2012. Том 53, № 1

Январь – февраль

C. 110 – 116

УДК 548.737:546.863'161

КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ ТЕТРАФТОРАНТИМОНАТОВ(III) МОНО- И ДИПРОТОНИРОВАННОГО КАТИОНОВ 3-АМИНО-1,2,4-ТРИАЗОЛИЯ

© 2012 А.А. Удовенко*, Н.В. Макаренко, Р.Л. Давидович, Л.А. Земнухова, Е.В. Ковалева

Учреждение Российской академии наук Институт химии ДВО РАН, Владивосток

Статья поступила 26 января 2011 г.

Методом рентгеноструктурного анализа определены кристаллические структуры тетрафторантимонатов(III) моно- и дипротонированного катионов 3-амино-1,2,4-триазолия состава (C₂H₅N₄)SbF₄ (I) (моноклинная сингония: a = 4,7723(6), b = 19,643(2), c = 7,6974(9) Å, $\beta = 97,239(2)^{\circ}$, Z = 4, пр. гр. Cc) и (C₂H₆N₄)(SbF₄)₂ (II) (моноклинная сингония: a = 4,7617(3), b = 15,512(1), c = 7,4365(5) Å, $\beta = 107,706(1)^{\circ}$, Z = 2, пр. гр. $P2_1/n$). Структура I образована из комплексных анионов [SbF₄]⁻ и одновалентных катионов (C₂H₅N₄)⁺; структура II — из аналогичного аниона и двухвалентного катиона (C₂H₆N₄)²⁺ 3-амино-1,2,4-триазолия. Посредством слабых связей Sb…F анионы в структуре объединяются в полимерные слои [SbF₄]ⁿ, которые водородными связями типа N—H…F объединяются в трехмерный каркас. Впервые установлено образование дипротонированного катиона 3-амино-1,2,4-триазолия — (C₂H₆N₄)²⁺, выявленного в кристаллической структуре II.

Ключевые слова: рентгеноструктурный анализ, кристаллическая структура, тетрафторантимонат(III), 3-амино-1,2,4-триазолий, водородная связь.

В [1] описан синтез ряда фторантимонатов(III) протонированных катионов 1,2,4-триазола и его 3-амино- и 4-аминопроизводными. На основании исследования их ИК и ЯКР ^{121,123}Sb спектров сделаны некоторые заключения о строении синтезированных веществ. Определена кристаллическая структура тетрафторантимоната(III) 4-амино-1,2,4-триазолия (($C_2H_5N_4$)SbF₄) [2], образованная из катионов ($C_2H_5N_4$)⁺ и изолированных комплексных анионов [SbF₄]⁻, полиздры атома Sb в которых имеют конфигурацию ψ -тригональной бипирамиды SbF₄E (E — стерео-химически активная неподеленная электронная пара катиона Sb³⁺). С целью определения влияния положения амино-заместителя в гетероцикле триазола на строение комплексных анионов [SbF₄]⁻ в структуре тетрафторантимоната(III) определена кристаллическая структура ($C_2H_5N_4$)SbF₄ (I) с монопротонированным катионом 3-амино-1,2,4-триазолия, синтез которого описан в [1].

В работе также исследована кристаллическая структура впервые синтезированного тетрафторантимоната(III) дипротонированного катиона 3-амино-1,2,4-триазолия, $(C_2H_6N_4)(SbF_4)_2$ (II).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. Исходными веществами для синтеза фторантимонатов(III) 3-амино-1,2,4-триазолия служили SbF₃, 3-амино-1,2,4-триазол (3-AT) и фтористо-водородная кислота. Взаимодействие SbF₃ и 3-AT исследовали в водном растворе препаративным путем в интервале мольных отношений компонентов 0,5:1—1:1. Синтез соединений проводили следующим образом: навеску SbF₃ растворяли в платиновой чашке в H₂O до полного растворения. Затем растворяли

^{*} E-mail: udovenko@ich.dvo.ru

111

Таблица 1

Пристилосрифи неские бита		то тепал структур 1 и п
Формула	(C ₂ H ₅ N ₄)SbF ₄ (I)	$(C_2H_6N_4)(SbF_4)_2$ (II)
Молекулярная масса	282,85	481,61
Температура, К	297(2)	297(2)
Длина волны, Å	MoK_{α} (0,71073)	MoK_{α} (0,71073)
Сингония	Моноклинная	Моноклинная
Пространственная группа	Cc	$P2_1/n$
<i>a</i> , <i>b</i> , <i>c</i> , Å	4,7723(6), 19,643(2), 7,6974(9)	4,7617(3), 15,512(1), 7,4365(5)
β, град.	97,239(2)	107,706(1)
$V, Å^3$	715, 8(2)	523,26(6)
Ζ	4	2
$ρ_{\rm bbiq}$, γ/cm ³	2,625	3,057
μ, мм ⁻¹	3,873	5,258
F(000)	528	440
Размеры кристалла, мм	0,18×0,10×0,02	0,25×0,20×0,15
Область сбора данных по θ , град.	3,38—30,10	2,63—31,77
Интервалы индексов отражений	$-6 \le h \le 6, -27 \le k \le 27,$	$-6 \le h \le 7, -22 \le k \le 22,$
	$-10 \le l \le 10$	$-10 \le l \le 10$
Измерено отражений	3908	5914
Независимых отражений	1900 (R(int) = 0.0271)	1683 (R(int) = 0.0184)
Отражений с $I > 2\sigma(I)$	1652	1553
Переменных уточнения	101	101
S	1,066	1,043
R -факторы по $F^2 > 2\sigma(F^2)$	R1 = 0,0289, wR2 = 0,0622	R1 = 0,0177, wR2 = 0,0431
<i>R</i> -факторы по всем отражениям	R1 = 0,0385, wR2 = 0,0670	R1 = 0,0197, wR2 = 0,0443
Остаточная эл. плотность (max)/(min), e/Å ³	1,104/0,998	0,762/-0,569

Кристаллографические данные, параметры эксперимента и уточнения структур I и II

в воде навеску 3-АТ и раствор подкисляли фтороводородной кислотой до pH = 3-4,5. Полученные после сливания растворы упаривали на водяной бане до ~1/3 первоначального объема и оставляли для медленной кристаллизации. Выпавшие кристаллические осадки отделяли от маточного раствора фильтрованием под вакуумом и сушили на воздухе до постоянной массы. Индивидуальность полученных веществ устанавливали методами химического, рентгенофазового и ИК спектроскопического анализов.

Соединение ($C_2N_4H_5$)SbF₄ получено в интервале мольных отношений компонентов 1:1 и pH раствора 4,5, а соединение ($C_2N_4H_6$)(SbF₄)₂ образуется при мольном отношении компонентов 0,5:1 и pH раствора 3.

Рентгеноструктурный анализ. Бесцветные прозрачные кристаллы I и II имеют форму тонких пластинок и ромбоэдрических призм соответственно. Рентгеновский эксперимент выполнен при 297 К на дифрактометре SMART-1000 ССD фирмы Bruker. Кристаллы I и II — немероэдрические двухкомпонентные двойники. Их решетки были разделены визуально программой просмотра обратного пространства RLATT. Основные кристаллографические данные и результаты уточнения структуры приведены в табл. 1. Сбор экспериментальных данных проведен методом ω -сканирования с шагом 0,2° и экспозицией по 20 с на один кадр тремя группами по 906 кадров при значениях угла $\varphi = 0$, 90 и 180° и расстоянии кристалл—детектор 45 мм. Поглощение учтено по эквивалентным отражениям.

Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении неводородных атомов. На разностном синтезе электронной плот-

Coggi	d			Vnor	ω			
Связв	Ι	II	III [2]	y I OJI	Ι	II	III [2]	
Sb—F(1)	1,913(1)	1,917(1)	1,914(7)	F(1)SbF(2)	89,67(5)	90,29(5)	98,3(7)	
Sb—F(2)	1,930(1)	1,937(1)	2,023(8)	F(1)SbF(3)	85,81(6)	82,65(6)	80,7(9)	
Sb—F(3)	2,011(1)	2,044(1)	2,085(6)	F(1)SbF(4)	83,27(5)	82,42(6)	87,2(7)	
Sb—F(4)	2,139(1)	2,190(1)	2,098(8)	F(2)SbF(3)	82,66(5)	81,00(5)	72,4(6)	
$Sb\cdots F(1)^{a}$	2,943(1)	2,923(1)	$2,966(0)^{c}$	F(2)SbF(4)	79,10(4)	79,10(5)	78,0(4)	
$Sb\cdots F(2)^b$	3,039(1)	2,970(1)	$2,952(9)^{d}$	F(3)SbF(4)	158,74(6)	154,96(6)	145,9(6)	
$\mathrm{Sb}\cdots\mathrm{F}(3)^{\mathrm{b}}$	—	2,835(1)	—					
$Sb\cdots F(4)$	—	—	$2,747(9)^{d}$					

Длины связей Sb—F (d, Å) и валентные углы F—Sb—F (ω , град.) в структурах I—III

* Коды симметрии: ^а *x*-1, *y*, *z*; ^b *x*+1/2, -*y*+1/2, *z*+1/2; ^c *x*+1, *y*, *z*; ^d -*x*, *y*+1/2, -*z*.

ности были локализованы атомы водорода, кроме атомов H(1) и H(2) в II, однако уточнение их проведено в модели наездника по геометрическим параметрам.

Сбор и редактирование данных, уточнение параметров элементарной ячейки проведены по программам SMART и SAINT Plus [3]. Все расчеты по определению и уточнению структуры выполнены по программам SHELXTL/PC [4]. СІГ-файлы, содержащие полную информацию по исследованным структурам, были депонированы в ССDС под номерами 808954 и 808955, откуда могут быть свободно получены по запросу на интернет-сайте: www.ccdc.cam.ac.uk/data_request/cif. Длины связей Sb—F и валентные углы F—Sb—F в анионе [SbF₄]⁻ исследованных кристаллических структур приведены в табл. 2. Там же для сравнения приведены соответствующие геометрические характеристики [SbF₄]⁻ в структуре тетрафторантимоната 4-амино-1,2,4-триазолия ($C_2N_4H_5$)SbF4 (III) [2].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Кристаллические структуры соединений I (рис. 1) и II (рис. 2) образованы изолированными комплексными анионами $[SbF_4]^-$ и одновалентными $(C_2H_5N_4)^+$ и двухвалентными $(C_2H_6N_4)^{2+}$ катионами 3-амино-1,2,4-триазолия соответственно.

В комплексном анионе $[SbF_4]^-$ исследованных структур четыре атома фтора — F(1), F(2), F(3) и F(4) — образуют координационный полиэдр атома Sb, который согласно модели отталкивания электронных пар валентной оболочки [5] представляет собой ψ -тригональную бипирамиду. Атомы F(3) и F(4) расположены в апикальных позициях бипирамиды, а экваториальную плоскость бипирамиды образуют атомы F(1) и F(2) и стереохимически активная неподеленная электронная пара катиона Sb³⁺. Длины аксиальных связей Sb—F в полиэдре несколько

Рис. 1. Проекция кристаллической структуры (C₂H₅N₄)SbF₄ на плоскость *yz*

Рис. 2. Проекция кристаллической структуры $(C_2H_6N_4)(SbF_4)_2$ на плоскость уг

больше длин экваториальных связей, а аксиальный и экваториальный углы вокруг атома Sb в полиэдре (см. табл. 2) меньше соответствующих углов в 180 и 120° в правильной тригональной бипирамиде, что находится в согласии с моделью [5].

Геометрические характеристики изолированных комплексных анионов [SbF₄][–] в структурах I и II несколько отличаются от соответствующих параметров аниона [SbF₄][–] в структуре III. В структурах I и II длины экваториальных связей в координационном полиэдре атома сурьмы Sb—F(1) 1,913(1) (1,917(1)) и Sb—F(2) 1,930(1) (1,937(1)) Å имеют, примерно, равные значения, а длины аксиальных связей Sb—F(3) 2,011(1) (2,044(1)) и Sb—F(4) 2,139(1) (2,190(1)) Å существенно различаются (в скобках приведены данные для II). В отличие от структур I и II в кристаллической структуре III аксиальные длины связей имеют практически равные значения (Sb—F(3) 2,085(6) и Sb—F(4) 2,098(8) Å), а длины экваториальных связей значительно различаются между собой (Sb—F(1) 1,914(7) и Sb—F(2) 2,023(8) Å, см. табл. 2). Некоторые отличия наблюдаются в величинах экваториальных и аксиальных углов в полиэдрах атома Sb в структурах I—III. В структуре III экваториальный угол F(1)SbF(2) по сравнению с соответствующими углами в I и II больше, примерно, на 9°, а величина аксиального угла F(3)SbF(4) в III существенно меньше, чем в I и II (см. табл. 2).

Комплексные анионы $[SbF_4]^-$ в структурах I и II посредством слабых взаимодействий Sb…F, которые значительно меньше суммы ван-дер-ваальсовых радиусов атомов Sb и F (3,55 Å [6]), объединяются в полимерные слои $[SbF_4]_n^{n-}$, параллельные плоскости *ac*. Однако характер объединения полиэдров атомов Sb в полимерные слои в обеих структурах различный. Посредством мостиковых связей Sb…F(2) (3,039(1) Å) полиэдры SbF₄ в структуре I объединяются в полимерные цепи. Расстояние между атомами Sb…Sb в цепи равно 4,366 Å. Между собой цепи связаны в полимерные слои мостиковыми взаимодействиями Sb…F(1) (2,943(1) Å) с расстояниями Sb…Sb 4,772 Å.

В образовании полимерных цепей в структуре II одновременно принимают участие мостиковые атомы F(2) и F(3) (Sb…F(2) 2,970(1) и Sb…F(3) 2,835(1) Å), что приводит к некоторому уменьшению расстояния Sb…Sb в цепи (4,074 Å) по сравнению с расстоянием Sb…Sb в структуре I. Соседние цепи объединяются в слои посредством мостиковой связи Sb…F(1) 2,923(1) Å. Расстояние Sb…Sb между цепями в II такое же (4,762 Å), как в структуре I.

В кристаллических структурах I и II катионы $(C_2H_5N_4)^+$ (3-ATH⁺) и $(C_2H_6N_4)^{2+}$ (3-ATH²⁺) расположены между полимерными анионными слоями. Строение катионов $(C_2H_5N_4)^+$ и $(C_2H_6N_4)^{2+}$ представлено на рис. 3. Представляло интерес проследить за изменениями в строении нейтрального 3-AT при превращении его в монопротонированную катионную форму. В табл. 3 представлены длины связей и валентные углы в нейтральном 3-AT [7, 8] и в катионах 3-ATHⁿ⁺ (*n* = 1, 2) в структурах I, II и в структуре $(C_2H_5N_4)$ PbBr₃ [9].

В монопротонированном катионе 3-АТН⁺ структуры I (см. рис. 3, *a*), как и в нейтральном 3-АТ, протонирован гидразиновый атом азота в положении 2 (N(2)) триазольного кольца рядом с аминогруппой. Связь C(5)—N(1) как в нейтральной молекуле, так и в монопротонированном катионе преимущественно двойная (1,310 Å в 3-АТ и 1,301(2) Å в 3-АТН⁺). Близкие значения в 3-АТ и 3-АТН⁺ имеют и длины связей N(1)—N(2), N(2)—C(3) и N(4)—C(5) (см. табл. 3). Протонирование атома азота в положение 4 (N(4)) в 3-АТ приводит к существенному изменению длин связей C(3)—N(4) и C(3)—N(6) в молекуле, а также к изменению углов связи с участием атома C(3). Связь C(3)—N(4) в катионе 3-АТН⁺ по сравнению с соответствующей связью в 3-АТ увеличена на 0,02 Å, а связь C(3)—N(6) из одинарной связи (1,340 Å) трансформируется

Таблица 3

Cogar	d							
Связь	3-AT [7, 8]	$3-ATH^{+}(I)$	$3-ATH^{2+}(II)$	3-AT'H ⁺ [9]				
N(1)—N(2)	1,380 (1,378)*	1,377(2)	1,359(4)	1,373				
N(2)—C(3)	1,342 (1,340)	1,335(2)	1,325(4)	1,333				
C(3)—N(4)	1,340 (1,340)	1,365(2)	1,348(4)	1,310				
C(3)—N(6)	1,340 (1,342)	1,297(2)	1,308(4)	1,339				
N(4)—C(5)	1,360 (1,362)	1,352(2)	1,366(4)	1,346				
C(5)—N(1)	1,310 (1,311)	1,301(2)	1,279(4)	1,300				
Угол	ω							
	[7,8]	Ι	II	[9]				
N(1)N(2)C(3)	109,7	111,9(1)	112,7(3)	106,6				
N(2)C(3)N(4)	109,5	105,3(1)	104,3(3)	106,9				
C(3)N(4)C(5)	103,2	106,6(1)	107,4(3)	111,3				
N(4)C(5)N(1)	114,8	112,7(2)	111,2(3)	105,5				
C(5)N(1)N(2)	102,6	103,5(1)	104,3(3)	107,7				
N(2)C(3)N(6)	125,1	128,1(2)	128,9(3)	128,2				
N(4)C(3)N(6)	125,4	126,6(1)	126,8(3)	125,0				

Длины связей (d, Å) и валентные углы (ω , град.) в нейтральном 3-AT [7,8] и в катионах 3-ATH^{*n*+} (*n* = 1, 2) в структурах I, II и (C₂H₅N₄)PbBr₃ [9]

* В скобах данные [8].

практически в двойную связь (1,297(2) Å). В триазольном кольце величина угла N(2)C(3)N(4) в катионе 3-ATH⁺ по сравнению с величиной угла в нейтральной молекуле меньше на 4°, а величина угла C(3)N(4)C(5) увеличена на 3°. На такую же величину в 3-ATH⁺ увеличено и значение угла N(2)C(3)N(6).

Сходное строение с катионом 3-ATH⁺ в структуре I имеют монопротонированные катионы 3-амино-1,2,4-триазолия в структуре изоморфных изофталатов лантанидов (AmTAZH)× ×[Ln(ip)₂(H₂O)] (Ln = La, Sm, Tb) [10]. По сравнению с катионами 3-ATH⁺ в структуре I и [10] монопротонированный катион $(C_2H_5N_4)^+$ (3-AT'H⁺) в структуре $(C_2H_5N_4)PbBr_3$ [9] имеет иное строение. Основное отличие его от 3-АТН⁺ состоит в том, что при протонировании 3-АТ протон присоединяется не к атому N(4), а к группе NH_2 , превращая ее в аммонийную. На аммонийной группе в основном сосредоточен положительный заряд катиона. Присоединение в 3-АТ протона к группе NH₂ сопровождается переносом атома водорода с гидразинового атома N(2) на атом N(1) триазольного цикла. При этом длины связей в катионе 3-AT'H⁺ по сравнению с соответствующими длинами связей в 3-АТ, за исключением связи С(3)—N(4), которая из одинарной трансформируется преимущественно в двойную связь, практически остаются неизмененными. Вместе с тем, углы связей в катионе $3-AT'H^+$, за исключением угла N(4)C(3)N(6), по сравнению с углами связей в 3-АТ, значительно изменяются (см. табл. 3), что свидетельствует о существенной трансформации триазольного цикла нейтральной молекулы при ее превращении в 3- $AT'H^+$. Принимая во внимание, что в 3- $AT'H^+$ протонирован атом азота в положении 1 триазольного цикла, данный катион можно рассматривать как нормальную форму протонированного катиона 3-амино-1,2,4-триазолия, а катионы 3-АТН⁺ в структурах I и [10] — как таутомерные формы.

Дипротонированный катион $(C_2H_6N_4)^{2+}$ (см. рис. 3, б) имеет сходное строение с монопротонированным катионом $(C_2H_5N_4)^+$. В отличие от $(C_2H_5N_4)^+$, в $(C_2H_6N_4)^{2+}$ протонирован гидразиновый атом азота N(1), на котором сосредоточен второй положительный заряд катиона. Весьма близки и геометрические характеристики обоих катионов (см. табл. 3). Катионы $(C_2H_6N_4)^{2+}$ в структуре II разупорядочены и занимают по две статистические позиции.

В структурах I и II катионы $(C_2H_5N_4)^+$ и $(C_2H_6N_4)^{2+}$ участвуют в образовании водородных связей с атомами F анионов $[SbF_4]^-$ (табл. 4). Преимущественно в обеих структурах в образовании водородных связей принимают участие аксиальные атомы фтора полиэдра — F(3) и F(4).

Т	а	б	Л	И	П	а	4
	u	v	21	11	щ	u	

-				*				
	Расстояние, Å						VEOR NHA FRAM	
Связь N—Н…А	N—H		–H H···A		N····A		этол тапл, град.	
	Ι	II	Ι	II	Ι	II	Ι	II
$N(1) - H(1) \cdots F(4)^{a}$		0,860		1,987	_	2,841(3)	_	172
N(2) - H(2) - F(4)	0,860	—	1,919		2,652(2)	_	142	
$N(2)$ — $H(2)$ ···F $(3)^b$		0,860		2,177		2,855(3)		135
N(2) - H(2) - F(2)		0,860		2,408		3,054(3)		132
$N(4) - H(4) \cdots F(4)^{c}$	0,860		1,795		2,650(2)		172	
$N(4) - H(4) \cdots F(3)^{d}$		0,860		1,816		2,671(3)		173
N(6)— $H(6A)$ ···F(3) ^e	0,860		2,024		2,766(2)		144	
$N(6) - H(6B) \cdots N(1)^{c}$	0,860		2,104		2,954(2)		169	
N(6)— $H(6B)$ ···F(4)		0,860		1,861	_	2,715(3)	_	172

Геометрические параметры водородных связей в структурах I и II

* Коды симметрии: ^a *x*-1, *y*, *z*-1; ^b *x*-1/2, *-y*+1/2, *z*-1/2; ^c *x*+1, *-y*, *z*+1/2; ^d *-x*+1/2, *y*+1/2, *-z*+1/2; ^e *x*+1/2, *-y*+1/2, *z*+1/2.

В структуре I на атом F(4) задействованы две сильные водородные связи, образованные с участием групп N(2)—H(2) (N(2)—H(2)…F(4) (1,919 Å) и N(4)—H(4) (N(4)—H(4)…F(4) (1,795 Å), что обусловливает увеличение длины связи Sb—F(4) в полиэдре. Водородная связь с участием атома F(3) (N(6)—H(6A)…F(3) (2,024 Å) по сравнению с водородными связями, образованными с атомом F(4), более слабая и соответственно связь Sb—F(3) в анионе [SbF₄]⁻ прочнее связи Sb—F(4) (см. табл. 2). Атом N(6) аминогруппы NH₂ образует также водородную связь с гидразиновым атомом азота N(1) соседнего катиона (N(6)—H(6B)…N(1) (2,104 Å), что приводит к формированию в структуре полимерных цепочек из катионов (C₂H₅N₄)⁺, параллельных направлению [1 0 2].

В структуре II атомы фтора F(3) и F(4) принимают участие в образовании с группами NH и NH₂ катиона $(C_2H_6N_4)^{2+}$ по две сравнительно прочных водородных связи (см. табл. 4), что так же, как и в структуре I, обусловливает увеличение длин связей Sb—F(3) и Sb—F(4) в полиэдре (см. табл. 2). Посредством водородных связей полимерные слои в структурах I и II объединяются в трехмерный каркас.

Выполненное исследование кристаллической структуры $(C_2H_5N_4)SbF_4$ (I) показало, что замена положения аминозаместителя в гетероцикле 1,2,4-триазола практически не приводит к изменению, по сравнению с III, мотива строения тетрафторантимоната(III). Определенные изменения претерпевают геометрические характеристики комплексного аниона [SbF₄], обусловленные изменением числа и прочности водородных связей в структуре I, задействованных на атомы F аниона.

Исследование кристаллической структуры $(C_2H_6N_4)(SbF_4)_2$ (II) позволило впервые установить образование дипротонированного катиона 3-амино-1,2,4-триазолия — $(C_2H_6N_4)^{2+}$ в комплексном соединении.

СПИСОК ЛИТЕРАТУРЫ

- 1. Давидович Р.Л., Земнухова Л.А., Федорищева Г.А. и др. // Координац. химия. 1990. **6**, № 10. С. 1319 1321.
- 2. Удовенко А.А., Земнухова Л.А., Ковалева Е.В. и др.// Координац. химия. 2004. **30**, № 8. С. 587 591.
- SMART and SAINT—*Plus*. Versions 5.0. Data Collection and Processing Software for the Smart System. Bruker AXS Inc. – Madison, Wisconsin, USA, 1998.
- 4. *Sheldrick G.M.* SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc. Madison, Wisconsin, USA, 1998.
- 5. Гиллеспи Р., Харгиттаи И. Модель отталкивания электронных пар валентной оболочки и строение молекул. М.: Мир, 1992.
- 6. Бокий Г.Б. Кристаллохимия. М.: Наука, 1971.
- 7. Макарский В.В., Старова Г.Л., Франк-Каменецкая О.В. и др. // Химия гетероцикл. соединений. 1977. № 8. С. 1138 1139. (Makarskii V.V., Starova G.L., Frank-Kamenetskaya O.V. et al. // Chem. Heterocycl. Comp. – 1977. – **13**, N 8. – Р. 922 – 923).
- 8. Старова Г.Л., Франк-Каменецкая О.В., Макарский В.В., Лопырев В.А // Кристаллография. 1978. 23, № 4. С. 849 851.
- 9. Li Y., Lin C., Zheng G., Lin J. // J. Solid State Chem. 2007. 180, N 2. P. 173 179.
- 10. Yin P.-X., Li Z.-J., Zhang J. et al. // CrystEngComm. 2009. 11, N 12. P. 2734 2738.