УДК 532.528

МАГНИТОГИДРОДИНАМИЧЕСКОЕ ТЕЧЕНИЕ ЖИДКОСТИ КЭССОНА ПРИ НАЛИЧИИ ПАРЦИАЛЬНОГО СКОЛЬЖЕНИЯ И ТЕПЛОВОГО ИЗЛУЧЕНИЯ

С. А. Шехзад, Т. Хайат*,**, А. Алсаеди**, М. А. Мерадж

Институт информационных технологий COMSATS, 57000 Сахивал, Пакистан

* Университет Куэд-и-Азам, 44000 Исламабад, Пакистан

^{**} Университет короля Абдул-Азиза, 21589 Джедда, Саудовская Аравия E-mails: ali_qau70@yahoo.com, fmgpak@gmail.com, aalsaedi@hotmail.com, asad@ciitsahiwal.edu.pk

С использованием метода гомотопического анализа исследовано магнитогидродинамическое течение жидкости Кэссона на растягивающейся поверхности при наличии скольжения, теплообмена и теплового излучения. Численно анализируется влияние коэффициента поверхностного трения и локального числа Нуссельта на параметры потока. Проведено сравнение полученных результатов с известными решениями.

Ключевые слова: магнитогидродинамические течения, условия скольжения, жид-кость Кэссона, тепловое излучение.

DOI: 10.15372/PMTF20160520

Введение. Интерес к исследованию течений неньютоновских жидкостей при наличии теплообмена обусловлен применением их в пищевой промышленности, энергетике, нефтяной промышленности, при обработке полимеров и получении пластмасс. Некоторые жидкости, используемые в химической промышленности (многофазные смеси, краски, синтетические смазки и др.), являются неньютоновскими и описываются уравнениями более высокого порядка по сравнению с уравнением Навье — Стокса. Предложены различные модели неньютоновских жидкостей [1–10]. Ряд жидкостей, относящихся к числу жидкостей Кэссона (пены, некоторые виды суспензий, косметика и др.), описан в работах [11–13]. В модели жидкости Кэссона учитывается, что напряжение сдвига на стенке существенно больше напряжения сдвига в самой жидкости. Течение в пограничном слое неньютоновской жидкости, обусловленное растяжением, используется в различных технологических процессах (производство картона, бумаги, аэродинамическая экструзия пластмассовых форм и др.) и исследовалось в [14]. В [15] проведен анализ влияния скольжения на течение в пограничном слое вязкой жидкости на экспоненциально растягивающейся поверхности при наличии химической реакции. Процесс теплообмена в нестационарном потоке максвелловской жидкости через пористую среду исследован в работе [16]. В ряде работ изучалось течение на растягивающейся поверхности при наличии теплового излучения [17-22].

Целью данной работы является исследование влияния скольжения и теплового излучения на магнитогидродинамическое (МГД) течение жидкости Кэссона. Уравнения, описывающие течение, сводятся к нелинейным обыкновенным дифференциальным уравнениям даже в случае использования приближения пограничного слоя. Более того, при учете излучения уравнения энергии становятся сильнонелинейными. Условия скольжения и температурного скачка на границе затрудняют определение температуры и вектора скорости. Условия скольжения особенно важны при изучении течений неньютоновских жидкостей, таких как полимеры. Экспериментально подтверждено, что течение скольжения реализуется, если средняя длина свободного пробега молекул жидкости сравнима с расстоянием между стенками в каналах, имеющих нано- или микроразмеры [23].

1. Формулировка задачи. Исследуется МГД-течение несжимаемой жидкости Кэссона на проницаемой растягивающейся поверхности при наличии скольжения. Ось x направлена параллельно поверхности, ось y — перпендикулярно ей. Жидкость движется в верхней полуплоскости (y > 0), растягивающаяся поверхность расположена в плоскости y = 0. Жидкость полагается электропроводящей. Течение происходит при наличии постоянного магнитного поля с напряженностью B_0 . Реологическое уравнение состояния для изотропного течения жидкости Кэссона имеет вид [12]

$$\tau_{ij} = \begin{cases} 2(\mu_B + p_y/\sqrt{2\pi})e_{ij}, & \pi > \pi_c, \\ 2(\mu_B + p_y/\sqrt{2\pi_c})e_{ij}, & \pi < \pi_c, \end{cases}$$

где e_{ij} — компоненты тензора скоростей деформации; $\pi = e_{ij}e_{ij}$ — произведение компонент тензора скоростей деформации; π_c — критическое значение величины π для неньютоновской жидкости; μ_B — динамическая вязкость неньютоновской жидкости; p_y — результирующее напряжение в жидкости.

Уравнение пограничного слоя записывается в виде

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0;$$
 (1)

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \nu \left(1 + \frac{1}{\beta}\right)\frac{\partial^2 u}{\partial y^2} - \frac{\sigma B_0^2}{\rho}u;$$
(2)

$$\rho c_p \left(u \,\frac{\partial T}{\partial x} + v \,\frac{\partial T}{\partial y} \right) = \frac{\partial}{\partial y} \left[\left(\frac{16\sigma^* T_\infty^3}{3k^*} + \varkappa \right) \frac{\partial T}{\partial y} \right] + \mu \left(1 + \frac{1}{\beta} \right) \left(\frac{\partial u}{\partial y} \right)^2,\tag{3}$$

где $\beta = \mu_B \sqrt{2\pi_c}/p_y$ — параметр жидкости Кэссона; σ — электропроводность; ρ — плотность; T — температура; \varkappa — теплопроводность; c_p — удельная теплоемкость; $\nu = \mu_B/\rho$ — кинематическая вязкость; u, v — компоненты скорости в направлениях x и y соответственно; σ^* — постоянная Стефана — Больцмана; μ — молекулярная вязкость. В уравнении (3) для радиационного теплового потока использовано приближение Росселанда.

Сформулируем граничные условия:

$$y = 0: \qquad u = U_w + N_0 \left(1 + \frac{1}{\beta} \right) \frac{\partial u}{\partial y}, \quad v = -v_w, \quad T = T_w + K_0 \frac{\partial T}{\partial y},$$
$$y \to \infty: \qquad u \to 0, \quad T \to T_\infty.$$

Здесь $U_w = ax$ — скорость растяжения; $T_w = T_\infty + bx$; N_0 — параметр скольжения; K_0 — параметр температурного скачка. При $N_0 = K_0 = 0$ скольжение отсутствует.

Переход к обыкновенным дифференциальным уравнениям осуществляется с использованием следующих преобразований:

$$\eta = \sqrt{\frac{U_w}{\nu x}} y, \qquad \psi = \sqrt{U_w \nu x} f(\eta), \qquad \theta = \frac{T - T_\infty}{T_w - T_\infty},$$

$$u = \frac{\partial \psi}{\partial y}, \qquad v = -\frac{\partial \psi}{\partial x}$$

 $(\psi - \phi y$ нкция тока). При этом уравнение (1) удовлетворяется тождественно, а уравнения (2), (3) и граничные условия принимают вид

$$(1+1/\beta)f''' + ff'' - f'^2 - M^2 f' = 0,$$

(1+N_r)\theta'' + Pr (f\theta' - \theta f') + Pr Ec (1+1/\beta)f''^2 = 0,

$$\eta = 0: \quad f = S, \quad f' = 1 + (1+1/\beta)S_f f''(0), \quad \theta = 1 + S_T \theta'(0),$$

$$\eta \to \infty: \qquad f' \to 0, \quad \theta \to 0.$$

Здесь штрих обозначает производную по η ; $M^2 = \sigma B_0^2/(\rho a)$ — число Гартмана; $\Pr = \mu c_p/\varkappa$ — число Прандтля; Ес — число Эккерта; $N_r = 3k^*\varkappa/(16\sigma^*T_\infty^3)$ — параметр излучения; $S_f = N_0\rho\sqrt{a\nu}$, $S_T = K_0\sqrt{a/\nu}$ — безразмерная скорость и параметр температурного скачка.

Коэффициент поверхностного трения C_f и число Нуссельта Nu_x определяются выражениями

$$C_f = \frac{\tau_w}{\rho U_w^2/2}, \qquad \text{Nu}_x = \frac{xq_w}{\varkappa (T_w - T_\infty)}.$$
(4)

Выражения для поверхностного трения τ_w и теплового потока q_w имеют вид

$$\tau_w = \mu \left(1 + \frac{1}{\beta} \right) \left(\frac{\partial u}{\partial y} \right) \Big|_{y=0}, \qquad q_w = -\varkappa \left(\frac{\partial T}{\partial y} \right) \Big|_{y=0}$$

В безразмерных переменных выражения (4) записываются в виде

$$\frac{1}{2}C_f \operatorname{Re}_x^{1/2} = \left(1 + \frac{1}{\beta}\right) f''(0), \qquad \frac{\operatorname{Nu}_x}{\operatorname{Re}_x^{1/2}} = -\theta'(0).$$

2. Решение уравнений методом гомотопического анализа. Полученные выше уравнения решаются методом гомотопического анализа [24–34].

Введем базисные функции $\{\eta^k e^{-n\eta}, k \ge 0, n \ge 0\}$ и представим распределения скорости f и температуры θ в виде разложений по базисным функциям

$$f_m(\eta) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_{m,n}^k \eta^k e^{-n\eta}, \qquad \theta_m(\eta) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} b_{m,n}^k \eta^k e^{-n\eta},$$

где $a_{m,n}^k, b_{m,n}^k$ — коэффициенты.

Начальное приближение функций $f_0(\eta)$ и $\theta_0(\eta)$ выбрано в виде

$$f_0(\eta) = S + \frac{1}{1 + S_f(1 + 1/\beta)} (1 - e^{-\eta}), \qquad \theta_0(\eta) = \frac{e^{-\eta}}{1 + S_T}.$$

Соответствующие выражения для линейных операторов имеют вид

$$L_f = f''' - f', \qquad L_\theta = \theta'' - \theta.$$

Эти операторы обладают следующими свойствами:

$$L_f(C_1 + C_2 e^{\eta} + C_3 e^{-\eta}) = 0, \qquad L_{\theta}(C_4 e^{\eta} + C_5 e^{-\eta}) = 0.$$

Здесь C_i (i = 1, ..., 5) — константы.

2.1. Уравнения деформации нулевого порядка. Выражения для нелинейных операторов N_f и N_{θ} можно представить в виде

$$N_{f}[\hat{f}(\eta,p)] = \left(1 + \frac{1}{\beta}\right) \frac{\partial^{3} \hat{f}(\eta,p)}{\partial \eta^{3}} + \hat{f}(\eta,p) \frac{\partial^{2} \hat{f}(\eta,p)}{\partial \eta^{2}} - \left(\frac{\partial \hat{f}(\eta,p)}{\partial \eta}\right)^{2} - M^{2} \frac{\partial \hat{f}(\eta,p)}{\partial \eta},$$

$$N_{\theta}[\hat{\theta}(\eta,p),\hat{f}(\eta,p)] = (1 + N_{r}) \frac{\partial^{2} \hat{\theta}(\eta,p)}{\partial \eta^{2}} + \Pr\left(\hat{f}(\eta,p) \frac{\partial \hat{\theta}(\eta,p)}{\partial \eta} - \Pr\left(\hat{\theta}(\eta,p) \frac{\partial \hat{f}(\eta,p)}{\partial \eta}\right) + \Pr\operatorname{Ec}\left(1 + \frac{1}{\beta}\right) \left(\frac{\partial^{2} \hat{f}(\eta,p)}{\partial \eta^{2}}\right)^{2}.$$

Тогда задачи о деформации нулевого порядка формулируются следующим образом:

$$(1-p)L_f[\hat{f}(\eta;p) - f_0(\eta)] = ph_f N_f[\hat{f}(\eta;p), \hat{\theta}(\eta,p)],$$

$$(1-p)L_\theta[\hat{\theta}(\eta;p) - \theta_0(\eta)] = ph_\theta N_\theta[\hat{f}(\eta;p), \hat{\theta}(\eta,p)],$$

$$\hat{f}(0;p) = S, \quad \hat{f}'(0;p) = 1 + S_f(1+1/\beta)f''(0,p), \quad \hat{f}'(\infty;p) = 0,$$

$$\hat{\theta}(0,p) = 1 + S_T \theta'(0,p), \qquad \hat{\theta}(\infty,p) = 0$$

 $(h_f, h_{\theta}$ — вспомогательные параметры, отличные от нуля). При p = 0 и p = 1 имеем

$$\hat{f}(\eta; 0) = f_0(\eta), \quad \hat{\theta}(\eta, 0) = \theta_0(\eta), \qquad \hat{f}(\eta; 1) = f(\eta), \quad \hat{\theta}(\eta, 1) = \theta(\eta).$$

При $0 значения функций <math>f_0(\eta)$, $\theta_0(\eta)$ стремятся к значениям $f(\eta)$, $\theta(\eta)$. Используя разложение в ряд Тейлора, получаем выражения

$$f(\eta, p) = f_0(\eta) + \sum_{m=1}^{\infty} f_m(\eta) p^m, \qquad f_m(\eta) = \frac{1}{m!} \frac{\partial^m f(\eta; p)}{\partial \eta^m}\Big|_{p=0},$$

$$\theta(\eta, p) = \theta_0(\eta) \sum_{m=1}^{\infty} \theta_m(\eta) p^m, \qquad \theta_m(\eta) = \frac{1}{m!} \frac{\partial^m \theta(\eta; p)}{\partial \eta^m}\Big|_{p=0}.$$
(5)

Сходимость рядов в (5) существенно зависит от линейных операторов и параметров h_f , h_θ . Значения h_f , h_θ выбраны таким образом, что при p = 1 ряды (5) сходятся. Из уравнений (5) следует

$$f(\eta) = f_0(\eta) + \sum_{m=1}^{\infty} f_m(\eta), \qquad \theta(\eta) = \theta_0(\eta) + \sum_{m=1}^{\infty} \theta_m(\eta).$$
 (6)

2.2. Уравнения деформации *m*-го порядка. Задачи для деформации *m*-го порядка формулируются следующим образом:

$$L_{f}[f_{m}(\eta) - \chi_{m}f_{m-1}(\eta)] = h_{f}R_{f}^{m}(\eta), \qquad L_{\theta}[\theta_{m}(\eta) - \chi_{m}\theta_{m-1}(\eta)] = h_{\theta}R_{\theta}^{m}(\eta),$$

$$f_{m}(0) = f'_{m}(0) - (1 + 1/\beta)S_{f}f''_{m}(0) = f'_{m}(\infty) = 0, \qquad \theta_{m}(0) - S_{T}\theta'_{m}(0) = \theta_{m}(\infty) = 0,$$

$$R_{f}^{m}(\eta) = \left(1 + \frac{1}{\beta}\right)f''_{m-1}(\eta) + \sum_{k=0}^{m-1}[f_{m-1-k}f'_{k} - f'_{m-1-k}f'_{k}] - M^{2}f'_{m-1}(\eta),$$

$$R_{\theta}^{m}(\eta) = (1 + N_{r})\theta''_{m-1} + \Pr\sum_{k=0}^{m-1}[f_{m-1-k}\theta'_{k} - \theta_{m-1-k}f'_{k}] + \Pr\operatorname{Ec}\left(1 + \frac{1}{\beta}\right)\sum_{k=0}^{m-1}f''_{m-1-k}f''_{k}.$$

Рис. 1. *h*-кривые для функций f''(0) (1) и $\theta'(0)$ (2) в приближении 21-го порядка при $\beta = 1,0, M = 0,3, S = S_T = 0,5, Pr = 0,6, S_f = 1,0, N_r = 0,3, Ec = 0,4$

Таблица 1

Сходимость решений, полученных с использованием метода гомотопического анализа, при $\beta = 1,0, M = 0,3, S = 0,5, Pr = 0,6, S_f = 1,0, S_T = 0,5, Ec = 0,4, N_r = 0,3, h_f = h_{\theta} = -0,6$

Порядок приближения	-f''(0)	- heta'(0)
1	$0,\!414688$	$0,\!435500$
10	$0,\!397984$	0,366838
15	$0,\!397982$	0,364065
30	$0,\!397982$	0,362479
50	$0,\!397982$	0,362302
55	$0,\!397982$	0,362295
60	$0,\!397982$	0,362295
70	$0,\!397982$	0,362295

Поскольку $f_m^*(\eta)$ и $\theta_m^*(\eta)$ — частные решения, общее решение записывается в виде

$$f_m(\eta) = f_m^*(\eta) + C_1 + C_2 e^{\eta} + C_3 e^{-\eta}, \qquad \theta_m(\eta) = \theta_m^*(\eta) + C_4 e^{\eta} + C_5 e^{-\eta}$$

3. Сходимость полученных решений. Решения в виде рядов (6) содержат вспомогательные параметры h_f и h_{θ} , обеспечивающие сходимость этих рядов. Для того чтобы получить допустимые значения вспомогательных параметров, были построены h-кривые для приближения 21-го порядка (рис. 1). Из рис. 1 следует, что $-1,0 \leq h_f \leq -0,1$ и $-1,2 \leq h_{\theta} \leq -0,4$. Заметим, что при $h_f = h_{\theta} = -0,6$ ряды сходятся во всей области η . Результаты расчетов для различных порядков приближения приведены в табл. 1.

4. Результаты исследования и их обсуждение. Исследовалось влияние параметра жидкости Кэссона β , параметров скольжения S_f и температурного скачка S_T , а также параметра излучения N_r на скорость, температуру, поверхностное трение и число Нуссельта. На рис. 2 показано влияние параметра S_f на скорость. Видно, что с увеличением S_f скорость, а следовательно, и толщина пограничного слоя уменьшаются. С увеличением параметра жидкости Кэссона β скорость сначала увеличивается, а при $\eta = 1$ начинает уменьшаться (рис. 3). Это обусловлено тем, что при увеличении параметра жидкости Кэссона увеличивается сопротивление течению жидкости и уменьшаются скорость и толщина пограничного слоя. На рис. 4 показано влияние параметра β на безразмерную температуру. Видно, что увеличение β приводит к уменьшению температуры и зависящей от нее толщины теплового пограничного слоя. Влияние параметра скольжения S_f на темпера-

Рис. 2. Зависимость $f'(\eta)$ при $\beta = 1,0, M = 0,4, S = 0,5$ и различных значениях параметра скольжения S_f : $1 - S_f = 0, 2 - S_f = 1, 3 - S_f = 2, 4 - S_f = 3$

Рис. 3. Зависимость $f'(\eta)$ при $S_f = 0,5, M = 0,4, S = 0,5$ и различных значениях параметра жидкости Кэссона β : 1 — $\beta = 0,6, 2 - \beta = 1,0, 3 - \beta = 1,5, 4 - \beta = 2,0$

Рис. 4. Зависимость $\theta(\eta)$ при Pr = 0,7, Ec = 0,4, M = 0,5, S = 0,5, $S_f = 0,5$, $S_T = 1,0$, $N_r = 0,3$ и различных значениях параметра жидкости Кэссона β : 1 — $\beta = 0,3$, 2 — $\beta = 1,0$, 3 — $\beta = 2,0$, 4 — $\beta = 3,0$

Рис. 5. Зависимость $\theta(\eta)$ при Pr = 0,7, Ec = 0,4, β = 1,0, M = 0,5, S = 0,5, S_T = 1,0, N_r = 0,3 и различных значениях параметра скольжения S_f : 1 — S_f = 0, 2 — S_f = 1, 3 — S_f = 2, 4 — S_f = 3

Рис. 6. Зависимость $\theta(\eta)$ при Pr = 0,7, Ec = 0,4, β = 1,0, M = 0,5, S = 0,5, $S_f = 0,5, N_r = 0,3$ и различных значениях параметра температурного скачка S_T : 1 — $S_T = 0, 2 - S_T = 0,7, 3 - S_T = 1,6, 4 - S_T = 2,4$ Рис. 7. Зависимость $\theta(\eta)$ при Pr = 0,7, Ec = 0,4, β = 1,0, M = 0,5, S = 0,5, $S_f = 0,5, S_T = 1,0$ и различных значениях параметра излучения N_r : 1 — $N_r = 0, 2 - N_r = 0,4, 3 - N_r = 0,8, 4 - N_r = 1,2$

Таблица 2

S_f	f'(0)		-f''(0)		
	Данные [35]	Данные настоящей работы	Данные [35]	Данные настоящей работы	
0	1,0000	1,000 00	1,0000	1,000 00	
0,1	0,9128	0,91279	0,8721	0,872 08	
0,2	0,8447	$0,\!84472$	0,7764	0,77637	
0,5	0,7044	0,70440	0,5912	0,591 19	
1,0	0,5698	0,56984	0,4302	0,430 16	
2,0	0,4320	$0,\!43204$	0,2840	0,283 98	
5,0	0,2758	$0,\!27799$	0,1448	0,14484	
10,0	0,1876	$0,\!18756$	0,0812	0,081 24	
20,0	0,1242	$0,\!12421$	0,0438	0,04378	
50,0	0,0702	0,70223	0,0186	0,018 58	
100,0	0,0450	0,04524	0,0095	0,009 55	

Значения скорости f'(0) и коэффициента трения -f''(0) при $\beta \to \infty$ и различных значениях S_f

Таблица З

	······································						
M	S_f	S	$-(1+1/\beta)f''(0)$				
0	0,5	0,5	0,767236				
0,4	0,5	0,5	0,816740				
0,9	0,5	0,5	0,966208				
$1,\!5$	0,5	0,5	1,165340				
$0,\!4$	0	$0,\!5$	1,793530				
$0,\!4$	0,6	$0,\!5$	0,738314				
$0,\!4$	1,2	0,5	0,469494				
0,4	1,7	0,5	0,360354				
0,4	1,7	0	0,714956				
0,4	1,7	0,7	0,859546				
0,4	1,7	1,3	0,991214				
$0,\!4$	1,7	2,0	$1,\!141550$				

Значения коэффициента поверхностного трения $(1 + 1/\beta)f''(0)$ при $\beta = 1,0$ и различных значениях M, S_f , S

Таблица 4

и различных значениях $N_r,~{ m Pr},~{ m Ec},~S_T,~S_f,~eta$						
N_r	Pr	Ec	S_T	S_f	β	$-\theta'(0)$
0	$0,\!6$	$0,\!4$	$1,\!0$	$_{0,5}$	$1,\!0$	$0,\!458798$
0,4	$0,\!6$	$0,\!4$	$1,\!0$	$_{0,5}$	$1,\!0$	$0,\!393685$
0,7	$0,\!6$	$0,\!4$	$1,\!0$	$_{0,5}$	$1,\!0$	$0,\!356906$
$_{0,3}$	$0,\!4$	$0,\!4$	$1,\!0$	0,5	1,0	$0,\!331713$
$_{0,3}$	0,8	$0,\!4$	$1,\!0$	$_{0,5}$	1,0	$0,\!463717$
$_{0,3}$	$1,\!3$	$0,\!4$	$1,\!0$	$_{0,5}$	$1,\!0$	$0,\!556686$
$0,\!3$	1,3	0,7	$1,\!0$	0,5	$1,\!0$	$0,\!390838$
$0,\!3$	1,3	1,0	1,0	0,5	1,0	$0,\!373743$
$0,\!3$	1,3	1,5	1,0	0,5	1,0	$0,\!345249$
$0,\!3$	$1,\!3$	1,5	0,5	0,5	$1,\!0$	$0,\!519891$
$_{0,3}$	1,3	1,5	0,9	$_{0,5}$	$1,\!0$	$0,\!426292$
$_{0,3}$	1,3	1,5	$1,\!4$	$_{0,5}$	$1,\!0$	$0,\!347976$
$_{0,3}$	1,3	1,5	$1,\!4$	$0,\!6$	$1,\!0$	$0,\!405669$
$_{0,3}$	$1,\!3$	$1,\!5$	$1,\!4$	$1,\!0$	1,0	$0,\!396140$
$_{0,3}$	$1,\!3$	$1,\!5$	$1,\!4$	1,5	1,0	$0,\!385909$
$0,\!3$	1,3	1,5	$1,\!4$	1,5	0,5	$0,\!413656$
$0,\!3$	1,3	1,5	$1,\!4$	1,5	1,4	$0,\!404566$
$_{0,3}$	$1,\!3$	$1,\!5$	$1,\!4$	1,5	2,0	$0,\!401159$

Значения числа Нуссельта $-\theta'(0)$ при M=0,4,~S=1,0 и различных значениях N_r , Pr, Ec, S_T , S_f , β

туру показано на рис. 5. При увеличении параметра скольжения температура и толщина теплового пограничного слоя увеличиваются. На рис. 6 показано влияние параметра температурного скачка S_T на температуру. Видно, что с увеличением S_T температура и толщина теплового пограничного слоя уменьшаются. Влияние параметра излучения N_r на температуру показано на рис. 7. Видно, что увеличение N_r приводит к увеличению температуры и толщины теплового пограничного слоя. Для проверки точности полученных результатов аналитических расчетов проведено сравнение решений, найденных с использованием метода гомотопического анализа в настоящей работе, и результатов численных расчетов [35] (табл. 2). Эти результаты хорошо согласуются при M = S = 0 и $\beta \to \infty$. Из табл. 3 следует, что с увеличением параметра M поверхностное трение увеличивается, а с увеличением параметра S_f — уменьшается. Значения величины теплового потока на стенке $-\theta'(0)$ при различных значениях β , S_f , S_T , Pr, Ec, N_r приведены в табл. 4, из которой следует, что при увеличении β , S_f , S_T , Ec, N_r значения $-\theta'(0)$ уменьшаются, а при увеличении Pr — увеличиваются.

ЛИТЕРАТУРА

- Jamil M., Fetecau C., Imran M. Unsteady helical flows of Oldroyd-B fluids // Comm. Nonlinear Sci. Numer. Simulat. 2011. V. 16. P. 1378–1386.
- Nazar M., Fetecau C., Vieru D., Fetecau C. New exact solutions corresponding to the second problem of Stokes for second grade fluids // Nonlinear Anal.: Real World Appl. 2010. V. 11. P. 584–591.
- 3. Fetecau C., Hayat T., Zierep J., Sajid M. Energetic balance for the Rayleigh Stokes problem of an Oldroyd-B fluid // Nonlinear Anal.: Real World Appl. 2011. V. 12. P. 1–13.
- Wang S. W., Tan W. C. Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium heated from below // Phys. Lett. A. 2008. V. 372. P. 3046–3050.
- Tan W. C., Xu M. Y. Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates // Acta Mech. Sinica. 2004. V. 20. P. 471–476.
- Zhang Z. Y., Fu C. J., Tan W. C., Wang C. Y. On set of oscillatory convection in a porous cylinder saturated with a viscoelastic fluid // Phys. Fluids. 2007. V. 19. P. 98–104.
- Rashidi M. M., Chamkha A. J., Keimanesh M. Application of multi-step differential transform method on flow of a second grade fluid over a stretching or shrinking sheet // Amer. J. Comput. Math. 2011. V. 6. P. 119–128.
- Ali N., Hayat T., Asghar S. Peristaltic flow of Maxwell fluid in a channel with compliant walls // Chaos, Solitons Fractals. 2009. V. 39. P. 407–416.
- Hayat T., Shehzad S. A., Qasim M., Obaidat S. Flow of second grade fluid with convective boundary conditions // Thermal Sci. 2011. V. 15. P. 253–261.
- Alsaadi F. E., Shehzad S. A., Hayat T., Monaquel S. J. Soret and Dufour effects on the unsteady mixed convection flow over a stretching surface // J. Mech. 2013. V. 29. P. 623–632.
- 11. Casson N. Rheology of dispersed systems. Oxford: Pergamon Press, 1959.
- Nakamura M., Sawada T. Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis // Trans. ASME. J. Biomech. Engng. 1988. V. 110. P. 137–143.
- Bird R. B., Dai G. C., Yarusso B. J. The rheology and flow of viscoplastic materials // Rev. Chem. Engng. 1983. V. 1. P. 1–83.
- 14. Crane L. J. Flow past a stretching plate // Z. angew. Math. Phys. 1970. Bd 21. S. 645–647.
- Mukhopadhyay S., Arif Golam M., Ali Wazed M. Effects of partial slip on chemically reactive solute transfer in the boundary layer flow over an exponentially stretching sheet with suction/blowing // J. Appl. Mech. Tech. Phys. 2013. V. 54, N 6. P. 928–936.

- Mukhopadhyay S., De P. R., Layek G. C. Heat transfer characteristics for the Maxwell fluid flow past an unsteady stretching permeable surface embedded in a porous medium // J. Appl. Mech. Tech. Phys. 2013. V. 54, N 3. P. 385–396.
- Hayat T., Qasim M., Abbas Z. Radiation and mass transfer effects on the magnetohydrodynamic unsteady flow induced by a stretching sheet // Z. Naturforsch. A. 2010. Bd 64. S. 231–239.
- Hayat T., Qasim M. Influence of thermal radiation and Joule heating on MHD flow of a Maxwell fluid in the presence of thermophoresis // Intern. J. Heat Mass Transfer. 2010. V. 53. P. 4780–4788.
- Mukhopadhyay S. Effect of thermal radiation on unsteady mixed convection flow and heat transfer over a stretching surface in a porous medium // Intern. J. Heat Mass Transfer. 2009. V. 52. P. 3261–3265.
- Hayat T., Shehzad S. A., Qasim M. Mixed convection flow of a micropolar fluid with radiation and chemical reaction // Intern. J. Numer. Methods Fluids. 2011. V. 67. P. 1418–1436.
- Hayat T., Shehzad S. A., Alsaedi A. Three-dimensional stretched flow of Jeffery fluid with variable thermal conductivity and thermal radiation // Appl. Math. Mech. (English Ed.). 2013. V. 34. P. 823–832.
- Hayat T., Shehzad S. A., Al-Sulami H. H., Asghar S. Influence of thermal stratification on the radiative flow of Maxwell fluid // J. Brazil. Soc. Mech. Sci. Engng. 2013. V. 35. P. 381–389.
- Derek C., Tretheway D. C., Meinhart C. D. Apparent fluid slip athydrophobic microchannel walls // Phys. Fluids. 2002. V. 14. P. 1–9.
- 24. Liao S. J. Beyond perturbation: Introduction to homotopy analysis method. Boca Raton: Chapman and Hall: CRC Press, 2003.
- Xu H., Liao S. J. Laminar flow and heat transfer in the boundary-layer of non-Newtonian fluids over a stretching flat sheet // Comput. Math. Appl. 2009. V. 57. P. 1425–1431.
- Abbasbandy S. Homotopy analysis method for the Kawahara equation // Nonlinear Anal.: Real World Appl. 2010. V. 11. P. 307–312.
- 27. Abbasbandy S., Shirzadi A. A new application of the homotopy analysis method: Solving the Sturm Liouville problems // Comm. Nonlinear Sci. Numer. Simulat. 2011. V. 16. P. 112–126.
- Hayat T., Shehzad S. A., Qasim M., Obaidat S. Radiative flow of Jeffery fluid in a porous medium with power law heat flux and heat source // Nuclear Engng Design. 2012. V. 243. P. 15–19.
- Hashim I., Abdulaziz O., Momani S. Homotopy analysis method for fractional IVPs // Comm. Nonlinear Sci. Numer. Simulat. 2009. V. 14. P. 674–684.
- Rashidi M. M., Pour S. A. M. Analytic approximate solutions for unsteady boundary-layer flow and heat transfer due to a stretching sheet by homotopy analysis method // Nonlinear Anal.: Modelling Control. 2010. V. 15. P. 83–95.
- Hayat T., Shehzad S. A., Qasim M., Obaidat S. Steady flow of Maxwell fluid with convective boundary conditions // Z. Naturforsch. A. 2011. Bd 66. S. 417–422.
- 32. Hayat T., Shehzad S. A., Qasim M., Obaidat S. Thermal radiation effects on the mixed convection stagnation-point flow in a Jeffery fluid // Z. Naturforsch. A. 2011. Bd 66. S. 606–614.
- Shehzad S. A., Alsaedi A., Hayat T. Influence of thermophoresis and Joule heating on the radiative flow of Jeffrey fluid with mixed convection // Brazil. J. Chem. Engng. 2013. V. 30. P. 897–908.
- Shehzad S. A., Hayat T., Alsaedi A. Flow of a thixotropic fluid over an exponentially stretching sheet with heat transfer // J. Appl. Mech. Tech. Phys. 2016. V. 57, N 4. P. 672–680.
- 35. Andersson H. I. Slip flow past a stretching surface // Acta Mech. 2002. V. 158. P. 121–125.