УДК 536.423

МОДЕЛЬ СТАЦИОНАРНОГО ДВИЖЕНИЯ МЕЖФАЗНОЙ ПОВЕРХНОСТИ В СЛОЕ СИЛЬНОПЕРЕГРЕТОЙ ЖИДКОСТИ

С. П. Актершев, В. В. Овчинников

Институт теплофизики им. С. С. Кутателадзе СО РАН, 630090 Новосибирск E-mail: als@itp.nsc.ru

Рассматривается стационарное распространение границы паровой каверны в слое метастабильной жидкости вдоль поверхности нагревателя. Температура и скорость распространения межфазной поверхности определяются из уравнений баланса массы, импульса, энергии в окрестности лобовой точки паровой каверны и условия устойчивости стационарного движения межфазной поверхности. Показано, что решение этих уравнений существует только в том случае, если перегрев больше порогового значения. Расчетная скорость движения межфазной границы, а также пороговое значение температуры удовлетворительно согласуются с имеющимися экспериментальными данными для различных жидкостей в широких диапазонах давления насыщения и температуры перегретой жидкости.

Ключевые слова: метастабильная жидкость, межфазная граница, скорость распространения, температура перегрева.

Введение. Задача о росте паровой фазы в перегретой жидкости важна для понимания фундаментальных закономерностей процесса кипения. В общей постановке эта задача чрезвычайно сложна, так как рост паровой фазы зависит от многих взаимосвязанных факторов: интенсивности теплопереноса, кинетики испарения, динамики жидкости и т. п. В экспериментах [1–4] наблюдалось вырождение режима пузырькового кипения, когда первое же возникновение паровой фазы приводило к формированию устойчивой паровой пленки, минуя режим пузырькового кипения (третий кризис теплоотдачи). В [4] показано, что для третьего кризиса существует нижняя граница перегревов перед вскипанием, причем значения тепловых потоков меньше значений первого критического потока. В этом случае в зоне контакта поверхности парового пузыря и нагревателя развивается неустойчивость и формируются конусообразные паровые каверны, распространяющиеся вдоль нагревателя (рис. 1).

В работах [5, 6] показано, что лобовая точка конусообразной паровой каверны (фронт испарения) движется с постоянной скоростью. Скорость фронта испарения существенно зависит от перегрева жидкости и может достигать десятков метров в секунду. Данные о скорости фронта испарения для различных органических жидкостей, воды и жидкого азота получены в [5–11]. Опыты проводились при давлении как ниже, так и выше атмосферного, с использованием цилиндрического и плоского нагревателей в условиях квазистационарного тепловыделения и при ступенчатом набросе мощности. Следует отметить, что характер движения фронта испарения существенно отличается от характера

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 06-08-01501).

Рис. 1. Сформировавшиеся фронты испарения при росте парового пузырька в бензоле на цилиндрическом нагревателе через 0,4 мс (*a*) и 4,8 мс (*б*) с момента вскипания ($\Delta T = 86$ K, $T_s = 292$ K)

движения волны вскипания, когда зона вскипания, состоящая из изолированных растущих паровых пузырьков, распространяется вдоль обогреваемой поверхности примерно с постоянной скоростью [6, 8]. В отличие от волны вскипания фронт испарения представляет собой движущуюся межфазную границу. При перегревах вблизи пороговых значений наблюдаются как фронт испарения, так и фронт вскипания; возможен также переход от фронта вскипания к фронту испарения [8].

Фронт испарения обладает рядом особенностей и представляет интерес при изучении динамики жидкости со свободной поверхностью при наличии фазового превращения. Несмотря на то что имеется большое количество экспериментальных данных, механизм формирования фронта испарения изучен недостаточно, а гидродинамика такого течения представляется весьма схематично. Расчетные модели [12, 13] предсказывают значение скорости распространения фронта испарения. В рамках модели [12] можно рассчитать также пороговое значение перегрева с использованием условия равенства нулю скорости фронта испарения. Тем не менее остается неясным, какие безразмерные критерии оказывают существенное влияние на пороговую величину перегрева и скорость межфазной поверхности. Целью настоящего исследования является разработка упрощенной математической модели движения межфазной поверхности в слое метастабильной жидкости.

Математическая модель. Рассмотрим стационарное течение метастабильной жидкости вблизи лобовой точки паровой каверны в системе отсчета, связанной с фронтом испарения, который движется с постоянной скоростью V_f . Вблизи поверхности нагревателя жидкость имеет температуру T_w и перегрета относительно температуры насыщения T_s . Примем следующие упрощающие предположения: 1) жидкость является идеальной, пар насыщенным; плотность пара значительно меньше плотности жидкости; течение жидкости является плоским; течение пара в каверне не учитывается; 2) испарение является равновесным, на межфазной поверхности температуры жидкости и пара совпадают; тепловой поток из жидкости к межфазной границе расходуется только на испарение; 3) скорость жидкости на межфазной поверхности значительно меньше скорости фронта. Предположение 3 означает, что при расчете температуры в окрестности лобовой точки каверны поле скоростей жидкости такое же, как при обтекании непроницаемой межфазной поверхности.

С учетом сделанных предположений законы сохранения массы и импульса запишем в виде условий [14] на межфазной поверхности:

$$\rho_l u_l = \rho_v u_v = j; \tag{1}$$

$$p_l = p_v + j^2 / \rho_v - \sigma / R.$$
⁽²⁾

Здесь u_l, u_v — нормальные компоненты скорости; p_l, p_v — давление в жидкой и паровой фазах соответственно; R — радиус кривизны межфазной поверхности; $j = (\lambda_l/L) \partial T_l/\partial r$ плотность потока массы; L — теплота испарения.

Для жидкости запишем уравнение Бернулли вдоль линии тока, приходящей из "бесконечности" в лобовую точку паровой каверны:

$$p_l = p_s + \rho_l V_f^2 / 2.$$

Здесь p_s — давление в системе. Подставляя это соотношение в (2), получаем

$$p_v - p_s = \rho_l V_f^2 / 2 - j^2 / \rho_v + \sigma / R.$$
(3)

Соотношение (3) связывает четыре неизвестные величины: V_f , j, R и температуру межфазной поверхности T_v (давление p_v и плотность ρ_v пара являются функциями T_v). Еще одно соотношение между этими неизвестными получим, рассмотрев теплоперенос в жидкости в окрестности лобовой точки фронта.

Поместим начало координат в центр кривизны лобовой части паровой каверны и запишем в полярной системе координат уравнение теплопереноса

$$u_r \frac{\partial T}{\partial r} + \frac{u_{\varphi} \sin \varphi}{r} \frac{\partial T}{\partial \varphi} = a \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \varphi^2} \right]$$
(4)

с граничными условиями

$$T\big|_{r=R} = T_v, \qquad T\big|_{r\to\infty} = T_w$$

Поле скоростей жидкости в окрестности лобовой точки будем считать таким же, как и при потенциальном обтекании цилиндра радиусом *R*:

$$u_r = (R^2/r^2 - 1)V_f \cos \varphi, \qquad u_\varphi = (R^2/r^2 + 1)V_f \sin \varphi.$$

Рассматривая решения только вблизи лобовой точки, можно положить $\varphi \ll 1$ и отбросить второе слагаемое в левой части (4). Полагая также

$$\frac{1}{r^2} \frac{\partial^2 T}{\partial \varphi^2} \ll \frac{\partial^2 T}{\partial r^2}$$

отбросим последнее слагаемое в правой части (4).

Перейдем к безразмерным переменным $\eta = r/R$, $\tilde{T} = (T - T_v)/(T_w - T_v)$. В результате уравнение (4) и граничные условия принимают вид

$$\operatorname{Pe}\left(\frac{1}{\eta^{2}}-1\right)\eta\frac{\partial\tilde{T}}{\partial\eta} = \frac{\partial}{\partial\eta}\left(\eta\frac{\partial\tilde{T}}{\partial\eta}\right), \qquad \tilde{T}\big|_{\eta=1} = 0, \quad \tilde{T}\big|_{\eta\to\infty} = 1.$$
(5)

Здесь $Pe = V_f R / a$ — число Пекле. Интегрируя (5), имеем

$$\frac{\partial \tilde{T}}{\partial \eta} = \frac{A}{\eta} \exp\left(-\operatorname{Pe}\left(\frac{1}{\eta} + \eta - 2\right)\right), \qquad A = \frac{\partial \tilde{T}}{\partial \eta}\Big|_{\eta=1}.$$
(6)

Перейдем к переменной $y = (\eta - 1)\sqrt{\text{Pe}}$ и проинтегрируем (6). Отсюда для константы A с учетом граничных условий получаем уравнение

$$\frac{A}{\sqrt{\text{Pe}}} \int_{0}^{\infty} \frac{\exp\left(-y^2/(1+y/\sqrt{\text{Pe}}\,)\right)}{1+y/\sqrt{\text{Pe}}} \, dy = 1.$$
(7)

При $\sqrt{\text{Pe}} \gg 1$ в интеграле (7) можно отбросить слагаемые $y/\sqrt{\text{Pe}}$. Отсюда находим $A = 2\sqrt{\text{Pe}}/\sqrt{\pi}$ и поток массы на межфазной поверхности:

$$j = \frac{\lambda_l (T_w - T_v)}{RL} A = \frac{2}{\sqrt{\pi}} \frac{c_p (T_w - T_v)}{L} \rho_l \sqrt{\frac{V_f a}{R}}.$$
(8)

Подставляя (8) в (3), получаем соотношение, которое связывает три неизвестные величины $(V_f, R \ \mbox{i} \ T_v)$:

$$p_v - p_s = \frac{\rho_l V_f^2}{2} - \frac{4}{\pi} \left(\frac{c_p (T_w - T_v)}{L}\right)^2 \frac{\rho_l^2}{\rho_v} \frac{V_f a}{R} + \frac{\sigma}{R}.$$
(9)

Введем три безразмерных критерия:

$$X = \frac{4}{\pi} \left(\frac{c_p (T_w - T_v)}{L} \right)^2 \frac{\rho_l a}{\rho_v \sigma} \sqrt{2\rho_l (p_v - p_s)}, \qquad Y = \frac{\sigma}{R(p_v - p_s)}, \qquad Z = V_f \sqrt{\frac{\rho_l}{2(p_v - p_s)}}.$$

Здесь критерий Y — безразмерная кривизна межфазной границы; критерий X — безразмерная температура межфазной поверхности. Разделив обе части уравнения (9) на $p_v - p_s$, запишем его в безразмерном виде

$$Z^2 - ZXY + Y = 1. (10)$$

Если рассматривать X и Y как независимые переменные, то соотношение (10) определяет безразмерную скорость фронта Z = Z(X, Y). Для того чтобы из (10) определить три неизвестные X, Y, Z, необходимо использовать дополнительное соотношение на основе каких-либо приемлемых предположений.

На фотографиях, полученных в экспериментах [5, 8], видно, что на межфазной поверхности присутствуют возмущения в виде шероховатости или волн. Будем полагать, что скорость фронта испарения нечувствительна к малым флуктуациям кривизны межфазной границы вблизи лобовой точки каверны. Это означает, что при малых вариациях δY значение функции Z(X, Y) не меняется, т. е.

$$\frac{\partial Z}{\partial Y} = 0. \tag{11}$$

Из (10), (11) получаем X = 1 и Z = 1, т. е.

$$V_f = \sqrt{2(p_v - p_s)/\rho_l};\tag{12}$$

$$\frac{4}{\pi} \left(\frac{c_p(T_w - T_v)}{L}\right)^2 \frac{\rho_l a}{\rho_v \sigma} \sqrt{2\rho_l(p_v - p_s)} = 1.$$
(13)

Если подставить в (13) зависимости $p_v(T_v)$, $\rho_v(T_v)$, то из этого уравнения можно найти температуру T_v межфазной поверхности, а затем из (12) определить скорость V_f . Можно рассмотреть также другой вариант замыкающего соотношения. Будем считать безразмерную температуру межфазной поверхности X функцией независимых переменных Y, Z и полагать, что при малых вариациях $\delta Y \partial X / \partial Y = 0$. Отсюда с учетом (10) также следует, что Z = 1 и X = 1, т. е. вновь получаем (12), (13). Заметим, что при этом значение критерия Y остается неопределенным. Соотношения (12), (13) означают, что при любой кривизне межфазной поверхности перепад давления, обусловленный капиллярными силами, компенсируется действием реактивной силы испаряющейся жидкости. При этом температура межфазной границы и скорость ее движения оказываются не зависящими от кривизны.

Расчет скорости движения межфазной поверхности. Считая пар идеальным газом с уравнением состояния $p_v = \rho_v R_g T_v$, зависимость давления насыщенного пара от температуры представим в виде

$$p_v = p_s \exp\left(\frac{L}{R_v T_s} \left(1 - \frac{T_s}{T_v}\right)\right). \tag{14}$$

Рис. 2. Зависимость скорости фронта испарения от перегрева при $\beta = 10$ (1, 3) и $\beta = 20$ (2, 4): 1, 2 — S = 0,01; 3, 4 — S = 0,02

Введем безразмерную температуру межфазной поверхности $\chi = (T_v - T_s)/\Delta T$, где $\Delta T = T_w - T_s$ — величина перегрева. Подставив (14) в (13), запишем уравнение (13) в виде $F(\chi) = C.$ (15)

Здесь

$$F(\chi) = (1-\chi)^2 \frac{1+\alpha\chi}{\tilde{p}(\chi)} \sqrt{\tilde{p}(\chi)-1}, \quad C = \frac{S}{\alpha^2}, \quad S = \frac{\pi}{4} \left(\frac{L}{c_p T_s}\right)^2 \frac{\rho_{vs}}{\rho_l} \frac{\sigma}{a\sqrt{2\rho_l p_s}}, \quad \alpha = \frac{\Delta T}{T_s},$$

 $\tilde{p}(\chi) = \exp(\beta \alpha \chi/(1 + \alpha \chi))$ — безразмерное давление насыщенного пара; $\beta = L/(R_g T)_s$. Поскольку на концах интервала $0 < \chi < 1$ функция $F(\chi)$ обращается в нуль, внутри интервала она достигает максимального значения F_{\max} . При $F_{\max} < C$ уравнение (15) не имеет решения, а при $F_{\max} > C$ имеет два корня χ_1 и χ_2 , которые зависят от безразмерных параметров α , β , S. Так как $C \sim 1/\Delta T^2$, уравнение (15) имеет решения только в том случае, когда величина перегрева ΔT превышает некоторое пороговое значение ΔT_m . С ростом ΔT меньший корень χ_1 уменьшается, а больший корень χ_2 увеличивается (для пороговой величины перегрева $\chi_1 = \chi_2$). Следовательно, из (12) получаем две ветви зависимости скорости межфазной границы от перегрева: $V_1(\alpha)$ и $V_2(\alpha)$. С ростом ΔT функция $V_2(\alpha)$ возрастает, а $V_1(\alpha)$ убывает (для порогового перегрева $V_1 = V_2 = V_m$).

Уравнение (15) решалось численным методом. На рис. 2 приведены расчетные зависимости безразмерной скорости фронта испарения $V_f/\sqrt{2p_s/\rho_l}$ от относительного перегрева $\alpha = \Delta T/T_s$ при различных значениях параметров β , S. Пороговое значение α_m (при $\alpha > \alpha_m$ решение уравнения (15) существует) зависит от значения параметра S и увеличивается с его ростом. Значение параметра β влияет на пороговое значение α_m существенно меньше. При $\beta \leq 10$ и $\alpha \gg \alpha_m$ зависимость $V_2(\alpha)$ близка к линейной. При этом угол наклона кривой $V_2(\alpha)$ определяется значением β , а влияние параметра S незначительно.

Результаты проведенного выше анализа решения уравнения (15) справедливы и в том случае, если зависимости $p_v(T_v)$ и $\rho_v(T_v)$ использовать для реального газа, а также учесть зависимость поверхностного натяжения от температуры. Действительно, соотношение (13) в безразмерных переменных можно записать в виде уравнения (15), где

$$F(\chi) = \frac{(1-\chi)^2}{\tilde{\rho}_v \tilde{\sigma}} \sqrt{\tilde{p}-1}, \qquad C = \frac{\pi}{4} \left(\frac{L}{c_p \Delta T}\right)^2 \frac{\rho_{vs}}{\rho_l} \frac{\sigma_s}{a\sqrt{2\rho_l p_s}},$$

 $\tilde{\rho}_{v}(\chi) = \rho_{v}/\rho_{vs}$ и $\tilde{p}(\chi) = p_{v}/p_{s}$ — монотонно растущие функции; $\tilde{\sigma}(\chi) = \sigma/\sigma_{s}$ — монотонно убывающая функция. Далее в расчетах теплофизические свойства конкретных веществ [15] в зависимости от давления и температуры аппроксимировались гладкими монотонными функциями.

Результаты расчетов. Отличие свойств пара от свойств идеального газа не меняет характера зависимостей $V_1(\alpha)$ и $V_2(\alpha)$, а обусловливает только количественные изменения. Результаты расчетов сравнивались с экспериментальными данными [5, 7] для различных веществ. На рис. 3–5 приведены расчетные зависимости скорости движения межфазной поверхности от температуры жидкости, а также экспериментальные данные для метанола, пропанола, гептана [7] и воды [5]. В экспериментах параметр $\Delta T/\Delta T_m \leq 1.5$, при этом скорость фронта испарения превышала расчетные пороговые значения V_m не более чем в три раза. Для разных жидкостей при различной температуре насыщения результаты измерений согласуются с расчетным значением $V_2(lpha)$ и значительно отличаются от значения $V_1(\alpha)$. Для каждой жидкости с увеличением температуры насыщения увеличивается пороговое значение температуры T_m , при превышении которого наблюдается распространение фронта испарения. Расчетная зависимость $T_m(T_s)$ описывает это явление, но дает несколько завышенные значения T_m по сравнению с экспериментальными. В экспериментах [7] измерения выполнены вблизи пороговых значений перегрева, когда фронт испарения трудно отличить от фронта вскипания. Учитывая разброс экспериментальных данных, соответствие их результатам расчета можно считать удовлетворительным.

На рис. 6 приведены экспериментальные данные для ацетона, бензола, толуола [5] и этанола [5, 7] в достаточно широком диапазоне значений перегрева. Результаты представлены в безразмерных переменных, в качестве масштабов температуры и скорости использованы расчетные пороговые значения ΔT_m и V_m . В этих опытах скорость фронта

Рис. 3. Зависимость $V_f(T_w)$ для метанола при различных значениях T_s : 1–3 — результаты расчета в данной работе (1 — $T_s = 290$ K; 2 — $T_s = 302$ K; 3 — $T_s = 321$ K); 4–6 — экспериментальные данные [7] (4 — $T_s = 289,3$ K; 5 — $T_s = 302,1$ K; 6 — $T_s = 321,3$ K)

Рис. 4. Зависимость $V_f(T_w)$ для пропанола при различных значениях T_s : 1–3 — результаты расчета в данной работе (1 — $T_s = 307$ K; 2 — $T_s = 320$ K; 3 — $T_s = 340$ K); 4–6 — экспериментальные данные [7] (4 — $T_s = 307$ K; 5 — $T_s = 319.9$ K; 6 — $T_s = 339.1$ K)

Рис. 5. Зависимость $V_f(T_w)$ для гептана (1, 2, 4, 5) и воды (3, 6) при различных значениях T_s :

1–3 — результаты расчета в данной работе (1 — $T_s=325$ K; 2 — $T_s=350$ K; 3 — $T_s=300$ K); 4–6 — экспериментальные данные (4 — $T_s=349,8$ К [7]; 5 — $T_s=325,2$ К [7]; 6 — $T_s=294,2\div304,6$ К [5])

Рис. 6. Зависимость скорости фронта испарения от перегрева: 1, 2 — результаты расчета (1 — $\beta = 12$, S = 0.01; 2 — $\beta = 12.7$, S = 0.02); 3–6 — экспериментальные данные (3 — бензол; 4 — ацетон; 5 — толуол; 6 — этанол)

Вещество	<i>d</i> , м	T_s, \mathbf{K}	ΔT , K	Источник
Ацетон	$2,5 \cdot 10^{-3}$	$297 \div 321$	$94 \div 146$	[5]
Бензол	$\begin{array}{c} 2.5\cdot 10^{-3} \\ 1.0\cdot 10^{-4} \end{array}$	$288 \div 318$ $288 \div 289$	$73 \div 174 \\ 187 \div 213$	[5] [5]
Толуол	$1,0\cdot 10^{-4}$	$290 \div 374$	$50 \div 236$	[5]
Этанол	$2,5 \cdot 10^{-3} \\ 1,8 \cdot 10^{-2}$	$295 \div 351 \\ 302$	$72 \div 129 \\ 51 \div 81$	[5] [7]

Режимные параметры экспериментов

превышала значения V_m в десятки раз. Параметры режимов в экспериментах приведены в таблице (d — диаметр нагревателя). Из рис. 6 следует, что для этих веществ экспериментальные точки сгруппированы вблизи одной линии. Этот факт имеет простое объяснение. Все четыре исследованных вещества имеют близкие теплофизические свойства, и во всех опытах изменение температуры насыщения было небольшим. При этом значение параметра $\beta = L/(R_g T)_s$, от которого зависит угол наклона кривой, для данных веществ было примерно одинаковым. На рис. 6 приведены также две расчетные кривые, полученные при $\beta = 12, S = 0,01$ и $\beta = 12,7, S = 0,02$. В диапазоне $\Delta T/\Delta T_m \leq 3$ эти кривые расположены близко друг к другу и большинство экспериментальных точек лежат между ними.

При расчете температуры жидкости в окрестности лобовой точки каверны предполагалось, что $\text{Pe} \gg 1$, а межфазная поверхность считалась непроницаемой. С использованием уравнения (8) можно оценить отношение скоростей жидкости на межфазной границе и на "бесконечности":

$$\frac{u_l}{V_f} = \frac{j}{\rho_l V_f} \approx \frac{c_p \,\Delta T}{L} \,\frac{1}{\sqrt{\mathrm{Pe}}}.$$

В экспериментах [5, 7] для значений перегрева выполнялось неравенство $c_p \Delta T/L \leq 0.5$. Если предположить, что радиус кривизны в лобовой точке паровой каверны составляет не менее 10^{-6} м, то для значений $V_f \approx 10$ м/с, полученных в эксперименте, имеем $\text{Pe} \geq 100$, при этом $u_l/V_f \leq 0.05$. Таким образом, сделанные предположения приемлемы для условий экспериментов. Следует отметить, что экспериментальные данные [5, 7] получены для нагревателей различного диаметра и различных материалов стенки как при стационарном нагреве, так и при ступенчатом набросе мощности. Толщина перегретого слоя жидкости для различных нагревателей также существенно различалась. Тем не менее экспериментальные данные для различных веществ в широком диапазоне значений перегрева и скорости межфазной поверхности удовлетворительно согласуются с расчетными, что свидетельствует об адекватности данной модели.

Заключение. Разработана модель стационарного распространения межфазной поверхности в метастабильной жидкости в предположении, что скорость распространения не зависит от кривизны поверхности в лобовой точке паровой каверны. Температура межфазной поверхности и скорость ее распространения определяются только свойствами перегретой жидкости и насыщенного пара. Показано, что решение существует только в том случае, если температура метастабильной жидкости больше некоторого порогового значения. Зависимость $V_2(\alpha)$ скорости межфазной границы от перегрева также имеет пороговый характер.

ЛИТЕРАТУРА

- Van Stralen S. J. D. Heat transfer to boiling binary liquid mixtures at atmospheric and subatmospheric pressures // Chem. Engng Sci. 1956. V. 5. P. 290–296.
- Lienhard J. H., Schrock V. E. The effect of pressure, geometry and the equation of state upon the peak and minimum boiling heat flux // Trans. ASME. Ser. C. Heat Transfer. 1963. V. 85, N 3. P. 261–272.
- 3. Мамонтова Н. Н. Кипение некоторых жидкостей при пониженных давлениях // ПМТФ. 1966. № 3. С. 140–144.
- Авксентюк Б. П., Бобрович Г. И., Кутателадзе С. С., Москвичева В. Н. О вырождении режима пузырькового кипения в условиях свободной конвекции // ПМТФ. 1972. № 1. С. 69–73.
- 5. Авксентюк Б. П., Овчинников В. В., Плотников В. Я. Самоподдерживающийся фронт вскипания и третий кризис кипения // Нестационарные процессы в двухфазных потоках: Сб. науч. тр. Новосибирск: Ин-т теплофизики СО АН СССР, 1989. С. 52–68.
- Zhukov S. A., Barelko V. V. Dynamic and structural aspects of the processes of single-phase convective heat transfer, metastable regime decay and bubble boiling formation // Intern. J. Heat Mass Transfer. 1992. V. 35, N 4. P. 759–775.
- Fauser J., Mitrovic J. Some features of boiling fronts on heated surfaces // Heat Transfer 1998: Proc. of the 11th Intern. heat transfer conf., Kyongju (Korea), 23–28 Aug. 1998. Philadelphia: Taylor & Francis Inc., 1998. V. 2. P. 377–382.
- 8. Авксентюк Б. П., Овчинников В. В. Исследование динамики парообразования при давлении больше атмосферного // ПМТФ. 1996. Т. 37, № 6. С. 91–98.

- Okuyama K., Iida Y. Transient boiling heat transfer characteristics of nitrogen (bubble behavior and heat transfer rate at stepwise heat generation) // Intern. J. Heat Mass Transfer. 1990. V. 33, N 10. P. 2065–2071.
- Okuyama K., Kozawa Y., Inoue A., et al. Transient boiling heat transfer characteristics of R113 at large stepwise heat generation // Intern. J. Heat Mass Transfer. 1988. V. 31, N 10. P. 2161–2174.
- Pavlenko A. N., Chekhovich V. Yu. Heat transfer crisis at transient heat release // Russ. J. Engng Thermophys. 1991. V. 1, N 1. P. 73–92.
- Avksentyuk B. P. Nonequilibrium model of an evaporation front // Russ. J. Engng Thermophys. 1995. V. 5, N 1. P. 1–9.
- 13. Павленко А. Н., Лель В. В. Приближенная расчетная модель самоподдерживающегося фронта испарения // Теплофизика и аэромеханика. 1999. Т. 6, № 1. С. 111–124.
- 14. Нигматулин Р. И. Динамика многофазных сред. М.: Наука, 1987. Т. 1.
- 15. Heat exchanger design handbook. V. 5: Physical properties. N. Y.: Hemisphere Publ. Co., 1983.

Поступила в редакцию 4/V 2007 г.