УДК 546

ЗАКОНОМЕРНОСТИ АВТОВОЛНОВОГО СИНТЕЗА ЛИТЫХ ДВОЙНЫХ СИЛИЦИДОВ МОЛИБДЕНА, ВОЛЬФРАМА, НИОБИЯ И ТИТАНА ИЗ СМЕСЕЙ ТЕРМИТНОГО ТИПА

В. А. Горшков, П. А. Милосердов, В. И. Юхвид

Институт структурной макрокинетики и проблем материаловедения РАН, 142432 Черноголовка gorsh@ism.ac.ru

Исследованы процессы горения и фазоразделения в CBC-системах термитного типа при синтезе литых композиционных материалов на основе силицидов молибдена, вольфрама, ниобия и титана в широком интервале соотношений между ними. Термодинамические расчеты для «горячих» систем $MoO_3/2Al/2Si$ и $WO_3/2Al/2Si$ показали сильное влияние давления на температуру горения и выход газообразных продуктов, при этом для «холодных» систем $3Nb_2O_5/10Al/12Si$ и $3TiO_2/4Al/6Si$ такой зависимости не обнаружено. Экспериментально исследовано влияние соотношения исходных реагентов и активирующей высокотемпературной добавки ($CaO_2 + Al$) на параметры процессов горения и фазоразделения.

Ключевые слова: горение, термитная смесь, давление газа, температура и скорость горения, плавление, фазоразделение, литые силициды.

ВВЕДЕНИЕ

Силициды переходных металлов широко используются для изготовления высокотемпературных нагревателей электрических печей, работающих в воздушной среде, и для получения защитных жаростойких покрытий. В практике наиболее широко распространен дисилицид молибдена [1]. Для улучшения механических свойств композиционных материалов на основе MoSi₂ в него вводят добавки Nb, W, Ti, ZrO₂, WSi₂, NbSi₂ и т. д. [2, 3].

Для получения спеченного дисилицида молибдена в Институте структурной макрокинетики и проблем материаловедения РАН была разработана и внедрена в производство высокотемпературных нагревателей (г. Кировакан, Армения) СВС-технология, использующая для синтеза смеси Мо и Si [4].

Одним из наиболее перспективных методов синтеза литых композиционных материалов на основе силицида молибдена является автоволновой синтез (СВС-металлургия) [5–8].

В настоящей работе впервые проведено детальное исследование горения CBC-систем термитного типа, используемых для синтеза литых двойных силицидов молибдена, вольфрама, ниобия и титана.

МЕТОДИКИ ИССЛЕДОВАНИЯ

Компоненты термитных составов выбирали исходя из их термической стабильности, возможности достигать высокой температуры горения и получать литые силициды переходных металлов.

Соотношения реагентов исходных смесей рассчитывали по следующим схемам химического превращения:

 $MoO_3 + 2Al + 2Si \rightarrow MoSi_2 + Al_2O_3$, (I)

$$WO_3 + 2Al + 2Si \rightarrow WSi_2 + Al_2O_3$$
, (II)

 $3Nb_2O_5 + 10Al + 12Si \rightarrow$

$$\rightarrow 6 \text{NbSi}_2 + 5 \text{Al}_2 \text{O}_3, \quad (\text{III})$$

$$3\text{TiO}_2 + 4\text{Al} + 6\text{Si} \rightarrow 3\text{TiSi}_2 + 2\text{Al}_2\text{O}_3.$$
 (IV)

Исходные данные обозначены соответственно I–IV.

Термодинамический расчет адиабатической температуры горения и образования газообразных продуктов при горении систем I–IV в зависимости от давления проведен по программе «Thermo» [9]. Результаты представлены на рис. 1. Видно, что при $p_0 = 0.1$ МПа

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 13-08-00864).

[©] Горшков В. А., Милосердов П. А., Юхвид В. И., 2014.

температура горения смесей I-IV равна 2602, 2454, 2326 и 1522 К соответственно. Существенный рост температуры горения систем I, II ($T_{\rm I}$ и $T_{\rm II}$) наблюдается при увеличении давления до 5 и 4 МПа, после чего кривые выходят на плато. При этом массовая доля газообразных продуктов (a_i) резко уменьшается. В системах III и IV расчетная температура горения с ростом давления практически не меняется, а газообразные продукты отсутствуют. Следует отметить, что смесь, состав которой рассчитан по схеме IV, способна гореть только при инициировании ее с помощью высокоэкзотермической активирующей добавки на основе пероксида кальция. Температура ее горения при p =5 МПа составляет 4249 К, а конечными продуктами являются оксиды алюминия и кальция, попадающие в верхний оксидный слиток

целевых продуктов — силицидов металлов. Исходя из анализа представленных на рис. 1 результатов термодинамических расчетов для проведения экспериментов было выбрано начальное давление газовой среды в реакторе $p_0 = 5$ МПа.

конечных продуктов и не влияющие на состав

В экспериментах использовали смеси порошков оксидов молибдена, вольфрама, ниобия и титана марки ЧДА с алюминием марки АСД-1 и кремнием марки КР-0. Исходные смеси уплотняли на вибростоле и сжигали в прозрачных кварцевых стаканчиках диаметром 20 мм. Масса смесей во всех экспериментах составляла 20 г, а высота слоя — 50 мм. Исследования проводили в реакторе объемом 3 л в среде аргона при $p_0 = 5$ МПа.

Процесс горения исследовали визуально и с помощью видеокамеры.

В экспериментах определяли скорость горения (u), прирост давления в реакторе (Δp) , потерю массы смеси при горении (η_m) за счет разброса конечных продуктов, выход металлической фазы в слиток (η_{ph}) по формулам:

$$u = h/t,$$

$$\Delta p = p_f - p_0,$$

$$\eta_m = (M_0 - M_f)/M_0 \cdot 100 \%,$$

$$\eta_{nh} = m/M_0,$$

где h — высота слоя смеси в кварцевом стаканчике, t — время горения, p_0 и p_f — начальное и конечное давление в реакторе, M_0 — масса

исходной смеси, M_f — масса конечных продуктов, m — масса металлического слитка. Время горения смеси измеряли двумя способами — секундомером и по видеозаписи; давление регистрировали манометром.

ФЕМЕНОЛОГИЯ ПРОЦЕССА

Визуальные наблюдения, видеосъемка и анализ процессов горения, «диспергирования» и фазоразделения выявили следующую качественную картину синтеза. Исходные смеси, состав которых рассчитан по схемам (I) и (II), имеют очень высокую температуру горения, превышающую температуру плавления исходных реагентов и конечных продуктов (см. рис. 1, таблицу). Горение этих смесей при атмосферном давлении протекает во взрывоподобном режиме и сопровождается интенсивным разбросом конечных продуктов из реакционной формы. Повышенное давление газа в реакторе подавляет разброс и переводит горение в стационарный режим. Под давлением газа после воспламенения электрической спиралью формируется плоский фронт горения, распространяющийся с постоянной скоростью. Зона стабилизации скорости составляет ≈ 10 мм. Продукты горения имеют литой вид и формируются в виде двух слоев, металлического и оксидного, которые не имеют сцепления и легко отделяются друг от друга. Исходные смеси, состав которых рассчитывали исходя из схем (III) и (IV), имеют температуру горения существенно ниже, чем составы (I) и (II). Причем исход-

Рис. 1. Зависимость температуры горения систем I–IV и выхода газообразных продуктов в системах I–II от давления

Вещество	T_l, \mathbf{K}	T_{vap}, \mathbf{K}	$ ho$, г/см 3
MoO_3	1068	1528	4.69
WO_3	1743	1943	7.3
Nb_2O_5	1785	3575	5.29
${\rm TiO}_2$	2116	3245	4.23
$\mathrm{Al}_2\mathrm{O}_3$	2317	3253	3.99
SiO_2	1873	2503	2.65
Al	933	2792	2.699
Si	1688	2623	2.33
$MoSi_2$	2293		6.24
WSi_2	2 4 3 3		9.75
$NbSi_2$	1 950		5.66
$\mathrm{Ti}\mathrm{Si}_2$	1813		4.13

Физические свойства исходных компонентов и конечных продуктов при синтезе литых силицидов переходных металлов

ная смесь состава (IV) в эксперименте не горит, что связано, по-видимому, с низкой температурой горения и теплопотерями в окружающую среду.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

В экспериментах изучали влияние соотношения исходных реагентов (α) на процессы горения $(u, \Delta p, \eta_m)$ и фазоразделения (η_{ph}) . Соотношение рассчитывали по формуле $\hat{\alpha}$ = $M_i/(M_{\rm I} + M_i)$, где $M_{\rm I}$ — масса смеси, состав которой рассчитан по схеме (I), а M_i — по схемам (II)–(IV). Экспериментальные исследования показали, что при увеличении α скорость горения уменьшается для всех составов. Наиболее сильное падение наблюдается с ростом доли смесей III и IV в исходной шихте. Пределы горения наступают при $\alpha = 0.3$ и 0.8 (рис. 2, кривые 2 и 3). Существенно расширить пределы позволило дополнительное введение в шихту активирующей добавки на основе пероксида кальция (рис. 2, кривая 3'). Влияние α на потерю массы η_m показано на рис. 3. Видно, что η_m уменьшается для всех составов, но наиболее резкое падение наблюдается при увеличении доли смесей III и IV в исходной шихте (рис. 3, кривые 2, 3 и 3'). Влияние α на прирост давления (Δp) в реакторе во время горения иллюстрирует рис. 4. Во всех случаях с увеличением а прирост давления уменьша-

Рис. 2. Влияние состава исходных смесей на скорость горения:

 $1-\alpha=M_{\rm II}/(M_{\rm I}+M_{\rm II}), 2-\alpha=M_{\rm III}/(M_{\rm I}+M_{\rm III}), 3-\alpha=M_{\rm IV}/(M_{\rm I}+M_{\rm IV}), 3'$ — при введении в шихту активирующей добавки CaO₂ + Al

Рис. 3. Зависимость потери массы при горении от состава исходных смесей:

 $1 - \alpha = M_{\rm II}/(M_{\rm I} + M_{\rm II}), 2 - \alpha = M_{\rm III}/(M_{\rm I} + M_{\rm III}), 3 - \alpha = M_{\rm IV}/(M_{\rm I} + M_{\rm IV}), 3'$ — при введении в шихту активирующей добавки CaO₂ + Al

ется. Характер зависимости $\Delta p(\alpha)$ аналогичен зависимости $\eta_m(\alpha)$ (см. рис. 3). Влияние α на выход металлической фазы в слиток (η_{ph}), характеризующее процесс фазоразделения, показано на рис. 5. Видно, что при увеличении доли смеси II в исходной шихте выход металлической фазы незначительно растет (кривая 1), а фазоразделение происходит во всем интервале изменения α . При возрастании доли смесей III и IV в исходной шихте выход уменьшается, достигая пределов фазоразделения при $\alpha = 0.4$ и 0.8 (кривые 3 и 2 на рис. 5). В последнем случае введение в исходную смесь высококалорий-

Рис. 4. Влияние состава исходных смесей на прирост давления в реакторе:

 $1-\alpha=M_{\rm II}/(M_{\rm I}+M_{\rm II}), 2-\alpha=M_{\rm III}/(M_{\rm I}+M_{\rm III}), 3-\alpha=M_{\rm IV}/(M_{\rm I}+M_{\rm IV}), 3'$ — при введении в шихту активирующей добавки CaO₂ + Al

Рис. 5. Зависимость полноты фазоразделения от состава исходных смесей:

 $1-\alpha=M_{\rm II}/(M_{\rm I}+M_{\rm II}),\,2-\alpha=M_{\rm III}/(M_{\rm I}+M_{\rm III}),$ 3 — $\alpha=M_{\rm IV}/(M_{\rm I}+M_{\rm IV}),\,2',\,3'$ — при введении в шихту активирующей добавки CaO₂ + Al

ной добавки (CaO₂ + Al) позволило значительно повысить выход металлического слитка и расширить пределы фазоразделения (кривая 3' на рис. 5). Конечные продукты, полученные в оптимальных условиях, состоят из двух слитков, легко отделяемых друг от друга. Нижний из них представлен двойными силицидами: MoSi₂—WSi₂, MoSi₂—NbSi₂ или MoSi₂—TiSi₂, верхний — твердым раствором Al₂O₃—SiO₂.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

По результатам исследования процесс го-

рения и постпроцессы в изученных составах можно представить следующим образом. В волне горения смесь исходных реагентов претерпевает ряд физических и химических превращений. При этом в зоне прогрева после плавления исходного оксида MeO_x образуется сплошная среда, в которой распределены капли Al и Si.

Качественно брутто-схему химического превращения можно представить в виде:

$$MeO_x + Al \rightarrow Me + Al_2O_3,$$
 (1)

$$MeO_x + Si \rightarrow Me-Si + SiO_2,$$
 (2)

$$Me + Si \rightarrow Me-Si.$$
 (3)

В начале зоны химического превращения капли алюминия и кремния взаимодействуют с исходным оксидом (реакции (1) и (2)), затем протекает СВС-реакция восстановленного по реакции (1) металла с кремнием (реакция (3)).

Таким образом, в рамках рассмотренной схемы образуются два конденсированных конечных продукта Me-Si и Al₂O₃—SiO₂. Кроме них, согласно термодинамическим данным, образуются и газообразные продукты — пары металлов и субоксиды. Они выделяются из расплава при горении и приводят к его разбросу. Характер разброса зависит от соотношения объемов газа (V_g) и конденсированной фазы (V_c). При $V_g \gg V_c$ происходят образование взвеси и полный разброс вещества при горении. При $V_g < V_c$ газ выходит из расплава в виде отдельных пузырьков, слабо диспергируя поверхность расплава. Условие перехода одного режима в другой можно записать в виде

$$V_g/V_c \approx 1.$$

Из массового баланса получаем связь V_g с параметрами эксперимента:

$$V_g = \frac{A}{P} \frac{u_0}{u_0 + v},$$

где A — константа, u_0 — скорость горения, v = f(a/g) — скорость стоксовского движения пузырька в расплаве. Из формулы видно, что подавление разброса расплава при горении за счет повышения давления газа обусловлено уменьшением объема газа в расплаве продуктов горения.

После прохождения фронта горения формируется двухфазный расплав, в котором оксид металла восстановителя (Al₂O₃) образует сплошную среду, а капли «металлической» фазы распределены в ней. Вследствие различия в плотностях, под действием поля тяжести Земли происходит взаимное движение фаз. Оно протекает в остывающем расплаве в условиях переменной вязкости оксидного расплава. Прекращение фазоразделения наступает либо в момент полного выхода капель в «металлический» слиток из расплава, либо в момент кристаллизации оксидной фазы (неполное фазоразделение).

выводы

В работе изучены закономерности горения под давлением газа смесей термитного типа, используемых для получения двойных плавленых силицидов MoSi₂—WSi₂, MoSi₂—WSi₂, MoSi₂—NbSi₂, MoSi₂—TiSi₂, в широком диапазоне соотношений реагентов.

Исследовано влияние состава смесей на скорость горения, диспергирование при горении и полноту выхода металлической фазы в слиток.

Определены области высокого выхода целевого продукта (силицидов) в слиток.

Предложена химическая схема стадийности превращения исходной смеси в продукты горения.

ЛИТЕРАТУРА

 Самсонов Г. В., Дворина Л. А., Рудь Б. М. Силициды. — М.: Металлургия, 1979.

- Houan Zhang, Ping Chen, Jianhui Yan, Siwen Tang. Fabrication and wear characteristics of MoSi₂ matrix composite reinforced by WSi₂ and La₂O₃ // Intern. J. Refractory Metals & Hard Mater. 2004. V. 22. P. 271–275.
- Tantry S. P., Ramasesha S. K., Lee J.-S., Yano T., Ramamurty U. Effect of double reinforcements on elevated-temperature strength and toughness of molybdenum disilicide // J. Amer. Ceram. Soc. — 2004. — V. 87, N 4. — P. 626–632.
- Долуханян С. К., Саркисян А. Р., Боровинская И. П., Мержанов А. Г. Технология получения дисилицида молибдена. Ереван; Черноголовка, 1978. (Препр./ АН СССР. ОИХФ).
- 5. Горшков В. А., Юхвид В. И., Милосердов П. А. Закономерности автоволнового синтеза силицидов в системе Мо—W-Si // Неорган. материалы. — 2011. — Т. 47, № 4. — С. 429–432.
- 6. Горшков В. А., Юхвид В. И., Андрианов Н. Т., Лукин Е. С. Высокотемпературный жидкофазный синтез и спекание MoSi₂ // Неорган. материалы. 2009. Т. 5, № 5. С. 560–564.
- Gorshkov V. A. Advanced ceramics ba sed on aluminum, silicon, chromium, and lanthanum oxides: preparation and applications // Intern. J. SHS. — 2011. — V. 20, N 4. — P. 273–276.
- Левашов Е. А., Рогачев А. С., Курбаткина В. В., Максимов Ю. М., Юхвид В. И. Перспективные материалы и технологии самораспространяющегося высокотемпературного синтеза. — М.: Изд. дом МИСиС, 2011.
- Shiryaev A. Thermodynamics of SHS processes: es: an advanced approach // Intern. J. SHS. — 1995. — V. 4, N 4. — P. 351–362.

Поступила в редакцию 3/VIII 2013 г.