УДК 531.534:536.245.022

О математическом моделировании процессов зажигания и тления торфа^{*}

А.Н. Голованов¹, А.С. Якимов¹, А.А. Абрамовских¹, Я.Р. Суков²

1 Томский государственный университет,

²Институт мониторинга климатических и экологических систем СО РАН, Томск

E-mail: YakimovAS@mail.ru

На базе математической модели пористой реагирующей среды дается постановка и численное решение задачи о возникновении тления торфа в результате действия очага низового пожара. Найдено, что при умеренных температурах *T* ≤ 750 К зажигание и тление исходного реагента определяется интенсивностью внешнего очага горения, а также процессами сушки, пиролиза торфа и реакцией окисления прококсованного слоя.

Ключевые слова: торф, сушка, вода, пиролиз, тление

введение

Пожары на торфяниках наносят огромный ущерб окружающей среде и могут приводить к техногенным катастрофам. Однако торфяные пожары изучены мало по сравнению с обычными лесными пожарами из-за отсутствия сведений о механизме зажигания и распространения горения вглубь слоя торфа, а также из-за недостатка надежных данных о теплофизических и термокинетических коэффициентах торфа.

В настоящее время нет эффективных способов борьбы с торфяными пожарами. Наиболее распространен способ сканирования очага горения на торфянике с использованием бульдозеров и пожарных. Этот способ не является безопасным для противопожарной техники и обслуживающего персонала. Поэтому основной научно-технической проблемой в теории торфяных пожаров является исследование предельных условий зажигания слоя торфа и его потухания, а также определение контура торфяного пожара.

В работе [1] на основе результатов наблюдения за реальными торфяными пожарами в Томской области предложена общая математическая модель лесных пожаров. В дальнейшем публиковались результаты экспериментальных исследований торфяных пожаров [2], и на базе работы [1] был выполнен цикл работ по математическому моделированию торфяных пожаров [3–5], которые подтвердили

Работа выполнена при финансовой поддержке программы Федерального агенства по образованию (шифр гранта П 042242).

[©] Голованов А.Н., Якимов А.С., Абрамовских А.А., Суков Я.Р, 2008

физические основы математической модели [1]. В [6] предложена уточненная математическая модель торфяных пожаров второго поколения, в рамках которой учитываются двухтемпературность пористой среды, частицы пепла, сажи, дыма, свободной воды и влияние многокомпонентности газовой фазы.

В настоящей работе на основе модели [6] с учетом экспериментальных данных [7, 8] исследуется возникновение подземного пожара, когда торфяной слой поджигается сверху, а фронт горения распространяется вглубь пласта при различных внешних условиях и влагосодержании торфа.

1. ПОСТАНОВКА ЗАДАЧИ

Будем считать, что пожар на торфянике возникает в результате зажигания от наземного очага горения, действие которого на слой торфа моделируется заданием температуры очага T_e и коэффициентов тепло- и массообмена α_e и β_e . Рассматривается однотемпературная, одномерная, нестационарная задача, ось z направлена вертикально вниз, а начало координат выбирается на границе раздела слой торфа-атмосфера. Согласно [6], предполагаем, что в самом слое торфа имеют место испарение связанной воды (в отличие от [3-5], процесс испарения воды считается равновесным), экзотермическая реакция горения коксика, а также гомогенные реакции пиролиза торфа и горение оксида углерода. Поэтому торф в процессе зажигания считался многофазной средой, состоящей из сухого органического вещества, гигроскопической воды, прочно связанной с этим органическим веществом [6], продукта пиролиза органического вещества — коксика, а также конденсированного и газообразного продуктов горения. Принималось, что газовая фаза в слое торфа состоит из шести компонентов: CO, H₂O, O₂, CO₂ CH₄ и N₂. Влияние тепловыделения от горения компонента H₂ невелико из-за его незначительной начальной концентрации и низких температур, которые имели место в процессе тления проницаемого слоя торфа. Рассматривался слой торфа, у которого начальная объемная доля газовой фазы $\varphi_{5_{\rm H}}$ (0,1 < $\varphi_{5_{\rm H}}$ < 0,2) невелика по сравнению с объемными долями конденсированной фазы. Кроме того, процессы зажигания и тления торфа для упрощения анализа считались одномерными. Эта математическая модель представляет частный случай модели, предложенной в работе [6]. Будем считать, что в результате зажигания торфа образуется фронт горения, который состоит из зон прогрева, сушки и пиролиза торфа, а также зон горения газообразных и конденсированных продуктов пиролиза с последующим образованием слоя пепла.

Математически сформулированная выше задача сводится к решению следующей системы уравнений [6, 9]:

$$\frac{\partial \rho_5 \varphi_5}{\partial t} + \frac{\partial \rho_5 \varphi_5 v}{\partial z} = Q, \tag{1}$$

$$v = -\frac{\xi}{\mu} \frac{\partial P}{\partial z},\tag{2}$$

$$\sum_{i=1}^{4} c_{is} \rho_{is} \varphi_{i} \frac{\partial T}{\partial t} + \rho_{5} \varphi_{5} c_{p5} \left(\frac{\partial T}{\partial t} + v \frac{\partial T}{\partial z} \right) = \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + q_{1} r_{1} + q_{2} r_{2} + q_{1s} R_{1s} - q_{2s} R_{2s} + q_{3s} R_{3s} + q_{4s} R_{4s}, \qquad (3)$$

$$\varphi_5 \rho_5 \left(\frac{\partial c_\alpha}{\partial t} + v \frac{\partial c_\alpha}{\partial z} \right) = \frac{\partial}{\partial z} \left(\rho_5 \varphi_5 \ D_\alpha \frac{\partial c_\alpha}{\partial z} \right) - c_\alpha Q + R_\alpha, \quad \alpha = 1, 2, ..., N - 1,$$
(4)

$$\rho_{1s}\frac{\partial\varphi_1}{\partial t} = -R_{1s} , \qquad \rho_{2s}\frac{\partial\varphi_2}{\partial t} = -R_{2s} , \qquad (5)$$

$$\rho_{3s}\frac{\partial\varphi_3}{\partial t} = \alpha_c R_{1s} - R_{3s} - \alpha_4 R_{3s}, \quad \rho_{4s}\frac{\partial\varphi_4}{\partial t} = \alpha_4 R_{3s}, \quad (6)$$

$$\sum_{\alpha=1}^{N} c_{\alpha} = 1, \quad \varphi_{5} = 1 - \sum_{i=1}^{4} \varphi_{i}, \qquad P = \frac{\rho_{5} RT}{M}, \quad M^{-1} = \sum_{\alpha=1}^{N} \frac{c_{\alpha}}{M_{\alpha}}.$$

Для решения системы уравнений (1)–(6) необходимы следующие начальные и граничные условия:

$$T \mid_{t=0} = T_{\rm H}, \quad c_{\alpha} \mid_{t=0} = c_{\alpha \rm H}, \quad \alpha = 1, 2, ..., N-1,$$

$$\rho_{5} \mid_{t=0} = \rho_{5 \rm H}, \quad \varphi_{\rm i} \mid_{t=0} = \varphi_{\rm i \rm H}, \quad i = 1, ..., 4,$$

$$\partial T \mid$$
(7)

$$\alpha_{\rm e} \left(T_e - T_w \right) = \lambda \frac{\partial T}{\partial z} \bigg|_{z=0}.$$
 (8)

Используя аналогию процессов тепло- и массообмена [10] ($\beta_e = \alpha_e / c_{p5}$), имеем граничные условия:

$$\beta_{e}(c_{\alpha e} - c_{\alpha}|_{z=0}) = \varphi_{5} \rho_{5} D_{\alpha} \frac{\partial c_{\alpha}}{\partial z}\Big|_{z=0}, P|_{z=0} = P_{e},$$

$$\frac{\partial c_{\alpha}}{\partial z}\Big|_{z=L} = 0, \ \alpha = 1, 2, \dots, N-1, \ \frac{\partial P}{\partial z}\Big|_{z=L} = 0.$$

$$(9)$$

Здесь и ниже а — коэффициент температуропроводности, A_s — коэффициент аккомодации, с — массовая концентрация компонентов, с_р — коэффициент теплоемкости, D — коэффициент диффузии, d_p — диаметр цилиндрических пор, E_i, i=1, 2 — энергия активации гомогенных реакций окисления; L — толщина проницаемого слоя торфа, k — постоянная Больцмана, k_i , i = 1, 2 — предэкспоненциальные множители реакций окисления, М — молекулярный вес, Р — давление газа в порах, q_i , i = 1, 2 — тепловые эффекты реакций окисления, q_{is} , i = 1, 4 тепловые эффекты, R — универсальная газовая постоянная, r₁ и r₂ — молярнообъемные скорости окисления оксида углерода и метана, R_{1s} — массовая скорость разложения сухого реагента (торфа), R_{2s} — массовая скорость испарения связанной воды в торфе, R 35 — массовая скорость образования коксика, R_i , $i = \overline{1, 4}$ — массовая скорость образования и исчезновения компонентов газовой фазы в уравнении диффузии), s₂ — удельная поверхность испарения воды, s₃ — удельная поверхность реагирования углерода, t — время, T — температура торфа, v — скорость газообразных продуктов реакции разложения торфа, $x_i = c_i$ M/M_{j} , j = 1, ..., 5 — молярная концентрация, $y = \rho c/M$ — молярно-объемная концентрация, z — пространственная координата, α_e — коэффициент теплообмена, $\alpha_{\rm c}$ — доля кокса в ходе реакции пиролиза торфа, $\alpha_4 = v_4 M_{4{\rm s}} / (v_3 M_{3{\rm s}})$ — приведенный стехиометрический коэффициент [10], β_e — коэффициент массообмена,

 $\varepsilon_{j,\alpha}$ — потенциальная энергия взаимодействия молекул, η_i , $i = \overline{1, 4}$ — безразмерные параметры, λ — коэффициент теплопроводности, $\mu = \mu_{\rm H} (T/T_{\rm H})^{0.5}$ — коэффициент динамической вязкости смеси газов, $\sigma_{i,j}$ — сечения взаимодействия молекул, $\xi = \xi_* \varphi_5^3 / (1-\varphi_5)^2$ — функция, описывающая влияние объемной доли газа на сопротивление, $\xi_* = d_p^2/120$ — характерная проницаемость, ρ — плотность, ρ_5 — плотность газовой фазы, φ_i , $i = \overline{1-4}$ — безразмерные объемные доли, φ_5 — объемная доля газовой фазы в торфе, ω — линейная скорость тления торфа, индексы: s — конденсированная фаза, e — внешняя среда, звездочка * характерная величина, с — кокс, н — начальное значение, 1, ..., 6 — в газовой фазе соответствуют оксиду углерода, парам воды, кислороду, диоксиду углерода, метану, азоту, 1s, ..., 4s — в конденсированной фазе — торф, связанная вода, кокс, зола, р — пора, ан — аналитическое решение.

2. КОЭФФИЦИЕНТЫ ПЕРЕНОСА, ТЕПЛОФИЗИЧЕСКИЕ И ТЕРМОКИНЕТИЧЕСКИЕ ПОСТОЯННЫЕ

Итоговые гомогенные химические реакции в проницаемом слое торфа [11, 12]:

$$CO + 1/2 O_2 = CO_2, CH_4 + 2O_2 = CO_2 + 2H_2O.$$
 (10)

Уравнения химической кинетики имеют вид [12]:

$$\frac{dy_1}{dt} = -k_1 x_1 x_3^{0.25} T^{-2,25} \exp\left(-\frac{E_1}{RT}\right) = r_1,$$

$$\frac{dy_2}{dt} = -k_2 x_5^{-0.5} x_3^{1,5} \frac{P}{T} \exp\left(-\frac{E_2}{RT}\right) = r_2.$$

Для испарения связанной воды в объеме конденсированной фазы торфа используется закон Герца–Кнудсена [11]

$$R_{2s} = \frac{s_2 M_2 A_s \varphi_2 [k_{2s} \exp(-E_{2s} / RT) - P_2]}{(2\pi RTM_2)^{0.5}}$$

Для нахождения парциального давления паров воды в слое торфа P_2 используется закон Дальтона [13], согласно которому $P_2/P = x_2$. Тогда для P_2 имеем выражение

$$P_2 = P c_2 \frac{M}{M_2}.$$

Эффективный коэффициент диффузии берется по формуле Фристрома-Вестенберга [10, 14]:

$$D_{\alpha} = (1 - c_{\alpha}) \left(\sum_{\substack{j=1\\j \neq \alpha}}^{N} \frac{x_j}{d_{\alpha,j}} \right)^{-1}, \quad d_{\alpha,j} = 2,628 \cdot 10^{-7} \frac{\left[(M_{\alpha} + M_j) / (M_{\alpha}M_j) \right]^{0.5} T^{1,67}}{P \sigma_{j,\alpha}^2 (\varepsilon_{j,\alpha} / kT)^{0,17}}.$$

Формула для коэффициентов теплопроводности компонентов газовой фазы λ_j , j = 1, 2, ..., N взята из работы [15]:

$$\lambda_{5s} = \sum_{i=1}^{N} \lambda_i c_i, \ \lambda_j = \lambda_j^0 \left(0.115 + 0.354 \frac{c_{\mathrm{p, }j}}{R} \right), \ \lambda_i^0 = 8.32 \quad 10^{-2} \frac{\sqrt{M_{\mathrm{i}}T}}{M_{\mathrm{i}} \sigma_{\mathrm{i}}^2 \Omega^{(2,2)}}.$$

Коэффициенты теплоемкости компонентов газовой фазы $c_{p,j} = \lambda = \sum_{i=1}^{5} \lambda_{i,s} \varphi_i$ +

+ $b_j T$ + + c'_j / T^2 берутся из [16], а значения величин λ_{is} в конденсированной фазе приведены в работе [11]:

$$c_{p5} = \sum_{j=1}^{N} c_{pj} c_j, \quad \lambda = \sum_{i=1}^{5} \lambda_{is} \varphi_i.$$

Источники и стоки из (1), (3)-(6) имеют вид:

$$\begin{aligned} R_{1} &= \eta_{1}R_{1s} - M_{1}r_{1}, \ R_{2} = \eta_{2}R_{1s} - R_{2s}, + 2M_{2}r_{2}, \ R_{3} = -\eta_{3}R_{3s} - M_{3}r_{1}/2 - 2M_{3}r_{2} \\ R_{4} &= M_{4}(r_{1} + r_{2}), R_{5} = \eta_{4}R_{1s} - M_{5}r_{2}, \ R_{1s} = k_{1s}\rho_{1s}\varphi_{1}\exp\left(-\frac{E_{1s}}{RT}\right), \\ R_{3s} &= \frac{M_{c}}{M_{3}}s_{3}k_{3s}\varphi_{5}\rho_{5}\varphi_{3}c_{3}\exp\left(-\frac{E_{3s}}{RT}\right), \ Q = (1 - \alpha_{c})R_{1s} + R_{2s} + R_{3s}, \\ \alpha_{c} &= \frac{M_{c}}{M_{H} - M_{c}}, \ \eta_{1} = \frac{M_{1}}{M_{H}}, \ \eta_{2} = \frac{M_{2}}{M_{H}}, \ \eta_{3} = \frac{M_{3}}{M_{c}}, \ \eta_{4} = \frac{M_{5}}{M_{H}}. \end{aligned}$$

3. МЕТОДИКА РАСЧЕТА И ИСХОДНЫЕ ДАННЫЕ

Система уравнений (1)–(6) с краевыми условиями (7)–(9) решалась итерационно-интерполяционным методом [17] с переменным шагом по времени с заданной точностью. Программа численного решения задачи тестировалась точным аналитическим решением по методу пробной функции [17]. Для разных шагов по пространству отклонение численного решения от точного значения на заданном промежутке времени не превышало 1 %.

Линейная скорость поверхности тления торфа определялась по формуле

$$\omega = \frac{\Delta z}{\Delta t_*} = \frac{z_{(k)} - z_{(k-1)}}{t_{*(k)} - t_{*(k-1)}},$$

где $t_{*(k)}$ и $t_{*(k-1)}$ — время достижения температуры тления T_* при $z = z_{(k)}$ и $z = z_{(k-1)}$, где k — текущий, (k-1) — предыдущий слой по z.

Для теплофизических и термокинетических параметров торфа использовались данные работ [7, 8, 11, 18–20]. Теплофизические значения воды и водяного пара брались из работы [21]. Приведенные ниже результаты получены при $T_{\rm H} = 293$ K, $T_* = 650$ K, $\omega_* = 10^{-5}$ м/с, $P_{\rm H} = 1,013 \cdot 10^5$ H/m², $T_{\rm e} = 800 - 1000$ K, $\mu_{\rm H} = 1,81 \cdot 10^{-5}$ кг/ (м·с), $\alpha_{\rm e} = 0,5 - 1,0$ BT/(м²·K), $M_1 = 28$ кг/кмоль, $M_2 = 18$ кг/ кмоль, $M_3 = 32$ кг/ кмоль, $M_4 = 44$ кг/кмоль, $M_5 = 16$ кг/кмоль, $M_6 = 28$ кг/ кмоль, $M_c = 12$ кг/кмоль, $M_{\rm H} = 100$ кг/кмоль, L = 1 м, $\rho_{\rm 1s} = 572 - 1180$ кг/м³, $\rho_{\rm 2s} = 1,8 \cdot 10^3$ кг/м³, $\rho_{\rm 3s} = 200$ кг/м³, $\rho_{\rm 4s} = 200$ кг/м³, $c_{\rm 1s} = 951$ Дж/ (кг·K), $c_{\rm 2s} = 2,1 \cdot 10^3$ Дж/(кг·K), $c_{\rm 3s} = 1,02 \cdot 10^3$ Дж/(кг·K), $c_{\rm 4s} = 1,2 \cdot 10^3$ Дж/(кг·K), $d_{\rm p} = 5 \cdot 10^{-6}$ м, R = 8,314 Дж/(моль·K), $\lambda_{\rm 1s} = 1,84$ BT/(м·K), $\lambda_{\rm 2s} = 0,6$ BT/(м·K), $\lambda_{\rm 3s} = 0,041$ BT/(м·K), $\lambda_{\rm 4s} = 0,041$ BT (м·K), $A_{\rm s} = 0,08$,

 $k_{1s} = 5 \cdot 10^3 \text{ c}^{-1}, E_{1s} = 54,47 \text{ кДж/моль}, q_{1s} = -10^4 \text{ Дж/кг}, k_{2s} = 8 \cdot 10^5 \text{ кг/} (c^2 \cdot \text{ м}), E_{2s} = 16,76 \text{ кДж/моль}, q_{2s} = 2,26 \cdot 10^6 \text{ Дж/кг}, k_{3s} = 5 \cdot 10^3 \text{ м/c}, E_{3s} = 41,87 \text{ кДж/моль}, q_{3s} = 5 \cdot 10^3 \text{ Дж/кг}, c_{1H} = 0,05, c_{2H} = 5 \cdot 10^{-5}, c_{3H} = 0,025 - 0,23, c_{4H} = 10^{-5}, c_{5H} = 0,2, c_{\alpha e} = c_{\alpha H}, \alpha = 1, 2, 4, 5, c_{3e} = 10^{-3}, \varphi_{1H} = 0,5 - 0,7, \varphi_{2H} = 0,1 - 0,4, \varphi_{3H} = 10^{-3}, \varphi_{4H} = 10^{-5}, s_2 = 0,08, s_3 = 0,05, \alpha_4 = 0,7, \eta_1 = 0,2, \eta_2 = 0,02, \eta_4 = 0,3.$

4. АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ О ПРОГРЕВЕ ИНЕРТНОГО СЛОЯ ТОРФА И ПРОВЕРКА ЧИСЛЕННОГО РЕШЕНИЯ

Точное аналитическое решение задачи о прогреве полубесконечного инертного тела при граничных условиях третьего рода:

$$\begin{aligned} \frac{\partial T}{\partial t} &= a \frac{\partial^2 T}{\partial z^2}, \quad t > 0, \quad 0 < z < \infty, \quad T \mid_{t=0} = T_{\rm H}, \\ \lambda \frac{\partial T}{\partial z} \mid_{z=0} &+ \alpha_{\rm e} (T_{\rm e} - T \mid_{z=0}) = 0, \quad T \mid_{z \to \infty} = T_{\rm H}, \end{aligned}$$

найдено в работе [22]:

$$T = T_{\rm e} - (T_{\rm e} - T_{\rm H}) \left[\Phi\left(\frac{z}{2\sqrt{at}}\right) + \exp(\gamma \ z + \psi) \Phi^*\left(\frac{z}{2\sqrt{at}} + \sqrt{\psi}\right) \right],$$

$$\Phi(z) = \frac{2}{\sqrt{\pi}} \int_0^z \exp(-y^2) dy, \quad \Phi^*(z) = 1 - \Phi(z), \quad \gamma = \alpha_{\rm e}/\lambda, \quad \psi = at\gamma^2.$$

Результаты в табл. 1 получены при $T_{\rm H} = 293$ К, $T_{\rm e} = 893$ К, $\alpha_{\rm e} = 2$ Вт/(м² · K), $(\sum_{i=1}^{4} c_{is} \rho_{is} \varphi_{i})|_{t=0} = 1,378 \cdot 10^{6}$ Дж/(м³·К), $(\sum_{i=1}^{4} \lambda_{is} \varphi_{i})|_{t=0} = 1,301$ Вт/ (м·К), $a = 0,9445 \cdot 10^{-6}$ м²/с, $\gamma = 1,53728$ м⁻¹, L = 0,5 м (L — моделирует число бесконечность). Из табл. 1 видно, что для малых моментов времени точность численного решения T не превышает аналитического $T_{\rm ah}$ с погрешностью меньше 1 %.

Таблица 1

Сравнение погрешностей численного и аналитического решений задачи прогрева инертного тела

					<i>z</i> , м			
<i>t</i> , мин	Т, К	0	0,005	0,01	0,015	0,02	0,025	0,1
0,1	Т _{ан}	294,98	293,46	293	293	293	293	293
	Т	294,70	293,17	293,01	293	293	293	293
	$ T-T_{aH} $	0,28	0,29	0,01	0	0	0	0
0,25	Тан	296,24	294,20	293,51	293	293	293	293
	Т	296,36	293,76	293,12	293,01	293	293	293
	$ T-T_{aH} $	0,12	0,34	0,39	0,01	0	0	0
0,5	Т _{ан}	297,58	294,68	293,36	293,03	293	293	293
	Т	298,14	294,88	293,54	293,12	293	293	293
	$ T-T_{aH} $	0,56	0,20	0,22	0,08	0	0	0
1,0	Тан	299,78	296,42	294,25	293,36	293,12	293	293
	Т	300,48	296,82	294,68	293,64	293,21	293,05	293
	$ T-T_{aH} $	0,70	0,40	0,43	0,28	0,09	0,05	0

Таблица 2

a	$arphi_{1_{ m H}}$	$arphi_{2 ext{h}}$	α_e , BT/(M ² ·K)	<i>Т_е</i> , К			
$ ho_{1s}$, KI/M				1000	900	800	
			1,0	18,7	32,3	79,7	
1180	0,7	0,1	0,75	40	69,3	103	
			0,5	110	161	235	
			1,0	55	109	182	
923	0,7	0,2	0,75	120	185	282	
			0,5	261	349	467	
			1,0	200	224	287	
776	0,6	0,3	0,75	230	293		
			0,5	408			
672	0,5	0,4	1,0	271	455		
			0,75	462			

Время зажигания образцов торфа (t*, ч)

5. РЕЗУЛЬТАТЫ ЧИСЛЕННОГО РЕШЕНИЯ И ИХ АНАЛИЗ

Сначала исследовался режим зажигания и тления слоя торфа при различных внешних условиях (зажигание от наземного очага горения). Временем возникновения торфяного пожара назовем величину $t = t_*$, при которой для $T \ge T_*$ впервые скорость тления равна или превышает характерную ω_* , а температура поверхности реагента резко возрастает до $T_w = 750$ К. Для определенности полагаем, что $T_* = 650$ К и $\omega_* = 10^{-5}$ м/с известны из эксперимента [2]. При $T_w < T_*$ имеет место режим отсутствия тления реагента, при котором его скорость сравнима со скоростью пиролиза торфа, а в табл. 2 время режима пиролиза отмечено прочерком.

В табл. 2 приведено время зажигания реагента при различных $T_{\rm e}$, $\alpha_{\rm e}$, ρ_{1s} , $\varphi_{1\rm H}$, $\varphi_{2\rm H}$ для $c_{3\rm H} = 0,23$, значениях плотности $\sum_{i=1}^{4} \rho_{is} \varphi_{i\rm H} = 1006$ кг/м³ и опорных входных данных из раздела 3. Как видно из табл. 2, с увеличением количества влаги и с уменьшением плотности торфа ρ_{1s} (ростом рыхлости образца) время зажигания увеличивается. Это связано как с превышением теплоотвода за счет испарения влаги над теплоприходом от экзотермической реакции окисления кокса, так и с наличием в порах воздуха, который снижает эффективный коэффициент теплопроводности и увеличивает время прогрева образцов. В результате при 800 K $\leq T_{\rm e} \leq$

 \leq 900 К, $\alpha_{\rm e} \leq$ 0,75 Вт/(м² · К), $\varphi_{2\rm H} =$ 0,3–0,4 зажигание реагента не происходит,

а скорости тления образцов по порядку величины сравнимы со скоростью пиролиза торфа. Это обусловлено уменьшением интенсивности воздействия внешнего очага горения и ростом теплоотвода, связанного с увеличением затрат энергии на испарение воды.

На рис. 1 зависимость времени зажигания реагента от коэффициента теплообмена представлена для

Рис. 1. Зависимость времени зажигания торфа от коэффициента теплообмена для внешнего источника с температурой $T_e = 1000 (1), 900 (2), 800 (3)$ К.

Рис. 2. Зависимость температуры торфа от пространственной переменной в различные моменты времени: 25 (1), 50 (2), 75 (3), 100 (4), 109 (5) ч.

внешнего источника при $\varphi_{1H} = 0,7$, $\varphi_{2H} = 0,2$, $\rho_{1s} = 923 \text{ кг/м}^3$, $c_{3H} = 0,23$ и входных данных из раздела 3 (см. табл. 2). Из анализа численного решения задачи следует, что с увеличением интенсивности внешнего воздействия (T_e , α_e) время зажигания сокращается. При уменьшении величины коэффициента теплообмена $\alpha_e < 0,5 \text{ Вт/(M}^2 \cdot \text{K})$ для

 $800 \le T_{\rm e} \le 900$ скорость тления не превышает скорости пиролиза торфа, и зажигание образца отсутствует. Это связано как с уменьшением массообмена с внешней средой (недостаточно кислорода в порах реагента), так и с ростом теплоотвода во внешнюю среду, который становится большим и превышает теплоприход от экзотермической реакции окисления кокса.

На рис. 2 изображены поля температур конденсированной фазы, а на рис. 3 — концентрации компонентов в проницаемой среде (торфе) по пространству для

Рис. 3. Распределение безразмерных концентраций компонент по глубине образца для опорных входных данных в те же моменты времени, что и на рис. 2.

режима тления в различные моменты времени при $\varphi_{1H} = 0.7$, $\varphi_{2H} = 0.2$, $c_{3H} = 0.23$, $\rho_{1s} = 923 \text{ кг/м}^3$, $T_e = 900 \text{ K}$, $\alpha_e = 1 \text{ Br/(} \text{м}^2 \cdot \text{K})$ и опорных входных данных из раздела 3 (см. табл. 2). Объемные доли компонентов пористой среды по пространству приведены на рис. 4 для исходного реагента (φ_1), связанной воды в жидкокапельном состоянии (φ_2), кокса (φ_3), золы (φ_4). Из анализа результатов численного решения задачи следует, что с ростом температуры проницаемого фрагмента среды сначала имеет место прогрев и испарение связанной воды, при этом объемная доля связанной воды при t > 75 ч исчезает, превращаясь в концентрацию паров $H_{2}O$ (см. рис. 3, *a*). В области высокой температуры (T > 380 K) начинается процесс пиролиза исходного реагента с появлением основной массы паров воды и кокса (см. на рис. 4 линии φ_3). Далее продукт пиролиза — кокс начинает выгорать (тлеть) в результате экзотермической реакции окисления вглубь фрагмента пористой среды с образованием золы (см. на рис. 4 линии 4–5 для φ_4). Надо сказать, что метан CH_4 при $T \le 750$ K практически не окисляется в ходе гомогенной реакции из (10) с образованием H_2O и CO_2 (см. на рис. 3, а штриховую и штриховую с двумя точками линию, а на рис. 3, b штриховую линию для CH_4), т. к. концентрация H₂O и CH₄ мала или изменяется незначительно в силу низких температур реагирующей среды. Известно [12], что газофазные реакции окисления (10) интенсивно начинаются при *T* > 1000 К.

Следует отметить, что за все время прогрева и тления торфа, в основном в проницаемой среде, доминирует инертный компонент азот (см. рис. 3, *b*, кривые c_6). С течением времени t > 75 ч, в результате сушки, пиролиза торфа и последующего тления, связанного с уменьшением концентрации кислорода (см. рис. 3, *a*, линии c_3), появление газообразных продуктов: паров воды, оксида и диоксида углерода (см. рис. 3, *a*, кривые c_2 , c_1 , c_4 соответственно) несколько оттесняет азот в проницаемой среде в окрестности T_w , а скорость тления торфа определяется скоростью поступления кислорода в очаг горения из внешней среды.

На рис. 5 представлена величина линейной скорости процесса тления торфа от времени для $\varphi_{1H} = 0.7$, $\varphi_{2H} = 0.2$, $\rho_{1s} = 923 \text{ кг/m}^3$, $T_e = 900 \text{ K}$, $\alpha_e = 1 \text{ Br/(m}^2 \cdot \text{K})$ и опорных данных из раздела 3 (см. табл. 2). Кривая *1* отвечает начальной концентрации кислорода $c_{3H} = 0.23$, $2 - c_{3H} = 0.05$, $3 - c_{3H} = 0.025$. Видно, что при

Рис. 4. Зависимости безразмерных объемных долей от пространственной переменной в те же моменты времени, что и на рис. 2.

Рис. 5. Зависимость линейной скорости тления торфа от времени (входные данные рис. 2): $c_{3\mu} = 0,23$ (1), 0,05 (2), 0,025 (3).

уменьшении концентрации кислорода $c_{3\rm H}$ в воздухе с 0,23 до 0,05 и 0,025, время зажигания реагента увеличивается до $t_{*1} = 109$, $t_{*2} = 125$, $t_{*3} = 167$, что обусловлено лимитированием процесса тления реагента содержанием

окислителя в порах торфа. Этот результат качественно согласуется с экспериментальными данными работы [23], где одним из способов борьбы с почвенными пожарами был предложен метод, основанный на изоляции очагов горения от окружающего воздуха. При этом среднее значение скорости тления торфа (см. рис. 5) по порядку величины согласуется с экспериментальными данными [2, 7].

Представляет интерес исследование влияния зависимости содержания начальных объемных долей исходного реагента и влаги ($\varphi_{i_{\rm H}}$, i = 1, 2) на скорость процесса тления торфа. С уменьшением объемной доли влаги с $\varphi_{2_{\rm H}} = 0,3$ до 0,2 и 0,1, для значения $\varphi_{1_{\rm H}} = 0,6$ имеет место укорачивание времени зажигания $t_{*1} =$ $= 209, t_{*2} = 112, t_{*3} = 29$, что связано, в основном, с затратами тепла на испарение связанной воды в торфе. С уменьшением запаса начального значения исходного проницаемого реагента от $\varphi_{1_{\rm H}} = 0,7$ до 0,6 и 0,5 (с ростом начальной проницаемости торфа $\xi_{\rm H}$: 2,5 · 10⁻¹⁶, 10⁻¹⁵, 2,6 · 10⁻¹⁵ · м²), для значения влаги $\varphi_{2_{\rm H}} = 0,2$ время зажигания увеличивается: $t_{*3} = 109, t_{*4} = 120, t_{*5} = 194$, и это связано с ростом пористости торфа — наличием воздуха, который снижает эффективный коэффициент теплопроводности и увеличивает время прогрева образцов. Этот результат качественно согласуется с экспериментальными данными [7].

ЗАКЛЮЧЕНИЕ

1. Дана постановка задачи о зажигании слоя торфа с базой данных, учитывающей процессы сушки, пиролиза и окисления газообразных и конденсированных продуктов.

2. При изменении T_e и α_e в пределах 800 K $\leq T_e \leq 1000$ K и 0,5 $\leq \alpha_e \leq 1,0$ Вт/(м²·K) период зажигания торфа определяется интенсивностью внешнего очага горения ($\alpha_e \cdot T_e$), начальным содержанием окислителя в порах реагента c_{3H} , процессами сушки, пиролиза торфа и экзотермической реакцией окисления прококсованного слоя.

 Результаты расчетов по величине скорости тления торфа согласуются с экспериментальными данными [2, 7].

4. Установлено, что с ростом объемной доли влаги при $\varphi_{1H} = 0,6$ и повышении пористости торфа при $\varphi_{2H} = 0,2$ время зажигания реагента увеличивается. При снижении содержания кислорода в воздухе время зажигания торфа возрастает.

ОБОЗНАЧЕНИЯ

- *а* коэффициент температуропроводности, м²/с,
- *А_s* коэффициент аккомодации,
- c_p коэффициент теплоемкости, Дж/(кг·К),
- с массовая концентрация компонентов,
- *D* коэффициент диффузии, м²/с,
- $d_{\rm p}$ диаметр цилиндрических пор, м,
- *E_i*, *i* = 1, 2 энергия активации гомогенных реакций окисления, Дж/моль,
- L толщина проницаемого слоя торфа, м,
- k постоянная Больцмана, Дж/К,
- k_i , i = 1, 2 предэкспоненциальные множители реакций окисления, c^{-1} ,
- М молекулярный вес, кг/кмоль,
- P давление газа в порах, H/M^2 ,
- q_i , i = 1, 2 тепловые эффекты реакций окисления, Дж/кг,
- $q_{is}, i = 1, 4$ тепловой эффект, Дж/кг,
- *R*—универсальная газовая постоянная, Дж /(моль·К),
- *r*₁ и *r*₂ молярно-объемные скорости окисления оксида углерода и метана,
- R_{1s} массовая скорость разложения сухого реагента (торфа), кг/(m^{3}/c),
- R_{2s} массовая скорость испарения связанной воды в торфе, кг/(m^3/c),
- R_{3s} массовая скорость образования коксика, $\kappa\Gamma/(m^3/c)$,
- R_i , i = 1, 4 массовая скорость образования и исчезновения компонент газовой фазы в уравнении диффузии, кг/(m^3/c),
- s_2 удельная поверхность испарения воды, м⁻¹,
- s_3 удельная поверхность реагирования углерода, M^{-1} ,
- *t* время, ч,

- $t_{*(k)}$ и $t_{*(k-1)}$ время достижения температуры тления T_* при $z = z_{(k-1)}$, (k-1) предыдущий слой по z,
- *Т*_{*} температура торфа, К,
- v скорость выделения газообразных продуктов реакции разложения торфа, м/с,
- $x_j = c_j M/M_j, j = 1, ..., 5$ молярная концентрация,
- $y = \rho c/M$ молярно-объемная концентрация, моль/см³,
- *z* пространственная координата, м,
- α_e коэффициент теплообмена, Bт/(м²·K),
- $\alpha_4 = v_4 M_{4_5} / (v_3 M_{3_5})$ приведенный стехиометрический коэффициент [10],
- $\alpha_{\rm c}$ доля кокса в ходе реакции пиролиза торфа,
- β_e коэффициент массообмена, кг/(м²·с),
- ε_{j,α} потенциальная энергия взаимодействия молекул, Дж,
- η_i , *i* = 1, 4 безразмерные параметры,
- λ коэффициент теплопроводности, Bт/(м·K),
- $\mu = \mu_{\rm H} (T/T_{\rm H})^{0.5}$ коэффициент динамической вязкости смеси газов, кг/(м·с),
- $\sigma_{i,j}$ сечения взаимодействия молекул, ангстрем;
- $\xi = \xi_* \varphi_5^3 / (1 \varphi_5)^2$ функция, описывающая влияние объемной доли газа на сопротивление,
- $\xi_* \varphi_5^3 / 120$ характерная проницаемость, м²,
- ρ плотность кг/м³,
- ρ_5 плотность газовой фазы, кг/м³,
- ϕ безразмерная объемная доля,
- φ_5 объемная доля газовой фазы в торфе,
- ω линейная скорость тления торфа, м/с.

ИНДЕКСЫ

s — конденсированная фаза,

е — внешняя среда,

*(звездочка) — характерная величина,

с — кокс,

- ан аналитическое решение,
- н начальное значение,

- …, 6 в газовой фазе соответствуют оксиду углерода, парам воды, кислороду, диоксиду углерода, метану, азоту,
- 1s, ..., 4s в конденсированной фазе торф, связанная вода, кокс, зола,
- р пора.
- 1. Гришин А. М. Математические модели лесных пожаров. Томск: Изд-во Том. ун-та, 1981. 277 с.
- Борисов А. А., Борисов Ал. А., Горелик Р. С. и др. Экспериментальное исследование и математическое моделирование торфяных пожаров // Теплофизика лесных пожаров. — Новосибирск, ИТФ СО РАН СССР, 1984. — С. 5–22.
- Субботин А. Н. Математическое моделирование распространения фронта пожара на торфяниках // Механика реагирующих сред и ее приложения. — Новосибирск: Наука, 1989. — С. 57–63.
- 4. Субботин А. Н. Закономерности развития подземного пожара при разных условиях тепло- и массообмена с внешней средой // Тепломассообмен — ММФ — 2000: IV Минский Междунар. форум, 22–26 мая 2000, Минск. — 2000. — Т. 4. — С. 224–231.
- 5. Субботин А. Н. О некоторых особенностях распространения подземного пожара // Инженернофизический журнал. — 2003. — Т. 76, № 5. — С. 159–165.

СПИСОК ЛИТЕРАТУРЫ

- 6. Гришин А. М. Общие математические модели лесных и торфяных пожаров и их приложения // Успехи механики. — 2002. — Т. 1, № 4. — С. 41–89.
- 7. Гришин А. М., Голованов А. Н., Суков Я. В., Прейс Ю. И. Экспериментальное определение характеристик зажигания и горения торфа // Инженерно-физический журнал. 2006. Т. 78, № 1. С. 137–142.
- 8. Гришин А. М., Голованов А. Н., Суков Я. В. Экспериментальное определение теплофизических, термокинетических и фильтрационных характеристик торфа // Инженерно-физический журнал. 2006. Т. 79, № 3. С. 131–135.
- **9. Полубаринова-Кочина П. Я.** Развитие исследований по теории фильтрации в СССР. М.: Наука, 1969. 545 с.
- Гришин А. М., Фомин В. М. Сопряжённые и нестационарные задачи механики реагирующих сред. Новосибирск: Наука, Сиб. отд-ние, 1984. — 319 с.
- 11. Гришин А. М. Физика лесных пожаров. Томск: Изд-во Том. ун-та, 1999. 207 с.
- 12. Щетинков Е.С. Физика горения газов. М.: Наука, 1965. 739 с.
- Алексеев Б. В., Гришин А. М. Физическая газодинамика реагирующих сред. М.: Высшая школа, 1985. — 464 с.
- Campbell E. C., Fristrom R. M. Reaction kinetics thermodynamics and transportin the hydrogen bromine system // Chemical Rewiews. — 1958. — Vol. 38, No. 2. — P. 173–234.
- 15. Основы практической теории горения / Под ред. В. В. Померанцева. Л.: Энергия, 1973. 264 с.
- **16. Мищенко К. П., Равдель А. А.** Краткий справочник физико-химических величин. Л.: Химия, 1972. 200 с.
- **17.** Гришин А. М., Зинченко В. И., Ефимов К. Н. и др. Итерационно-интерполя-ционный метод и его приложения. Томск: Изд-во Том. ун-та, 2004. 320 с.
- 18. Лиштван. И. И., Базин Е. Т., Гамаюнов Н. И., Терентьев А. А. Физика и химия торфа. М.: Недра, 1989. — 304 с.
- 19. Справочник по торфу / Под ред. А. В. Лазарева, С. С. Корчунова. М.: Недра, 1982. 440 с.
- 20. Борисов А. А., Кисилёв Я. С., Удилов В. П. Кинетические характеристики низкотемпературного горения торфа // Теплофизика лесных пожаров. — Новосибирск, ИТФ СО РАН СССР, 1984. — С. 23–30.
- Вукалович М. П., Ривкин С. А., Александров А. А. Таблицы теплофизических свойств воды и водяного пара. — М.: Изд-во Стандартов, 1969. — 430 с.
- 22. Лыков А. В. Теория теплопроводности. М.: Высшая школа, 1967. 599 с.
- 23. Гундар С.В. Определение минимальной концентрации кислорода при беспламенном горении почв // Лесное хозяйство. — 1976. — № 5. — С. 53–54.

Статья поступила в редакцию 17 марта 2008 г.