УДК 621.43.039

Эффективность использования альтернативных топлив в двигателях внутреннего сгорания

А. И. СОРОКИН, Г. К. МИРЗОЕВ

OAO ABTOBA3,

Южное шоссе, 36, Тольятти 445633 (Россия)

E-mail: mabl@dd.vaz.tlt.ru, dtn@dd.vaz.tlt.ru

Аннотация

Выполнены экспериментальные работы, позволившие провести анализ путей решения задач одновременного снижения расхода традиционного топлива, змиссии токсичных и парникового газов в короткий срок. Показано, что путем модернизации двигателей внутреннего сгорания (ДВС), работающих на традиционном топливе, возможно выполнение нормы $140~\rm r/km$ CO $_2$; использование альтернативных топлив существенно расширяет возможности снижения эмиссии CO $_2$ и повышения КПД; организация работы ДВС на бедной гомогенной смеси позволяет существенно повысить его КПД. Результаты исследований рабочего процесса ДВС показали возможность его работы на бедных гомогенных смесях с повышением КПД ДВС на расчетном режиме в среднем с 23 до 32-34%. Установлено, что энергоустановки, работающие на водороде, способны обеспечить нулевую эмиссию CO $_2$. Сформулирована концепция перехода к использованию водорода в качестве топлива наиболее эффективным путем.

Необходимость снижения загрязнения атмосферы и расхода невозобновляемых видов топлива вынуждает вводить ограничения на эмиссию токсичных газов и диоксида углерода и стимулировать работы по повышению КПД энергоустановок. Поскольку автомобили являются основными потребителями нефтепродуктов и источником эмиссии токсичных (СО, СН, NO_x) и парникового (СО₂) газов, в странах Евросоюза вводятся ограничения на выбросы CO_2 для автотранспорта [1–3], что эквивалентно снижению расхода углеводородного топлива (табл. 1).

Вводимые ограничения требуют поиска оптимальных путей решения задач одновре-

менного снижения расхода традиционного топлива, эмиссии токсичных и парникового газов в короткие сроки. ОАО АВТОВАЗ организовал и выполнил экспериментальные работы, позволившие провести анализ путей решения упомянутых задач. Результаты анализа показали следующее.

Существующий средний уровень эмиссии СО₂ при испытаниях по смешанному Европейскому циклу для всех автомобилей, продаваемых в странах Евросоюза, составляет около 180 г/км и близок к уровню эмиссии автомобилями компакт-класса (масса при испытаниях 1350 кг), соответствует уровню эмиссии автомобиля ВАЗ-2110 и расходу бензина 7.5 л на 100 км.

ТАБЛИЦА 1 Ограничения на выбросы ${
m CO_2}$ для автотранспорта согласно Директивам Евросоюза

Директивы Евросоюза	Эмиссия СО2,	Эквивалентный расход	Снижение расхода, %		
и дата их введения в действие	г/км	бензина, л/100 км	(эквивалентный КПД ДВС, %)		
Директивы Еврокомиссии:					
с 2008 г.	140	5.87	22 (29)		
с 2012 г.	120	5	33 (34)		
Директивы Европарламента:					
с 2008 г.	140	5.87	22 (29)		
с 2015 г.	90	3.87	50 (46)		

ТАБЛИЦА 2 Требования по токсичности отработанных газов, г/км [4, 5]

Европейские стандарты	CO	СН	NO_x
на токсичные компоненты			
Евро-3 (с 2000 г.)	2.3	0.2	0.15
Евро-4 (с 2005 г.)	1	0.1	80.0
Евро-5 (с 2010 г.)	0.5	0.04	0.04

Величина КПД двигателя при испытании автомобиля по Европейскому ездовому циклу при расходе бензина $7.5 \, \pi/100 \, \mathrm{km}$ и эмиссии CO_2 180 г/км составляет 23 %. Для снижения эмиссии СО2 до 140, 120 и 90 г/км потребуется увеличить средний КПД до 29, 34 и 46 % соответственно. Достижение значения КПД = 34 % при рассматриваемом режиме работы проблематично, а КПД = 46 % при современном уровне техники невозможно. Проблема усложняется жесткими требованиями по токсичности отработанных газов (табл. 2) [4, 5], выполнение которых в настоящее время обеспечивается при работе бензиновых ДВС на стехиометрической смеси с использованием трехкомпонентных (CO, CH, NO_r) нейтрализаторов, что ограничивает возможности повышения их КПД.

По нашей оценке, модернизация бензиновых ДВС с использованием наиболее эффективных разработок позволит повысить их КПД на 12–17 % от исходного уровня, т.е. довести до 27 %. КПД современных дизелей с наддувом на рассматриваемом режиме составляет около 32 %. Необходимость снижения эмиссии оксидов азота и сажи, образующихся в цилиндрах дизельного двигателя при его рабо-

те на бедной негомогенной смеси, до уровня норм Евро-4 и ниже потребует применения нейтрализаторов, снижающих КПД до $30\,\%$.

Снижение массы автомобиля до 800 кг с использованием модернизированных ДВС позволяет снизить расход топлива до 3.5 л/100 км, а эмиссию CO_2 – до 84 г/км. Организация частичного производства таких автомобилей и применение модернизированных ДВС на остальных автомобилях позволит снизить суммарную эмиссию СО₂ до 140, 120 и 90 г/км при условии, что доля малых автомобилей составит 18, 47 и 90 % от общего объема соответственно. Однако необходимо учитывать тот факт, что спрос на автомобили особо малого класса ограничен. Отключение двигателя при остановках автомобиля с автоматическим пуском при нажатии педали дросселя позволяет повысить КПД бензинового ДВС с 27 до 29 %, а КПД дизеля с нейтрализатором до 30%. Таким образом, путем модернизации ДВС, работающих на традиционном топливе, возможно выполнение нормы по СО2 (140 г/км). Использование гибридной силовой установки с современным дизелем с турбонаддувом и максимальным КПД = 42 % позволит снизить выбросы CO_2 до $120 \, r/км$, но не сможет обеспечить выброс 90 г/км. Необходимо отметить, что дополнительные затраты на один автомобиль с гибридной силовой установкой могут составить от 3500 до 15 000 евро, на дизельный автомобиль с нейтрализатором - от 3000 до 8000 евро, на автомобиль с модернизированным бензиновым двигателем, выполняющий норму 140 г $CO_2/км$ – от 600 до 1000 евро,

ТАБЛИЦА 3 Эмиссия ${\rm CO_2}$ в зависимости от углеводородного состава топлива

Топливо,	Теплотворная	Эмиссия СО2		Снижение эмиссии СО2, %		
химическая формула	способность,	кг/кг топлива	г/МДж	г/км		
	МДж/кг					
Бензин, CH _{1,855}	44.5	3.1757	71.36	180	0	
Природный газ, CH_4	50	2.75	55	138	23	
Пропан, C_3H_8	46.6	3	64.37	162	10	
Бутан, C_4H_{10}	46.1	3.0345	65.8	165	8	
Диметилэфир, $\mathrm{C_2H_6O}$	31.57	1.913	60.59	125*	15	
Водород, \mathbf{H}_2	120	0	0	0	100	

^{*} При КПД дизеля в расчетном режиме, равном 28 %.

что в конечном счете может отрицательно сказаться на сбыте автомобилей.

Использование альтернативных топлив существенно расширяет возможности снижения эмиссии CO_2 и повышения КПД. В табл. 3 приведены расчетные данные по изменению выделения CO_2 за счет варьирования углеводородного состава топлива (без учета возможности улучшения КПД ДВС).

Как следует из табл. 3, наиболее приемлемые для практического использования в ближайшей перспективе — это природный и сжиженный нефтяной газы (для ДВС с принудительным воспламенением топлива) и диметиловый эфир (для дизелей). В то же время газообразные топлива обладают низкой теплотворной способностью на единицу объема, что приводит к необходимости увеличения размеров топливных баков и снижению пробега автомобиля на одной заправке.

Известно, что организация работы ДВС на бедной гомогенной смеси позволяет существенно повысить его КПД. При этом широко используемые в настоящее время трехкомпонентные нейтрализаторы не в состоянии обеспечить снижение эмиссии NO_x . Проблема снижения эмиссии оксидов азота с одновременным повышением КПД ДВС может быть решена с помощью процесса сгорания при низкой температуре, что возможно при наличии в рабочей смеси топлива с низкой границей воспламеняемости, например свободного водорода. Вместо водорода можно использовать водородосодержащий синтезгаз, получаемый на борту автомобиля. Например, проведенные в 1973-1975 гг. в США исследования на легковом автомобиле "Шевроле" с двигателем (рабочий объем 5.75 л), оснащенным генератором синтез-газа (ГСГ), показали снижение расхода бензина на 26 % при движении по Федеральному ездовому циклу CVS-3 [6]. Гене-

ТАБЛИЦА 4 Оценка эффективности и перспектив использования разных топлив на автотранспорте

Характеристика ДВС,	кпд двс,	Расход	Эмиссия CO_2 ,	Пробег	Увеличение затрат
топливо	средний	энергии,	г/км	по Евроциклу	на один автомобиль,
	по Европейскому	МДж/100 км		на одной заправке,	евро
	циклу, %			км	
Бензиновый ДВС,					
$\epsilon = 9.5$, бак 40 л,					
трехкомпонентный					
нейтрализатор	23	250	180	530	0
То же,					
с модернизацией ДВС					
и автомобиля	29	194	140	680	1000
ДВС, $\varepsilon = 9.5$,					
бензин 23 л,					
водород 90 л, 40 Мпа	32	180	85	540	300
ДВС на водороде,					
баллоны 90 л, 40 Мпа	34	170	0	165	300
ДВС на природном газе,					
ϵ = 12, баллоны 90 л, 35 МПа	23	250	137	450	300
То же, с ГСГ	30	192	105	590	500
ДВС, $\varepsilon = 12.5$,					
пропан + бутан (50 %),					
баллон 40 л, 0.16 МПа	25	230	150	540	250
То же, с ГСГ	28	205	134	605	450
Дизель $\varepsilon = 18$, наддув,					
дизтопливо, бак 40 л,					
нейтрализатор	30	192	138	650	4000-8000
То же, на диметилэфире	30	192	116	490	4000-8000

Примечание. є - степень сжатия рабочей смеси в ДВС.

ратор синтез-газа работал на бензине. Состав синтез-газа (мольные доли), %: $\rm H_2$ 0.216, CO 0.236, CH $_4$ 0.01, CO $_2$ 0.0123, $\rm H_2$ O 0.012, $\rm N_2$ 0.5125.

Результаты исследований рабочего процесса ДВС на бензине с добавками водорода и на водороде показали возможность работы двигателя на бедных гомогенных смесях с повышением КПД на расчетном режиме в среднем с 23 до 32-34 %. Испытания автомобиля ВАЗ-2110 с двигателем на бедной смеси показали возможность снижения токсичных выбросов до уровня норм Евро-5 без использования трехкомпонентного нейтрализатора. Аналогичные результаты получены при исследовании ДВС на бензине с добавками водородосодержащего синтез-газа. С учетом КПД ГСГ, составляющего в среднем 80 % (по теплотворной способности исходного продукта и продуктов конверсии), а также расхода топлива через ГСГ КПД ДВС на расчетном режиме составил около 30 %. Выполненные работы позволили провести комплексную оценку эффективности и перспектив использования указанных топлив на автотранспорте.

В табл. 4 приведены экспериментально-расчетные данные по изменению эмиссии CO_2 с учетом изменения КПД ДВС, а также по оценке увеличения затрат на один автомобиль при различных способах снижения эмиссии CO_2 . Приведенный анализ показывает возможность снижения эмиссии CO_2 до $140~\mathrm{r/km}$ путем повышения КПД бензиновых ДВС при работе на стехиометрической смеси, использования дизелей и замены бензина на природный газ.

Выполнение нормы $120 \, \mathrm{г/кm}$ по эмиссии CO_2 при небольшом удорожании автомобиля обес-

печивает процесс сгорания бедной гомогенной смеси с использованием синтез-газа или водорода, нормы 90 г/км - при работе ДВС на смеси углеводородных топлив с водородом. Нулевую эмиссию СО₂ при повышении КПД энергоустановки (в среднем до 45-50 %) могли бы обеспечить энергоустановки, работающие на водороде. Однако для создания инфраструктуры по их производству, получению и доставке водорода потребителям необходимы значительные финансовые ресурсы и время. В этой ситуации поэтапная модернизация традиционных ДВС для работы на смесях жидкого или газообразного топлива с водородосодержащим синтез-газом, водородом и затем на водороде позволит с наименьшими затратами времени и финансовых средств решить актуальные проблемы энергосбережения, снизить негативное влияние на окружающую среду и зависимость от невозобновляемых видов топлива, осуществить переход на водородную энергетику. Выполненные работы позволили сформулировать концепцию поэтапного перехода к использованию на транспорте альтернативных топлив (в конечном счете водорода) наиболее эффективным, по мнению авторов, путем.

СПИСОК ЛИТЕРАТУРЫ

- 1 Директива Еврокомиссии 93/116 ЕС.
- 2 Директива Еврокомиссии 1999/125 ЕС.
- 3 Директива Европарламента 98/70 ЕС.
- 4 Директива Еврокомиссии 98/69 ЕС, 2003/76 ЕС.
- 5 Директива Еврокомиссии 2003/76 ЕС.
- 6 SAE Pap., 750027 (1975) 1.