2016. Том 57, № 8

Ноябрь – декабрь

C. 1606 – 1612

УДК 541.68

БАРИЧЕСКИЙ ФАЗОВЫЙ ПЕРЕХОД ЦИРКОН—МОНАЦИТ В Y_{1-x}La_xPO₄: РАСЧЕТЫ ИЗ ПЕРВЫХ ПРИНЦИПОВ

И.Р. Шеин, Е.В. Шалаева

Институт химии твердого тела УрО РАН, Екатеринбург, Россия E-mail: shein@ihim.uran.ru

Статья поступила 7 декабря 2015 г.

Методом теории функционала электронной плотности исследованы барические фазовые переходы циркон—монацит в допированном ортофосфате иттрия $Y_{1-x}La_xPO_4$ для x = 0, 0,0625 и 0,125. Найдены давления фазового перехода циркон—монацит, рассчитаны модули упругости, универсальный коэффициент анизотропии упругости. Показано, что с увеличением концентрации лантана в $Y_{1-x}La_xPO_4$ давление фазового перехода циркон \rightarrow монацит растет, что, в соответствии с уравнением состояния, при снижении модуля упругости связывается с уменьшением критического объема. Повышение стабильности допированной фазы циркона рассматривается как результат более значительного по сравнению с YPO₄ роста анизотропии и искажений полиэдров REO₈ и цепочек RE— O—P, обнаруженных для оптимизированных структур при критических объемах.

DOI: 10.15372/JSC20160804

Ключевые слова: ортофосфаты LaPO₄—YPO₄, *ab initio* расчеты, барические превращения, фазовая стабильность.

введение

Для ортофосфатов редкоземельных металлов (P3M) со структурой монацита ($P2_1/n$) и циркона ($I4_1/amd$) особую актуальность сохраняют вопросы превращений и допирования этих фаз, в том числе при высоких давлениях [1, 2], благодаря их интересным оптическим и люминесцентным свойствам [3, 4], а также широкому распространению в природных минералах [1].

Известно, что при нормальных условиях в ряду ортофосфатов REPO₄ (RE — редкоземельный металл), для которого последовательно уменьшается радиус иона P3M, фазы от LaPO₄ до GdPO₄ имеют решетку монацита, а фазы от TbPO₄ до LuPO₄ (включая YPO₄) — решетку циркона [5, 6]. Переход от цирконовой к монацитовой структуре сопровождается уменьшением объема элементарной ячейки, усилением анизотропии и искажений в полиэдрах REO₈ и PO₄. При высоких давлениях, согласно недавним экспериментальным работам, стабильность фаз в этом ряду ортофосфатов существенно меняется, ортофосфаты от TbPO₄ до ErPO₄, а также YPO₄, который по кристаллохимическим характеристикам близок к ErPO₄, испытывают превращение циркон—монацит [7—10]. В результате до давлений порядка 26 ГПа в ряду ортофосфатов P3M наиболее стабильной является монацитовая структура, за исключением YbPO₄ и LuPO₄, для которых идет превращение циркон—шеелит [11]. Учитывая, что при высоких давлениях поведение этих фаз определяется в основном более легко сжимаемыми полиэдрами REO₈ [9], встает вопрос о влиянии взаимного допирования ортофосфатов этого ряда на фазовую стабильность решетки монацита, в том числе для YPO₄.

[©] Шеин И.Р., Шалаева Е.В., 2016

Для ряда допантов-лантаноидов с катионными радиусами $R_{P3M}/R_{Y} > 1$ влияние допирования на барический фазовый переход циркон-монацит в УРО4 можно спрогнозировать для элементов (тербий, гадолиний), чьи ортофосфаты располагаются вблизи границы фазовой стабильности соединений со структурой циркона. Как следует из работ [7—10, 12], допирование тербием и гадолинием ($R_{\rm Tb}/R_{\rm Y} \approx 1.02, R_{\rm Gd}/R_{\rm Y} \approx 1.05$) должно снижать давление этого фазового превращения: так, для TbPO₄ это значение составляет 9 ГПа [8, 10], тогда как для YPO₄ — 15,8 ГПа [7,9]. В свою очередь, трудно предсказать результат допирования элементами начала ряда, лантаном и церием, для которых соотношение катионных радиусов $R_{\text{La}}/R_{\text{Y}}$ достигает значений 1,19, и решетка монацита является стабильной до 26 ГПа [8]. Экспериментальных результатов на синтетических образцах нет, данные для допированного УРО4 в природных метаморфических породах относятся к давлениям ниже 1 ГПа [6, 3]. К настоящему времени только для структуры типа шеелита предложена эмпирическая формула, связывающая давление фазового перехода и кристаллохимические параметры структур [14]. Вместе с тем фазовая стабильность при высоких давлениях ортофосфатов РЗМ, как продемонстрировано недавно, хорошо описывается теоретически с использованием *ab initio* методов [7-11]. Кроме того, данные оптимизированных параметров ячеек, полученные первопринципными расчетами, позволяют промоделировать поведение кристаллохимических характеристик структур при высоких давлениях [15].

В настоящей работе первопринципными методами выполнено исследование стабильности монацитовой и циркониевой структурной модификации при высоких давлениях для допированного $Y_{1-x}La_xPO_4$ (x = 0,0625 и 0,125) и недопированного ортофосфата иттрия. С использованием уравнения состояния Берча—Мурнагана определены объемные модули, зависимости энергия системы—давление, давление—объем для обеих структур, оценены давление и критический объем ($V_{\rm sp}$) фазового перехода циркон \rightarrow монацит. Показано, что с увеличением концентрации лантана в $Y_{1-x}La_xPO_4$ давление фазового перехода циркон \rightarrow монацит системы растет, что, в соответствии с уравнением состояния, при снижении модуля упругости связывается с уменьшением критического объема. Результаты обсуждаются с использованием оценок анизотропии сжимаемости решетки циркония, анизотропии полиэдров REO₈ и цепочек RE—O—P, разброса межатомных расстояний, определенных для модельных оптимизированных структур циркона при критических объемах.

МЕТОДИКА РАСЧЕТА И СТРУКТУРНЫЕ МОДЕЛИ

Расчеты полной энергии и оптимизация структуры были проведены методом *ab initio* псевдопотенциалов — проекционных присоединенных волн VASP-PAW (пакет VASP, Vienna Ab-initio Simulation Package) [16, 17] с использованием градиентной аппроксимации для обменно-корреляционного функционала [18]. Интегрирование в зоне Бриллюэна проводили по $4\times4\times4$ *k*-точкам, кинетическая энергия обрезания (cutoff) была выбрана равной 500 эВ. Для расчета атомных и структурных релаксаций использовали градиентный метод с условием сходимости по силам ~0,001 эВ/Å. Расчеты проводили при фиксированных объемах и симметрии элементарной ячейки монацита и циркона с оптимизацией параметров кристаллических решеток и позиций атомов в них. Интерполяцию зависимостей полной энергии решетки от объема и определение давления проводили в рамках уравнений состояния Берча—Мурнагана третьего порядка:

$$P(V) = \frac{3B_0}{2} \left[\left(\frac{V_0}{V} \right)^{7/3} - \left(\frac{V_0}{V} \right)^{5/3} \right] \times \left[1 + \frac{3}{4} (B'_0 - 4) \left[\left(\frac{V_0}{V} \right)^{2/3} - 1 \right] \right], \tag{1}$$

$$E(V) = E_0 + \frac{9V_0B_0}{16} \left\{ \left[\left(\frac{V_0}{V}\right)^{2/3} - 1 \right]^3 B'_0 + \left[\left(\frac{V_0}{V}\right)^{2/3} - 1 \right]^2 \left[6 - 4 \left(\frac{V_0}{V}\right)^{2/3} \right] \right\},\tag{2}$$

где B₀, B'₀, V₀ — это объемный модуль упругости, производная модуля упругости (dB₀/dP)

Рис. 1. Зависимости полной энергии монацитовой и цирконовой фазы YPO₄ (*a*) и Y_{0.875}La_{0,125}PO₄ (*б*) от давления

и объем решетки в основном состоянии [19, 20]. Методика позволяет исследовать стабильность фаз при высоких давлениях и определить наличие барических фазовых переходов в кристаллических соединениях. Допированные ортофосфаты иттрия моделировались тетрагональными и моноклинными суперъячейками, содержащими 8 и 16 формульных единиц МРО₄, отвечающими составам Y_{0,875}La_{0,125}PO₄ и Y_{0,9375}La_{0,0625}PO₄.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты моделирования стабильности решеток циркона и монацита в недопированном (Y₃PO₄) и допированном (Y_{0,875}La_{0,125}PO₄) ортофосфате иттрия в зависимости от давления представлены на рис. 1, интерполяцию выполняли с использованием уравнения состояния Берча— Мурнагана (уравнения 1 и 2). В табл. 1 приведены рассчитанные значения B_0 , B'_0 , V_0 и оптимизированные параметры модельных элементарных ячеек. Для недопированного ортофосфата иттрия рассчитанное значение давления фазового перехода циркон \rightarrow монацит составляет 17,5 ГПа и близко к экспериментальным величинам (14,6 ГПа и 19,7 ГПа), приведенным в работах [7,9]. В свою очередь, зависимости полной энергии от объема и давления для монацитовой и цирконовой фазы YPO₄ демонстрируют хорошее согласие с данными, полученными методом VASP с обменно-корреляционным функционалом PB91 [9]. Расчеты, выполненные для допированного ортофосфата иттрия (см. рис. 1, δ), показывают, что с ростом концентрации лантана в решетке YPO₄ до 12,5 ат.% фаза циркона остается стабильной до более высоких давлений по сравнению с недопированным ортофосфатом. Значения критического давления, при котором происходит фазовое превращение циркон \rightarrow монацит, последовательно растут от 24,3 ГПа для x = 0,0625 до 26 ГПа для x = 0,125.

Рассмотрим поведение основных факторов (B_0 и $V_0/V_{\text{кр}}$, B'_0), определяющих в соответствии с уравнением Берча—Мурнагана изменение давления фазового перехода. Из зависимостей V—P (рис. 2) видно, что в допированном состоянии с ростом объема элементарной ячейки V_0 (см. табл. 1) критический объем фазы циркона, испытывающей превращение, снижается, а соотношение $V_0/V_{\text{кр}}$ растет: $V_0/V_{\text{кр}} = 1,10$ (YPO₄) и $V_0/V_{\text{кр}} = 1,15$ (Y_{0,875}La_{0,125}PO₄).

Таблица 1

Параметры оптимизированных ячеек и модули упругости B₀ с производными B'₀, оцененные из аппроксимации зависимости (E—V) уравнением состояния Берча—Мурнагана

Фаза	$V_0, Å^3$	<i>B</i> ₀ , ГПа	B'_0	<i>a</i> ₀ , Å	$c_0, Å$	a_0/c_0
YPO ₄	285,58	129	5,43	6,8786	6,0358	0,878
Y _{0,875} La _{0,125} PO ₄	289,09	120	5,80	6,8636	6,1365	0,894

Рис. 2. Зависимости объема элементарной ячейки монацитовой и цирконовой фазы от давления для YPO₄ (*a*) и Y_{0,875}La_{0,125}PO₄ (*б*)

Допирование сопровождается снижением объемного модуля упругости B_0 и ростом его производной по давлению B'_0 . Снижение модуля упругости при введении атома-допанта с большим ионным радиусом и, следовательно, большими межатомными расстояниями RE—O полностью согласуется с эмпирической формулой, используемой и для силикатов [21] и в некоторых случаях для ортофосфатов [9]:

$$B_0 \sim \frac{Z_{\rm M}}{d_{\rm M}^3 - \Omega},\tag{3}$$

где $Z_{\rm M}$ — заряд катиона металла; $d_{\rm M}$ —о — среднее межатомное расстояние металл—кислород. Это снижение также согласуется с тенденцией в изменении экспериментальных и рассчитанных модулей упругости в ряду ортофосфатов с циркониевой решеткой и с возрастающим радиусом катиона P3M ($R_{\rm Sc}^{3+} < R_{\rm Y}^{3+} < R_{\rm Tb}^{3+}$), а именно, их последовательным снижением: ($B_0({\rm ScPO}_4) = 183$ ГПа, $B_0({\rm YPO}_4) = 165,5$ ГПа, $B_0({\rm TbPO}_4) = 128$ ГПа) [8, 9]. Важно, что для указанных ортофосфатов снижение модуля упругости сопровождается и последовательным снижением соотношения $V_0/V_{\rm kp}$ при росте V_0 и $V_{\rm kp}$. По данным первопринципных расчетов [8, 9], $V_0/V_{\rm kp}({\rm ScPO}_4) = 1,13, V_0/V_{\rm kp}({\rm YPO}_4) = 1,09$ и $V_0/V_{\rm kp}({\rm TbPO}_4) = 1,06$. Таким образом, в соответствии с уравнением Берча—Мурнагана оба фактора, и модуль упругости (B_0), и соотношение $V_0/V_{\rm kp}$, приводят к наблюдаемому снижению давления фазового перехода циркониевой фазы в ряду ортофосфатов с возрастающим радиусом катиона РЗМ ($R_{\rm Sc}^{3+} < R_{\rm Y}^{3+} < R_{\rm Tb}^{3+}$). В отличие от указанного ряда стабильных ортофосфатов с решеткой циркона при допировании лантаном ортофосфата иттрия ($R_{\rm Y}^{3+} < R_{\rm La}^{3+}$) изменение этих факторов разнонаправленно, и заметный рост соотношения $V_0/V_{\rm kp}$ является определяющим для повышения давления фазового перехода циркониевой соотношения $V_0/V_{\rm kp}$ вляется определяющим для повышения давления фазового перехода циркониевой разового перехода циркон

В поведении соотношения $V_0/V_{\rm kp}$ при допировании лантаном ортофосфата иттрия, когда возрастает среднее межатомное расстояние и V_0 , снижение критического объема, как отмечено выше, является нехарактерным для стабильных ортофосфатов. Проведем сравнение характеристик сжимаемости и как изменяются кристаллохимические параметры с ростом давления для недопированного (YPO₄) и допированного (Y_{0,875}La_{0,125}PO₄) состояния. Первое, согласно данным для модельных оптимизированных структур, сжимаемость решетки циркона в значительной степени обеспечивается сжимаемостью вдоль осей тетрагональной решетки *a*, которая заметно выше, чем сжимаемость в направлении оси *c*. Вблизи фазового перехода для цирконовой решетки относительное изменение параметров составляет $\frac{\Delta a}{a} = -0,0219$, $\frac{\Delta c}{c} = -0,0117$ ($\Delta V/V_0 = -0,055$) в недопированном и $\frac{\Delta a}{a} = -0,032$, $\frac{\Delta c}{c} = -0,0214$ ($\Delta V/V_0 = -0,083$) в допиро-

ванном состоянии. Наши оценки модулей упругости *C_{ij}* и универсального индекса упругой анизотропии *A^U* кристаллической структуры, выполненные в соответствии с формулой:

Рис. 3. Схема структуры циркона с PO₄-тетраэдрами первой (1) и второй (2) координационной сферы атома Y (*a*). Полиэдр YO₈; отмечены связи Y—O с максимальным (d_1) и минимальным (d_2) вкладом по оси *с* (δ)

$$4^{U} = 5\frac{G^{V}}{C^{R}} + \frac{K^{V}}{K^{R}} - 6 \ge 0,$$
(4)

где G^V , G^R — модули сдвига в аппроксимации Фойгта и Реусса; K^V , K^R — объемные модули в аппроксимации Фойгта и Реусса [22], дает значение A^U для решетки циркона YPO₄ 1,12, что характеризует ее как высокоанизотропную с точки зрения упругих свойств. Полученные данные полностью соответствуют изменению этих параметров, наблюдаемому для YPO₄ экспериментально [7]. Второе, для обоих состояний отмеченный эффект в модельных оптимизированных структурах сопровождается анизотропией сжимаемости полиэдров REO₈ в направлении связей с межатомными расстояниями с большим ($d_1(\text{RE}$ —O)) и меньшим ($d_2(\text{RE}$ —O)) вкладом по оси c. Кроме того, наблюдается анизотропия сжимаемости в направлении связей RE—P с различным вкладом по оси c (рис. 3, табл. 2). Для межатомных связей Y—Y в первой и второй координационных сферах анизотропия сжимаемости близка к нулевой (см. табл. 2). В результате, для циркониевой фазы YPO₄ при приближении к критическому давлению растут значения отношения $d_1(Y$ —O)/ $d_2(Y$ —O) (от 1,038 для нормального давления до 1,058 для давления фазового перехода) и усиливается анизотропия полиэдров Y—O и цепочек связей Y—O—P

Таблица 2

		. 1	1				
Фаза	$\frac{\Delta d_1(\text{RE}-\text{O})}{d_1(\text{RE}-\text{O})}$	$\frac{\Delta d_2(\text{RE}-\text{O})}{d_2(\text{RE}-\text{O})}$	$\frac{\Delta d(P-O)}{d(P-O)}$	$\frac{\Delta d(\text{RE}-\text{RE})}{d(\text{RE}-\text{RE})}$	$\frac{\Delta d(\text{RE}-P)}{d(\text{RE}-P)}$	$\frac{\Delta d(\text{RE}-\text{RE})}{d(\text{RE}-\text{RE})}$	$\frac{\Delta d(\text{RE}-P)}{d(\text{RE}-P)}$
	1 коорд. сфера					2 коорд. сфера	
YPO ₄	-0,0102	-0,029	-0,0089	-0,0202	-0,0118	-0,0191	-0,0202
	$\left(\frac{-0,024}{2,383}\right)$	$\left(\frac{-0,067}{2,296}\right)$	$\left(\frac{-0,0137}{1,547}\right)$	$\left(\frac{-0,076}{3,756}\right)$	$\left(\frac{-0,035}{3,018}\right)$	$\left(\frac{-0,109}{5,724}\right)$	$\left(\frac{-0,076}{3,756}\right)$
Y _{0,875} La _{0,125} PO ₄ *	-0,0093	-0,032	-0,015	-0,0247	-0,0127	-0,0215	-0,0202
	$\left(\frac{-0,023}{2,497}\right)$	$\left(\frac{-0,075}{2,308}\right)$	$\left(\frac{-0,024}{1,524}\right)$	$\left(\frac{-0,093}{3,765}\right)$	$\left(\frac{-0,0127}{3,068}\right)$	$\left(\frac{-0,124}{5,749}\right)$	$\left(\frac{-0,088}{3,778}\right)$

Относительные изменения межатомных расстояний для структур циркона $YPO_4 u Y_{0,875}La_{0,125}PO_4$ при критическом объеме $V_{\rm kp}$

^{*} Для модельной структуры Y_{0,875}La_{0,125}PO₄ приведены усредненные межатомные расстояния.

Таблица З

Фаза	<i>d</i> ₁ (Y—O), Å	<i>d</i> ₂ (Y—O), Å	<i>d</i> ₁ (Р—О), Å	<i>d</i> ₂ (Р—О), Å
	(число связей)	(число связей)	(число связей)	(число связей)
YPO ₄	2,358(4)	2,229(4)	1,533(4)	1,469(2)
Y _{0,875} La _{0,125} PO ₄	2,425(2)	2,216(2)	1,532(2)	
	2,438(2)	2,211(2)		

Межатомные расстояния в координационных полиэдрах YO_8 и PO_4 для модельных структур циркона YPO_4 , $Y_{0,875}La_{0,125}PO_4$ при критическом объеме $V_{\rm kp}$

с d₁(Y—O) и d₂(Y—O). Значения ∆[d₁(Y—O)/d(P—O)] составляют (-0,002), тогда как $\Delta [d_2(Y-O)/d(P-O)] = -0,026$. Обнаруженный теоретически эффект на модельных структурах отражает тенденцию в изменении межатомных расстояний RE—О и Р—О при переходе из циркона в монацит. Для монацитовой структуры характерны и больший разброс значений и большее число межатомных расстояний RE—О и Р—О по сравнению с решеткой циркона [5]. Для критического объема с $\Delta V/V_0 = -0.055$) степень анизотропии полиздров REO₈ и связей RE—О—Р достигает максимально возможных значений для стабильной фазы циркона. В сравнении с недопированным цирконом YPO₄, для допированной фазы Y_{0.875}La_{0.125}PO₄, обладающей меньшим критическим объемом, все усредненные характеристики сжимаемости ($\Delta d/d$) и анизотропия сжимаемости полиэдров REO₈ и цепочек RE—О—Р выше. Анализ атомных позиций модельных оптимизированных решеток показывает, что в случае Y_{0.875}La_{0.125}PO₄ меньший критический объем и более высокая анизотропия сжимаемости полиэдров REO₈ и цепочек RE— О-Р имеет место на фоне искажений в полиэдрах YO₈, ближайших к лантану, а также в полиэдрах РО₄. Искажения связаны с дополнительным разбросом значений межатомных расстояний (табл. 3). Подобные искажения присущи монацитовой фазе высокого давления, для которой они более значительны. Наличие подобных искажений может рассматриваться как причина меньшего критического объема структуры и ее устойчивости до больших критических давлений по сравнению с недопированной решеткой УРО₄.

выводы

В работе *ab initio* методом исследована фазовая стабильность при высоких давлениях цирконовой и монацитовой структуры недопированного и допированного ортофосфата $Y_{1-x}La_xPO_4$ для x = 0,0625 и 0,0125. Определены давления фазового перехода циркон—монацит, зависимости энергия—давление, давление—объем, рассчитаны модули упругости, универсальный коэффициент анизотропии упругости, для модельных оптимизированных структур циркона оценены анизотропии сжимаемости решетки и анизотропия полиэдров REO₈, PO₄ при критическом объеме $V_{\kappa p}$.

Установлено, что допирование лантаном решетки циркона приводит к повышению объема элементарной ячейки V_0 , снижению модуля упругости B_0 по сравнению с недопированным ортофосфатом YPO₄, что характерно для введения катиона с большим радиусом. Давление фазового перехода циркон—монацит растет для допированных фаз. В рамках уравнения Берча— Мурнагана повышение давления перехода связывается с ростом соотношения $V_0/V_{\rm kp}$ и снижением расчетного критического объема элементарной ячейки $V_{\rm kp}$ модельной фазы циркона.

Анализ кристаллохимических характеристик оптимизированных решеток циркона при критическом объеме показал, что для недопированного и допированного ортофосфатов сжимаемость структуры обеспечивается в значительной степени вдоль осей a, что сопровождается ростом анизотропии полиэдров REO₈, а также цепочек RE—O—P. Обнаруженный эффект отражает тенденцию в изменении межатомных расстояний RE—O, P—O при фазовом переходе циркон—монацит. Для допированного $Y_{0,875}La_{0,125}PO_4$ рост анизотропии сопровождается дополнительным искажением полиэдров REO₈ и PO₄ с большим разбросом межатомных расстояний, что рассматривается в качестве основной причины снижения критического объема $V_{\rm kp}$ цирконовой фазы и повышения ее стабильности до более высоких значений давления.

Работа поддержана Междисциплинарным проектом УрО РАН № 12-М-235-2063.

СПИСОК ЛИТЕРАТУРЫ

- 1. Clavier N., Podor R., Dacheux N. // J. Europ. Ceramic Soc. 2011. 31, N 6. P. 941.
- 2. Finch R.J., Hanchar J.M. // Rev. Mineral. Geochem. 2003. 51. P. 1 25.
- 3. Kolitsch U., Holtstam D. // Europ. J. Mineral. 2004. 16, N 1. P. 117.
- 4. Kaminskii A., Bettinelli M., Speghini A. et al. // Laser Phys. Lett. 2008. 5, N 5. P. 367.
- 5. Ni Y., Hughes J.M., Mariano A.N. // Am. Mineral. 1995. 80, N 1-2. P. 21.
- 6. Gratz R., Heinrich W. // Am. Mineral. 1997. 82, N 7-8. P. 772.
- 7. Lacomba-Perales R., Errandonea D., Meng Y. et al. // Phys. Rev. B. 2010. 81, N 6. P. 064113.
- 8. Lopez-Solano J., Rodriguez-Hernandez P., Munoz A. et al. // Phys. Rev. B. 2010. 81, N 14. P. 144126.
- 9. Zhang F.X., Wang J.W., Lang M. et al. // Phys. Rev. B. 2009. 80, N 18. P. 184114.
- 10. Tatsi A., Stavrou E., Boulmetis Y.C. et al. // J. Phys.: Condens. Matter. 2008. 20, N 42. P. 425216.
- 11. Zhang F.X., Lang M., Ewing R.C. et al. // J. Solid State Chem. 2008. 181, N 10. P. 2633.
- 12. Ushakov S.V., Helean K.B., Navrotsky A. et al. // J. Mater. Res. 2001. 16, N 9. P. 2623.
- 13. Forster H.-J. // Am. Mineral. 1998. 83. P. 1302 1315.
- 14. Errandonea D., Manjon F.J. // Prog. Mater. Sci. 2008. 53, N 11-12. P. 711 773.
- 15. Li L., Yu W., Jin C. // Phys. Rev. B. 2006. 73, N 11. P. 174115.
- 16. Kresse G., Joubert D. // Phys. Rev. B. 1999. 59, N 3. P. 1758.
- 17. Kresse G., Furthmuller J. // Phys. Rev. B. 1996. 54, N 16. P. 11169.
- 18. Perdew J.P., Burke S., Ernzerhof M. // Phys. Rev. Lett. 1996. 78, N 7. P. 3865.
- 19. Murnaghan F.D. // Proceed. National Academy of Scie. 1944. 30, N 2. P. 244 247.
- 20. Birch F. // Phys. Rev. B. 1947. 71, N 6. P. 809.
- 21. Errandonea D., Pellicer-Porres J., Manjon F.J. et al. // Phys. Rev. B. 2005. 72, N 17. P. 174106.
- 22. Ranganathan S.I., Ostoja-Starzewski M. // Phys. Rev. Lett. 2008. 101, N 5. P. 055504.