УДК 539.3

ПРИБЛИЖЕННЫЕ ФОРМУЛЫ ДЛЯ СТРЕЛЫ ПРОГИБА УПРУГОГО СТЕРЖНЯ ПРИ ПОПЕРЕЧНОМ НАГРУЖЕНИИ

Ю. В. Захаров, К. Г. Охоткин*, А. Ю. Власов**

Институт физики им. Л. В. Киренского СО РАН, 660036 Красноярск

- *Сибирский государственный технологический университет, 660049 Красноярск
- ** Сибирская аэрокосмическая академия, 660014 Красноярск

Получены приближенные формулы, записанные через элементарные функции, для стрелы прогиба тонкого упругого стержня при действии поперечной силы. Найдены разложения для полных и неполных эллиптических интегралов первого и второго рода в окрестности $k^2=1/2$.

Введение. Приближенные формулы для прогибов сжатых гибких стержней получены во многих работах. В [1] (см. также [2, 3]) дан детальный обзор существующих приближенных формул для стрелы прогиба сжатого стержня при продольном нагружении, пригодных для нагрузок, превышающих критическую не более чем на 10 %. В [1] также приведены формулы, полученные путем разложения эллиптических интегралов, которые хорошо аппроксимируют зависимость прогиба от нагрузки при любых ее значениях.

Для случая поперечного нагружения стержня в теории сопротивления материалов получена линейная зависимость прогиба от нагрузки [4], пригодная для определения величин прогиба, составляющих менее 1 % длины стержня. Насколько известно авторам настоящей работы, приближенные формулы, справедливые для больших значений поперечных нагрузок, в литературе отсутствуют. Вместе с тем в [5] получены точные формулы для стрелы прогиба стержня при поперечном нагружении, выраженные через эллиптические функции Якоби, на основе которых можно получить приближенные формулы, пригодные для инженерного использования.

Постановка задачи. В соответствии с результатами работы [5] точное выражение для стрелы прогиба свободного конца стержня при поперечном нагружении для первой моды дается в параметрическом виде

$$f \equiv y/L = 1 - 4(E(k) - E_1(k))/(\pi\sqrt{\lambda}), \qquad \lambda = (2/\pi)^2 (K(k) - F_1(k))^2,$$
 (1)

где f<1 — безразмерный параметр прогиба; $\lambda\equiv P/P_c$ — безразмерный параметр нагрузки; P — прилагаемая нагрузка; $P_c=(\pi/2)^2EI/L^2$ — эйлерова сила; EI — изгибная жесткость стержня; L — длина стержня; K(k), E(k) — полные эллиптические интегралы первого и второго рода соответственно; $1/2\leqslant k^2\leqslant 1$ — модуль эллиптических интегралов.

Обозначим через

$$F_1(k) \equiv F\left(\arcsin\frac{1}{k\sqrt{2}}, k\right) = \int_{0}^{1/(k\sqrt{2})} \frac{dt}{\sqrt{1 - t^2}\sqrt{1 - k^2t^2}},$$

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 02-01-01017, 02-01-06308).

$$E_1(k) \equiv E\left(\arcsin\frac{1}{k\sqrt{2}}, k\right) = \int_{0}^{1/(k\sqrt{2})} \sqrt{\frac{1 - k^2 t^2}{1 - t^2}} dt$$

неполные эллиптические интегралы первого и второго рода соответственно при $\varphi = \arcsin\left(1/(k\sqrt{2}\,)\right)$.

Будем использовать следующий алгоритм: получим разложения разностей эллиптических интегралов первого и второго рода, входящих в выражение (1), в ряд по малому параметру $k^2-1/2$; оставив в разложениях члены до третьей степени включительно, по формуле Кардана найдем приближенное выражение для зависимости модуля k от безразмерной нагрузки λ ; подставив полученное выражение в формулу (1), получим приближенную формулу, определяющую зависимость стрелы прогиба от приложенной нагрузки.

Разложения эллиптических интегралов в ряд по малому параметру $k-\sqrt{2}/2$ представляются в виде

$$E - E_1 \approx 2^{1/4} \sqrt{k - \sqrt{2}/2} \left[1 - 13\sqrt{2}(k - \sqrt{2}/2)/12 + 17(k - \sqrt{2}/2)^2/240 + \dots \right];$$
 (2)

$$K - F_1 \approx 2 \cdot 2^{1/4} \sqrt{k - \sqrt{2}/2} \left[1 + \sqrt{2}(k - \sqrt{2}/2)/4 + 497(k - \sqrt{2}/2)^2/240 + \dots \right],$$
 (3)

по параметру $k^2 - 1/2$ — в виде

$$E - E_1 \approx \sqrt{k^2 - 1/2} \left[1 - 4(k^2 - 1/2)/3 + 16(k^2 - 1/2)^2/15 + \dots \right];$$
 (4)

$$K - F_1 \approx 2\sqrt{k^2 - 1/2} \left[1 + 16(k^2 - 1/2)^2 / 15 + 256(k^2 - 1/2)^4 / 105 + \dots \right].$$
 (5)

Анализ показал, что разложения (2), (3) дают в дальнейшем меньшую погрешность при определении стрелы прогиба по сравнению с разложениями (4), (5).

Возьмем первые два члена разложения (3). Используя второе выражение в (1), получим уравнение

$$2 \cdot 2^{1/4} \sqrt{k - \sqrt{2}/2} + 2^{3/4} (k - \sqrt{2}/2)^{3/2} / 2 - \pi \sqrt{\lambda}/2 = 0.$$

Решая это кубическое уравнение относительно $\sqrt{k}-\sqrt{2}/2$ по формуле Кардана и раскладывая затем в ряд по параметру λ , получим приближенную зависимость для модуля k от безразмерной нагрузки λ

$$k - \sqrt{2}/2 \approx (\pi/2)^2 (\sqrt{2}\lambda/8 - \sqrt{2}\lambda^2/64 + \dots).$$
 (6)

Подставим первые два члена разложения (2) для разности интегралов $E-E_1$ в выражение для стрелы прогиба (1). Затем, используя выражение (6), получим приближенную зависимость стрелы прогиба от нагрузки λ

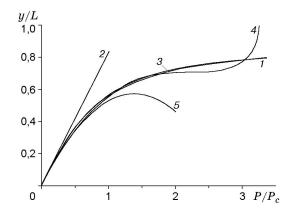
$$f = 1 - \sqrt{1 - \pi^2 \lambda / 32} [1 - 13(\pi^2 \lambda - \pi^4 \lambda^2 / 32) / 192]. \tag{7}$$

Отсюда разложением в ряд по λ получаем упрощенный вариант формулы (7)

$$f = \pi^2 \lambda / 12 - 25\pi^4 \lambda^2 / 8192. \tag{8}$$

В разложении (8) линейный член соответствует известной в теории сопротивления материалов [4] формуле

$$f = \pi^2 \lambda / 12. \tag{9}$$



Зависимости стрелы прогиба от нагрузки, вычисленные по точной и приближенным формулам:

1 — точная зависимость (1); 2-5 — приближенные зависимости (9), (10), (7), (8)

Номер формулы	$\lambda = 0.01$	$\lambda = 0.1$	$\lambda = 0.7489$	$\lambda = 1{,}1834$	$\lambda = 4$
(1)	0,008 879	0,08343	0,4707	0,5977	0,8101
(7)	0,008 845	0,08095	0,4604	0,6047	
(10)	0,008038	0,07904	0,4734	0,6040	0,8002

На основе асимптотических приближений можно предложить аппроксимационную зависимость, коэффициенты которой определены методом нелинейной регрессии. Эта формула точнее полученных ранее описывает зависимость стрелы прогиба от нагрузки при значениях нагрузок более трех критических:

$$f = 0.132(\exp(2 - 2/(1.4\lambda + 1)^2) - 1). \tag{10}$$

На рисунке представлены графики точной и приближенных зависимостей для стрелы прогиба консоли. Видно, что формула (9) хорошо аппроксимирует зависимость $y \sim p$ до значений прогибов, составляющих около 20 % длины стержня.

В таблице приведены значения прогибов f, вычисленные по формулам (1), (7), (10). При $\lambda=4$ величина прогиба, вычисленная по формуле (7), больше единицы, что не имеет физического смысла.

Авторы выражают благодарность Л. И. Шкутину и В. Г. Суховольскому за внимание к работе.

ЛИТЕРАТУРА

- 1. **Астапов Н. С.** Приближенные формулы для прогибов сжатых гибких стержней // ПМТФ. 1996. Т. 37, № 4. С. 135–138.
- 2. **Астапов Н. С.** Приближенное представление формы сжатого гибкого стержня // ПМТФ. 1999. Т. 40, № 3. С. 200–203.
- 3. **Анфиловьев А. В.** Стрела прогиба и сближение концов стержня в продольном изгибе // ПМТФ. 2001. Т. 42, № 2. С. 188–193.
- 4. **Писаренко Г. С., Яковлев А. П., Матвеев В. В.** Справочник по сопротивлению материалов. Киев: Наук. думка, 1975.
- 5. Захаров Ю. В., Захаренко А. А. Динамическая потеря устойчивости в нелинейной задаче о консоли // Вычисл. технологии. 1999. Т. 4, № 1. С. 48–54.