллиптический: $h_0 = 0, k_0 = 1: Q = 1 + X^2;$
- 2) гиперболический: $h_0 = 0, k_0 = -1: Q = 1 X^2;$ 3) параболический: $h_0 = -2, k_0 = 1: Q = (1 X)^2.$

Поверхность $\Sigma = \bigcup_{\alpha=1}^{N} \Sigma_{\alpha}$ состоит из N компонент: двух для эллиптического случая,

четырех для параболического и шести для гиперболического случая (рис. 1). Имеет место симметрия относительно плоскости p = 0.

Обозначим интегральные кривые уравнения (4.1), расположенные на разных листах различных компонент поверхности Σ , через $C_{\varepsilon_1 \varepsilon_2}$, где $\varepsilon_1 = \pm 1$, $\varepsilon_2 = \pm 1$. В эллиптическом случае $\varepsilon_1 = +1$ для "верхней" компоненты Σ_1 (p > 0) поверхности Σ и $\varepsilon_1 = -1$ для

"нижней" компоненты Σ_2 (p < 0). Интегральная кривая $C_{1\varepsilon_1}$ при $\varepsilon_2 = +1$ проходит по верхнему листу компоненты Σ_1 , при $\varepsilon_2 = -1$ — по нижнему листу.

В параболическом случае для определенности рассмотрим компоненты поверхности Σ , лежащие левее плоскости X = 1, сохранив для интегральных кривых обозначения, введенные выше.

В гиперболическом случае сохраним обозначения $C_{\varepsilon_1 \varepsilon_2}$ для интегральных кривых, однако необходимо учитывать, что они могут иметь разные области определения по Xв зависимости от того, лежат они на центральной "вставке" поверхности Σ или на неограниченной компоненте поверхности Σ_1 (см. рис. 1, δ).

На плоскости $\mathbb{R}^2(X, \lambda)$ через каждую точку области существования Ω решения уравнения (4.1) проходит ровно четыре его интегральных кривых. Действительно, представим уравнение (4.1) в виде

$$p = \varepsilon_1 \sqrt{\left[(2-\lambda)Q + \varepsilon_2 \sqrt{(2-\lambda)^2 Q^2 - \varkappa_0}\right]/Q}.$$
(4.2)

Процедура выбора $\varepsilon_1 = \pm 1$, $\varepsilon_2 = \pm 1$ в (4.2) описана выше. Вещественные решения уравнения (4.1) существуют только в области Ω : $\lambda \leq 2$, причем в каждой точке Ω уравнение (4.1) имеет ровно четыре решения относительно *p*. Криминанта К уравнения (4.1) задается уравнениями

$$\lambda = 2 \pm \sqrt{\varkappa_0}/|Q|, \qquad p = \pm \sqrt{\pm \sqrt{\varkappa_0}/|Q|}, \qquad \lambda \leqslant 2,$$

ее проекция на плоскость (X, λ) определяет дискриминантную кривую Γ уравнением для произвольного b_0 :

$$(b_0 - \lambda)^2 Q^2 = \varkappa_0, \qquad \lambda \leqslant b_0. \tag{4.3}$$

Неправильные особые точки уравнения (4.1) являются корнями уравнения

$$|Q|^3 = \pm \sqrt{\varkappa_0} \, (Q')^2. \tag{4.4}$$

Анализируя число корней уравнения (4.4), получаем следующее утверждение.

Лемма 1. В зависимости от типа многочлена Q и значения параметра \varkappa_0 уравнение (4.4) имеет различное число вещественных корней:

1) для эллиптического случая — четыре корня при $\varkappa_0 > \varkappa_*$, два корня при $\varkappa_0 = \varkappa_*$;

2) для гиперболического случая — четыре корня при любом значении $\varkappa_0 > 0;$

3) для параболического случая — два корня при любом значении $\varkappa_0 > 0$.

Здесь $\varkappa_* - \phi$ иксированное значение \varkappa_0 , зависящее от выбора термодинамических параметров и b_0 (при $\gamma = 3$, $b_0 = 2$ $\varkappa_* = (27/16)^2$).

Доказательство леммы 1 основано на непосредственном анализе знака дискриминанта кубического уравнения, к которому сводится уравнение (4.4), и оценке числа его положительных корней с использованием теорем Декарта и Виета.

Для невырожденных особых точек имеет место

Лемма 2. В зависимости от типа полинома Q уравнение (4.1) может иметь только следующие неправильные особые точки:

1) в эллиптическом случае — точки типа фокуса, седла или узла;

2) в гиперболическом и параболическом случаях — точки типа фокуса.

Доказательство. Для неявного уравнения $F(X, \lambda, p) = 0$ отыскание и классификация особых точек сводятся к отысканию и классификации особых точек системы (3.3). Неправильные особые точки находятся из системы (3.2).

Матрица линеаризованной системы (3.2) имеет вид

$$A = \begin{pmatrix} 0 & 4p & 4[(3p^2 - (2 - \lambda)] \\ 0 & 4p^2 & 8p[2p^2 - (2 - \lambda)] \\ 2\varkappa_0(Q'/Q^3)' & 0 & -6p^2 \end{pmatrix},$$

где штрих обозначает производную по переменной X. Инварианты системы (3.2) k_1, k_2, k_3 равны

$$k_{1} = \operatorname{tr} A = -2p^{2}, \qquad k_{2} = -24p^{4} - 8\varkappa_{0}(Q'/Q^{3})'[3p^{2} - (2 - \lambda)], \\ k_{3} = \det A = 32\varkappa_{0}p^{2}(Q'/Q^{3})'(p^{2} - (2 - \lambda)).$$
(4.5)

Так как на дискриминантной кривой $p^2 = 2 - \lambda$, то det A = 0. Согласно (4.5) характеристический многочлен матрицы A имеет вид

$$\mu^3 + 2p^2\mu^2 - 8[3p^4 + \varkappa_0(Q'/Q^3)'(3p^2 - (2 - \lambda))]\mu = 0,$$

один из его корней равен нулю, уравнение для $\mu_1 \neq 0, \, \mu_2 \neq 0$:

$$\mu^2 + 2p^2\mu - 8[3p^4 + \varkappa_0(Q'/Q^3)'(3p^2 - (2 - \lambda))] = 0.$$
(4.6)

Дискриминант квадратного уравнения (4.6) равен

$$D = 100p^4 + 32\varkappa_0 (Q'/Q^3)'(3p^2 - (2 - \lambda)).$$

Следовательно, на криминанте $2 - \lambda = p^2$ имеем

$$D = 100p^4 + 64\varkappa_0 p^2 (Q'/Q^3)' = 4p^2 (25p^2 + 16\varkappa_0 (Q'/Q^3)').$$
(4.7)

Для ключевого уравнения (4.1) в НОТ выполняется соотношение

$$p^3 = \varkappa_0 Q' / Q^3. \tag{4.8}$$

Согласно (4.8) дискриминант (4.7) уравнения (4.1) принимает вид

$$D = 4p^2 (25(\varkappa_0 Q'/Q^3)^{2/3} + 16\varkappa_0 (Q'/Q^3)') = 4p^2 \varkappa_0^{2/3} (25(Q'/Q^3)^{2/3} + 16\varkappa_0^{1/3} (Q'/Q^3)').$$

Из невырожденности особых точек следует, что $D \neq 0$. Для определения дискриминанта имеем

$$\operatorname{sgn} D = \operatorname{sgn} \left[25 \left(\frac{Q'}{Q^3} \right)^{2/3} + 16\varkappa_0^{1/3} \frac{Q^3 Q'' - 3Q^2 (Q')^2}{Q^6} \right] = \\ = \operatorname{sgn} \left[25 \frac{(Q')^{2/3}}{Q^2} + 16\varkappa_0^{1/3} \frac{QQ'' - 3(Q')^2}{Q^4} \right] = \operatorname{sgn} \left[\frac{25Q^2 (Q')^{2/3} + 16\varkappa_0^{1/3} (QQ'' - 3(Q')^2)}{Q^4} \right].$$

Следовательно, в НОТ получаем

$$\operatorname{sgn} D = \operatorname{sgn} \left[25Q^2 (Q')^{2/3} + 16\varkappa_0^{1/3} (QQ'' - 3(Q')^2) \right].$$
(4.9)

Выражение в квадратных скобках (4.9) обозначим через $d(X, \varkappa_0)$.

Согласно теореме Виета для корней квадратного уравнения (4.6) запишем

$$\mu_1 + \mu_2 = -2p^2 < 0; \tag{4.10}$$

$$\mu_{1}\mu_{2} = -8\{3p^{4} + \varkappa_{0}(Q'/Q^{3})'[3p^{2} - (2 - \lambda)]\}|_{\Gamma} = -8(3p^{4} + \varkappa_{0}(Q'/Q^{3})'2p^{2}) = -16p^{2}[3p^{2}/2 + \varkappa_{0}(Q'/Q^{3})']. \quad (4.11)$$

Из уравнения (4.10) следует, что для $\mu_1 \in \mathbb{R}, \mu_2 \in \mathbb{R}$ либо $\mu_1 < 0, \mu_2 < 0$, либо $\mu_1 < 0$, $\mu_2 > 0$. Если $\mu_1 \in \mathbb{C}, \mu_2 \in \mathbb{C}$, то их реальные части не могут быть равны нулю. Значит, НОТ не могут быть центрами.

Следовательно, возможны лишь следующие ситуации:

- 1) при $D > 0, \mu_1 < 0, \mu_2 > 0$, причем $\mu_1 + \mu_2 < 0$, НОТ является седлом;
- 2) при $D > 0, \mu_1 < 0, \mu_2 < 0$ НОТ узел;
- 3) при $D < 0, \mu_{1,2} = \alpha \pm i\beta, \alpha \neq 0$ HOT фокус.

Проанализируем данные ситуации применительно к каждому из трех типов полинома Q. Рассмотрим уравнение (4.11). Пусть $r = [3p^2/2 + \varkappa_0 (Q'/Q^3)']$. Из (4.8) найдем параметр p. Подставив его в r, получаем

$$r(X,\varkappa_0) = \frac{3}{2}\,\varkappa_0^{2/3}\,\frac{(Q')^{2/3}}{Q^2} + \varkappa_0\,\frac{QQ'' - 3(Q')^2}{Q^4} = \frac{\varkappa_0^{2/3}}{2Q^4}\,(3(Q')^{2/3}Q^2 + 2\varkappa_0^{1/3}(QQ'' - 3(Q')^2)).$$

Тогда sgn $r = \text{sgn}(3(Q')^{2/3}Q^2 + 2\varkappa_0^{1/3}(QQ'' - 3(Q')^2)).$ Пусть $l(X, \varkappa_0) = 3(Q')^{2/3}Q^2 + 2\varkappa_0^{1/3}(QQ'' - 3(Q')^2)$, тогда sgn $r = \text{sgn}\,l(X, \varkappa_0).$ Для канонических полиномов Q запишем выражения для функций $l(X, \varkappa_0), d(X, \varkappa_0).$

1. При $Q = 1 + X^2$ имеем

$$l(X, \varkappa_0) = 3 \cdot 4^{1/3} X^{2/3} (1 + X^2)^2 + 4 \varkappa_0^{1/3} (1 - 5X^2),$$

$$d(X, \varkappa_0) = 25 \cdot 2^{2/3} X^{2/3} (1 + X^2)^2 - 32(5X^2 - 1) \varkappa_0^{1/3}.$$

Рис. 2. Неправильные особые точки P_1, P_2 — седло и фокус (*a*) и седло и узел (*б*) на компоненте поверхности Σ_1 в эллиптическом случае

Из формул (4.10), (4.11) следует, что при $d(X, \varkappa_0) > 0$, $l(X, \varkappa_0) > 0$ НОТ является узлом; при $d(X, \varkappa_0) > 0$, $l(X, \varkappa_0) < 0$ — седлом; при $d(X, \varkappa_0) < 0$ НОТ является фокусом.

В эллиптическом случае системы неравенств $d(X, \varkappa_0) > 0, l(X, \varkappa_0) > 0$ и $d(X, \varkappa_0) > 0, l(X, \varkappa_0) > 0$, $l(X, \varkappa_0) < 0$ имеют решения, следовательно, НОТ могут быть узлами, седлами или фокусами (рис. 2). Таким образом, доказан п. 1 леммы 2.

2. При $Q = 1 - X^2$ имеем

$$l(X, \varkappa_0) = 3 \cdot 4^{1/3} X^{2/3} (1 - X^2)^2 - 4 \varkappa_0^{1/3} (1 + 5X^2),$$

$$d(X, \varkappa_0) = 25 \cdot 2^{2/3} (-X)^{2/3} (X^2 - 1)^2 - 32(5X^2 + 1) \varkappa_0^{1/3}.$$

В гиперболическом случае ни одна из систем неравенств $d(X, \varkappa_0) > 0$, $l(X, \varkappa_0) > 0$ и $d(X, \varkappa_0) > 0$, $l(X, \varkappa_0) < 0$ не имеет решения, следовательно, НОТ не могут быть седлами или узлами. Вместе с тем неравенство $d(X, \varkappa_0) < 0$ может иметь решения, значит, НОТ являются фокусами (рис. 3).

3. При $Q = (1 - X)^2$ имеем

$$l(X, \varkappa_0) = (3 \cdot 4^{1/3} (1 - X)^{8/3} - 20 \varkappa_0^{1/3}) (1 - X)^2,$$

$$d(X, \varkappa_0) = 25 \cdot 2^{2/3} (X - 1)^{14/3} - 160 \varkappa_0^{1/3} (X - 1)^2.$$

В параболическом случае системы неравенств $d(X, \varkappa_0) > 0$, $l(X, \varkappa_0) > 0$ и $d(X, \varkappa_0) > 0$, $l(X, \varkappa_0) < 0$ не имеют решения. Как и в предыдущем случае, НОТ могут быть только фокусами при $d(X, \varkappa_0) < 0$ (рис. 4). Лемма доказана.

5. Исследование типа неправильных особых точек в эллиптическом случае. Из леммы 2 следует, что в эллиптическом случае, в отличие от остальных, тип особой точки, зависящий от параметра \varkappa_0 , может меняться. Выясним, каким образом меняется тип НОТ при изменении параметра \varkappa_0 .

В рассматриваемом случае система (3.2) для отыскания НОТ имеет вид

$$p^{4} - 2(2 - \lambda)p^{2} + \varkappa_{0}/(1 + X^{2})^{2} = 0,$$

$$4p^{3} - 4(2 - \lambda)p = 0, \qquad 4\varkappa_{0}X/(1 + X^{2})^{3} - 2p^{3} = 0.$$
(5.1)

Из (5.1) получаем зависимость между координатой X HOT и значением параметра \varkappa_0 :

$$\varkappa_0 = (X^4 + 3X^2 + 3 + 1/X^2)^2 / 16.$$
(5.2)

Рис. 3. Неправильные особые точки P_1, P_2 — фокусы на компонентах поверхности $\Sigma_1(a)$ и $\Sigma_5(b)$ в гиперболическом случае

Рис. 4. Неправильная особая точка P_1 — фокус на компоненте поверхности Σ_1 в параболическом случае

Пусть k — кривая, заданная уравнением (5.2) на плоскости $\mathbb{R}^2(X, \varkappa_0)$. При доказательстве леммы 2 установлено, что в эллиптическом случае:

— НОТ является узлом при

$$D(X, \varkappa_0) > 0, \qquad l(X, \varkappa_0) < 0;$$
 (5.3)

— НОТ является седлом при

$$D(X, \varkappa_0) > 0, \qquad l(X, \varkappa_0) > 0;$$
 (5.4)

— НОТ является фокусом при

 $D(X, \varkappa_0) < 0.$

Подставляя в (5.3) значения D и l, получаем, что решением данной системы неравенств являются следующие значения X и \varkappa_0 :

$$\varkappa_1(X) = \frac{27X^2(1+X^2)^6}{16(5X^2-1)^3} < \varkappa_0 < \frac{15\,625X^2(1+X^2)^6}{8192(5X^2-1)^3} = \varkappa_2(X), \quad X > \frac{1}{\sqrt{5}}.$$
 (5.5)

Рис. 5. Типы неправильных особых точек: Ω₁-Ω₃ — области существования НОТ различного типа (Ω₁ — седла, Ω₂ — узлы, Ω₃ — фокусы)

Рис. 6. Неправильная особая точка
 P — седлоузел, получаемый при фиксированном значении параметр
а \varkappa_0

Геометрическая интерпретация системы неравенств (5.5) на плоскости $\mathbb{R}^2(X, \varkappa_0)$ имеет следующий вид. Обозначим через L и R кривые $\varkappa_0 = \varkappa_i(X)$, где $i = 1, 2, \varkappa_i$ определены в (5.5). В областях, лежащих слева от кривой R (Ω_1 и Ω_2 на рис. 5), дискриминант уравнения (4.6) D > 0, а в области справа от кривой R (Ω_3 на рис. 5) D < 0. Следовательно, НОТ, у которых (X, \varkappa_0) $\subset \Omega_3$, являются фокусами. Согласно (5.3), (5.4) в области Ω_1 l > 0, в области Ω_2 l < 0. Следовательно, точки в области Ω_1 являются седлами, а в области Ω_2 — узлами. Обозначим через $P = (X_p, \varkappa_{0p})$ и $Q = (X_q, \varkappa_{0q})$ точки пересечения кривых L и R с кривой k. Таким образом, при изменении параметра \varkappa_0 , определенного в п. 1, происходит изменение типа НОТ из узла в фокус. Точке P — минимальному значению функции (5.2) — соответствует НОТ, являющаяся седлоузлом, точке Q — вырожденная особая точка. Интегральные кривые для этого случая показаны на рис. 6.

6. Свойства движения. Исследуем характер движения газа в направлении инвариантной координаты X. Согласно (1.9), (1.10) скорость звука определяется формулой

$$c^{2} = \gamma p / \rho = \gamma S_{0} \rho^{\gamma - 1} = \gamma S_{0} \rho_{0}^{\gamma - 1} [\lambda_{X} (1 + h_{0}X + k_{0}X^{2})]^{-(\gamma - 1)} = c_{0}^{2} [\lambda_{X} (1 + h_{0}X + k_{0}X^{2})]^{-(\gamma - 1)}.$$

Тогда квадрат числа Маха равен

$$N = M^{2} = \frac{U^{2}}{c^{2}} = \frac{\lambda_{X}^{2}}{c_{0}^{2}} \left[\lambda_{X}(1+h_{0}X+k_{0}X^{2})\right]^{\gamma-1} = \frac{1}{c_{0}^{2}}\lambda_{X}^{\gamma+1}(1+h_{0}X+k_{0}X^{2})^{\gamma-1}.$$

При $\gamma = 3$ имеем

$$N = \lambda_X^4 (1 + h_0 X + k_0 X^2)^2 / c_0^2.$$
(6.1)

Согласно (4.2) получаем

$$\lambda_X^2 = b_0 - \lambda \pm \sqrt{(b_0 - \lambda)^2 - \frac{\varkappa_0}{Q^2}} = \frac{(b_0 - \lambda)Q \pm \sqrt{(b_0 - \lambda)^2 Q^2 - \varkappa_0}}{Q}.$$
 (6.2)

Подставляя выражение для λ_X^2 из (6.2) в (6.1), находим

$$N = \frac{\lambda_X^4 Q^2}{c_0^2} = \frac{Q^2}{c_0^2} \left(2(b_0 - \lambda)\lambda_X^2 - \frac{\varkappa_0}{Q^2} \right) = \frac{1}{c_0^2} \left(2(b_0 - \lambda)Q^2\lambda_X^2 - \varkappa_0 \right) = = \frac{1}{c_0^2} \left(2(b_0 - \lambda)Q^2 \frac{(b_0 - \lambda)Q + \varepsilon\sqrt{R}}{Q} - \varkappa_0 \right) = = \frac{1}{c_0^2} \left(2(b_0 - \lambda)^2 Q^2 + 2(b_0 - \lambda)Q\varepsilon\sqrt{R} - \varkappa_0 \right), \qquad \varepsilon = \pm 1.$$
(6.3)

Сформулируем и докажем утверждение о представлении инвариантных звуковых характеристик на данном решении.

Лемма 3. Точки дискриминантной кривой (4.3) являются образами на плоскости (X, λ) инвариантных звуковых характеристик. При переходе через звуковую характеристику режим движения газа меняется со сверхзвукового на дозвуковой в направлении координаты X.

Доказательство. Звуковая характеристика $\xi(t, \boldsymbol{x}) = 0$ в физическом пространстве $\mathbb{R}^4(t, \boldsymbol{x})$ задается уравнением [2]

$$\xi_t + \boldsymbol{u} \cdot \nabla \xi = \varepsilon c |\nabla \xi|, \qquad \varepsilon = \pm 1.$$

Инвариантная звуковая характеристика на рассматриваемом решении определяется уравнением $\xi(t, \boldsymbol{x}) = \lambda - \lambda_0 = 0, \ \lambda_0 = \text{const}$ в виде

$$\chi \equiv x - t^2/2 - \lambda_0 = 0.$$
 (6.4)

Тогда из уравнений звуковых характеристик (6.4), (1.2) получаем уравнение инвариантной звуковой характеристики на данном решении в пространстве инвариантов:

$$U(\lambda) = \varepsilon c(\lambda), \qquad \varepsilon = \pm 1.$$

Используя ключевое уравнение (1.11) при $\gamma = 3$ и уравнение дискриминантной кривой (4.3), находим

$$\frac{c_0^2}{Q^2(b_0 - \lambda)^2} = 1. \tag{6.5}$$

Уравнение (6.5) является уравнением звуковой характеристики на плоскости (X, λ) и совпадает с уравнением (4.3) дискриминантной кривой. Лемма доказана.

Лемма 4. Интегральные кривые C_{++} , C_{-+} соответствуют сверхзвуковым режимам течения газа, и для них выполняется неравенство

$$U^2 > c^2. ag{6.6}$$

Интегральные кривые C_{+-} , C_{--} соответствуют режимам течения газа, при которых возможен переход через скорость звука, и для них выполняется неравенство

$$U^2 < c^2. agenum{6.7}{}$$

Доказательство. С учетом (6.3) неравенство (6.6) эквивалентно неравенству

$$\frac{2(b_0 - \lambda)^2 Q^2 + 2\varepsilon (b_0 - \lambda) Q \sqrt{R} - \varkappa_0}{c_0^2} > 1.$$
(6.8)

При $\gamma=3$ констант
а $c_0^2=\varkappa_0,$ следовательно, после ряда преобразований выражение (6.8) принимает вид

$$(b_0 - \lambda)^2 Q^2 + \varepsilon (b_0 - \lambda) Q \sqrt{R} > \varkappa_0.$$
(6.9)

Неравенство (6.9), содержащее квадратный корень $\sqrt{(b_0 - \lambda)^2 Q^2 - \varkappa_0}$, определено при условии

$$(b_0 - \lambda)^2 Q^2 > \varkappa_0.$$
 (6.10)

Используя (6.10), преобразуем левую часть неравенства (6.9):

$$(b_{0} - \lambda)^{2}Q^{2} + \varepsilon(b_{0} - \lambda)Q\sqrt{(b_{0} - \lambda)^{2}Q^{2} - \varkappa_{0}} \geq$$

$$\geq \varkappa_{0} + \varepsilon(b_{0} - \lambda)Q(b_{0} - \lambda)Q\sqrt{1 - \frac{\varkappa_{0}}{(b_{0} - \lambda)^{2}Q^{2}}} \geq$$

$$\geq \varkappa_{0} + \varepsilon\varkappa_{0}\sqrt{1 - \frac{\varkappa_{0}}{(b_{0} - \lambda)^{2}Q^{2}}} = \varkappa_{0}\left(1 + \varepsilon\sqrt{1 - \frac{\varkappa_{0}}{(b_{0} - \lambda)^{2}Q^{2}}}\right). \quad (6.11)$$

Тогда согласно (6.11) неравенство (6.9) принимает вид

$$\varkappa_0 \left(1 + \varepsilon \sqrt{1 - \frac{\varkappa_0}{(b_0 - \lambda)^2 Q^2}} \right) > \varkappa_0. \tag{6.12}$$

Следовательно, неравенство (6.12) выполняется при $\varepsilon = 1$, что является условием выполнения неравенства (6.6). Заметим, что значение $\varepsilon = 1$ соответствует листам поверхности C_{++} и C_{-+} (см. п. 4). Аналогично анализируется неравенство (6.7). Это неравенство выполняется при $\varepsilon = -1$, следовательно, такой режим реализуется на листах C_{+-} и C_{--} поверхности Σ ключевого уравнения. Лемма доказана.

7. Описание режимов движения газа. С использованием решения ключевого уравнения (4.1) строятся инвариантные функции ρ , U. Дадим физическую трактовку полученного решения для эллиптического случая. На рис. 7 приведены сепаратрисы h_i , l_i (i = 1, 2), а также зависимости скорости U и плотности ρ в описываемом решении от переменной X. Каждой интегральной кривой соответствует режим движения газа, описываемый данными функциями. Исследуем этот режим движения, анализируя поведение кривых $\rho = \rho(X)$ и U = U(X). Штриховыми и сплошными линиями на рис. 7 показаны кривые, которые характеризуют скорости частиц, описываемые интегральными кривыми уравнения (4.1), лежащими на нижнем и верхнем листах поверхности уравнения соответственно. Эти кривые соответствуют различным режимам движения газа с нестационарными источниками и стоками. Частицам, движущимся по верхнему листу поверхности уравнения, на рис. 7 соответствуют кривые скорости, расположенные выше криминанты (см. рис. 7, a), и кривые плотности, расположенные ниже криминанты (см. рис. 7, b). Наоборот, частицам, движущимся по нижнему листу поверхности уравнения, на рис. 7, a соответствуют кривые

Рис. 7. Зависимости инвариантной компоненты скорости (a) и плотности (b) от переменных X при различных режимах движения газа: штриховые линии — на нижнем листе поверхности уравнения (4.1), сплошные — на верхнем листе поверхности уравнения (4.1)

скорости, расположенные выше кривой K, а на рис. 7, δ — зависимости плотности, расположенные ниже кривой K.

Кривые, расположенные выше кривых K и h_2 на рис. 7, a, соответствуют движению потока газа, замедляющемуся с ростом переменной X и прекращающемуся на кривой K, задающей поверхность стока в физическом пространстве. Действительно, при приближении к этой кривой производная $U_X \to -\infty$, что можно трактовать как замедление движения и остановку всех частиц на этой кривой. Свойства соответствующих такому движению газа зависимостей плотности, лежащих ниже кривых K и l_2 на рис. 7, a, зависят от их положения относительно сепаратрисы l_1 . Кривые, находящиеся слева от l_1 , описывают монотонное увеличение плотности при приближении частиц к криминанте. В то же время в потоке газа, движение которого начинается в точке, находящейся ниже кривой l_1 на рис. $7, \delta$, плотность сначала возрастает до некоторого максимального значения, затем уменьшается, далее, при приближении к криминанте, вновь увеличивается. Имеются решения, которые начинаются и заканчиваются на криминанте. Для таких решений скорость и плотность газа описываются зависимостями, лежащими ниже кривой h_2 и выше l_2 на рис. 7. В этом случае частицы останавливаются на конечном расстоянии от источника. Скорость потока, движение которого описывается кривыми, лежащими между K и l_1 на рис. 7, а, в начале движения близка к нулю, а при приближении к криминанте монотонно возрастает. На рис. 7, 6 видно, что сначала поток имеет почти постоянную плотность, которая затем уменьшается, до тех пор пока частицы газа не попадут на кривую K. Кривые, близкие к l_1 при $X \to -\infty$ и лежащие ниже l_2 , характеризуют скорости частиц, которые, как и в предыдущем случае, в начале движения близки к нулю. Скорость движения этих частиц сначала увеличивается, а затем уменьшается, до тех пор пока частицы не достигнут криминанты. Плотность газа сначала практически постоянна, а по мере приближения к криминанте монотонно убывает.

Тип особых точек оказывает влияние на характер движения газа. Так, в случае НОТ типа фокуса имеем решение, определенное на конечном интервале $[X_0, X_1]$, что соответствует движению газа с источником и стоком в начальной $X = X_0$ и конечной $X = X_1$ точках интервала. В физическом пространстве границы интервала $[X_0, X_1]$ задают положение перемещающихся со временем плоскостей, ортогональных оси Ox, на которых расположены источник и сток.

ЛИТЕРАТУРА

- 1. Овсянников Л. В. Программа ПОДМОДЕЛИ. Газовая динамика // Прикл. математика и механика. 1994. Т. 58, вып. 4. С. 30–55.
- 2. Овсянников Л. В. Лекции по основам газовой динамики. М.; Ижевск: Ин-т компьютер. исслед., 2003.
- 3. Овсянников Л. В. Групповой анализ дифференциальных уравнений. М.: Наука, 1978.
- 4. Овсянников Л. В., Чупахин А. П. Регулярные частично инвариантные подмодели уравнений газовой динамики // Прикл. математика и механика. 1996. Т. 60, вып. 6. С. 990–999.
- 5. **Чупахин А. П.** Небарохронные модели типов (1,2) и (1,1) уравнений газовой динамики. Новосибирск, 1999. (Препр. / СО РАН. Ин-т гидродинамики; № 1-99).
- 6. Арнольд В. И. Геометрические методы в теории обыкновенных дифференциальных уравнений. Ижевск: Ижевск. респ. тип., 2000.
- Давыдов А. А. Нормальная форма уравнения, не разрешенного относительно производной, в окрестности его особой точки // Функцион. анализ и его приложения. 1985. Т. 19, вып. 2. С. 1–10.
- 8. Ремизов А. О. О правильных особых точках обыкновенных дифференциальных уравнений, не разрешенных относительно производной // Дифференц. уравнения. 2002. Т. 38, № 5. С. 622–630.
- 9. Ремизов А. О. Многомерная конструкция Пуанкаре и особенности поднятия полей для неявных уравнений // Соврем. математика. Фундам. направления. 2006. Т. 19. С. 131–170.
- 10. Паршин Д. В., Чупахин А. П. Об источнике газа в поле постоянной силы // ПМТФ. 2006. Т. 47, № 6. С. 3–16.

Поступила в редакцию 28/V 2012 г.