УДК 621.9.047

МОДЕЛИРОВАНИЕ ПРОЦЕССА СТАЦИОНАРНОЙ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ ПОВЕРХНОСТИ ДВУМЯ НЕСИММЕТРИЧНЫМИ КАТОДАМИ-ПЛАСТИНАМИ

В. В. Клоков, Д. Е. Сергеев

Казанский (Приволжский) федеральный университет, 420008 Казань E-mail: windes@rambler.ru

С использованием метода гидродинамической аналогии решена задача стационарного электрохимического формообразования с помощью двух полубесконечных катодовпластин при их произвольном расположении относительно направления подачи. Особенностью задачи является неоднолистность годографа скорости.

Ключевые слова: метод гидродинамической аналогии, электрохимическая размерная обработка, неоднолистный годограф, краевая задача с неизвестными границами.

Введение. В современном машиностроении размерная электрохимическая обработка [1] является основным методом получения деталей из токопроводящих твердых и жаропрочных материалов [2, 3], применяемых при изготовлении несущих элементов конструкций, микро- и нанодеталей, двигателей летательных аппаратов, ковочных штампов, радиотехнического оборудования, печатных плат и т. д. В данной работе проведено математическое моделирование процесса размерной электрохимической обработки металла [3–6], а именно определена форма анодной границы при стационарном электрохимическом формообразовании с помощью системы полубесконечных катодов-пластин нулевой толщины, расположенных несимметрично относительно направления подачи. В стационарном режиме, который используется при прошивке, протягивании, резке, шлифовании и в других технологических процессах [1, 2], форма межэлектродного зазора при удалении металла с анодной поверхности не изменяется. При решении задачи используются методы годографа скорости и гидродинамической аналогии [4]. Ранее были получены решения [6, 7] только в случае однолистного годографа [8]. В данной работе годограф является двулистным.

Постановка задачи. Схема рассматриваемой задачи представлена на рис. 1 (*AFE*, *EDC* — катоды-инструменты, совершающие движение в направлении, противоположном направлению оси y; U — вектор подачи). Расстояние d, высота h, углы наклона $\pi \alpha$ ($-1/2 < \alpha < 1/2$) и $\pi \beta$ ($-1/2 < \beta < 1/2$) считаются заданными. Требуется определить форму анодной границы A'BC'.

Поставленная задача является существенно неодномерной и сводится к нахождению потенциала ψ электростатического поля, являющегося гармонической функцией, и границы области его определения по следующим краевым условиям:

1) $\psi = 0$ на границе A'BC' (условие эквипотенциальности на аноде);

2) $\psi = 1$ на границах *AFE* и *JDC* (условие эквипотенциальности на катоде);

Рис. 1. Схема задачи: 1 — катоды-инструменты; 2 — анод-деталь

3) $\partial \psi / \partial n = \cos \theta$ на границе A'BC' (условие стационарности обработки), где $\partial / \partial n$ — производная по направлению нормали; θ — угол наклона касательной к искомой границе [2].

Решение задачи. Для решения задачи применяются методы годографа скорости и гидродинамической аналогии (см. рис. 1), в соответствии с которыми определяется граница фиктивного потенциального плоскопараллельного течения идеальной несжимаемой жидкости. Как известно, при анализе такого течения используются методы комплексного анализа (см., например, [4]).

Введем гармоническую функцию φ , сопряженную с функцией ψ . Согласно краевым условиям область значений комплексного потенциала $W = \varphi + i\psi$ представляет собой полосу. Область изменения комплексно-сопряженной скорости $\bar{V} = dW/dz = V_x - iV_y$ строится в соответствии со следующими условиями:

- 1) $V_y/V_x = -\operatorname{tg}(\pi\alpha)$ на границе AF;
- 2) $V_F = \infty$, $V_E = 0$, $V_y/V_x = \operatorname{tg}(\pi \alpha)$ на границе FE;
- 3) $V_y/V_x = -\operatorname{tg}(\pi\beta)$ на границе ED;
- 4) $V_y/V_x = \operatorname{tg}(\pi\beta)$ на границе DC.

В плоскости значений годографа скорости искомой линии A'BC' соответствует дуга окружности радиусом 1/2 с центром в точке (1/2,0), точки M_1 , M_2 на этой дуге — возможные образы точек перегиба анодной границы. При наличии точек перегиба область годографа скорости становится двулистной (рис. 2).

Необходимое для получения решения конформное соответствие областей изменения Wи \bar{V} определяется с помощью преобразования инверсии $\zeta = 1/\bar{V} = e^{i\theta}/|V| = \zeta_1 + i\zeta_2$ относительно окружности единичного радиуса. Область изменения ζ представляет собой двулистный многоугольник (рис. 3).

Введем вспомогательную верхнюю полуплоскость переменной t, так чтобы выполнялись условия $t_A = \infty$, $t_{M_1} = \mu_1$, $t_{M_2} = \mu_2$, $t_C = -1$, $t_D = \delta$, $t_E = 1$, $t_F = f$ (рис. 4). В этом случае конформное отображение областей изменения W и ζ друг на друга осуществляется с помощью интеграла Кристоффеля — Шварца [9]

$$W = -\frac{1}{\pi} \int_{f}^{t} \frac{ds}{s+1} + i = -\frac{1}{\pi} \ln \frac{t+1}{f+1} + i,$$

Рис. 2

Рис. 3

Рис. 2. Область годографа скорости

Рис. 3. Область инверсии годографа скорости

Рис. 4. Область изменения вспомогательного параметра t

4

а для связи дифференциалов dZ и dt имеет место формула

$$dZ = \zeta \frac{dW}{dt} dt = C_1 \int_f^t \frac{(t - \mu_1)(t - \mu_2) ds}{(t + 1)^{1/2 + \beta} (t - 1)^{3 - \alpha - \beta}} \frac{dW}{dt} dt.$$
 (1)

В результате подстановки $t = (f + \delta)/2 + ((f - \delta)/2) e^{iv}$ параметры μ_1, μ_2 определяются из следующей системы равенств:

$$\operatorname{Re}\left(\int_{0}^{\pi} \frac{(t-\mu_{1})(t-\mu_{2}) e^{iv} dv}{(t+1)^{1/2+\beta}(t-1)^{3-\alpha-\beta}}\right) = 0, \qquad \operatorname{Im}\left(\int_{0}^{\pi} \frac{(t-\mu_{1})(t-\mu_{2}) e^{iv} dv}{(t+1)^{1/2+\beta}(t-1)^{3-\alpha-\beta}}\right) = 0.$$

Интегрируя выражение (1) с учетом условия $Z_F = 0$, получаем равенство

$$Z = C_1 C \int_f^t \int_f^s \frac{(u - \mu_1)(u - \mu_2) du}{(u + 1)^{1/2 + \beta} (u - 1)^{3 - \alpha - \beta}} \frac{ds}{s + 1}.$$
 (2)

Для определения координат точек границы интегрирование проводится по дуге полуокружности в плоскости t от точки F до искомой точки N на границе, при этом формула (2) принимает вид

$$\tilde{Z} = -C_1 C \int_0^{\pi} \int_0^{\theta} \frac{(t_1 + \rho e^{i\tau} - \mu_1)(t_1 + \rho e^{i\tau} - \mu_2)\rho e^{i\tau}(\theta/\pi) d\lambda}{(t_1 + \rho e^{i\tau} + 1)^{1/2 + \beta}(t_1 + \rho e^{i\tau} - 1)^{3 - \alpha - \beta}} \frac{\rho e^{i\theta} d\theta}{s(\theta) + 1},$$

Рис. 5. Моделирование процесса обработки гладкого профиля ($x_d = 1,96555$, $y_d = -1,9643$, $\pi \alpha = 45^{\circ}$, $\pi \beta = 45^{\circ}$, f = 9,4, $\delta = -0,97$, $\mu_1 = -21,2302$, $\mu_2 = -1,61644$): 1 — катоды; 2 — анод

Рис. 6. Моделирование процесса обработки острой кромки ($x_d = 5,0981, y_d = 5,1043, \pi \alpha = -45^\circ, \pi \beta = -45^\circ, f = 122, \delta = -0,9137, \mu_1 = -17,5965, \mu_2 = -1,48674$): 1 — катоды; 2 — анод

	/			
			FRAUMULT	
- 6	(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,			1111/11/11/11/17
		аодо		

t_N	x	y	t_N	x	y	t_N	x	y
-1,00000001	$6,\!45754$	0,570187	-1,2	$1,\!106350$	-2,04312	-2000	-1,82523	$0,\!113443$
-1,0000001	5,72460	-0,129666	-1,5	$0,\!814687$	-1,71965	-3000	-1,95435	0,214 811
-1,000001	4,99166	-0,803773	-2	$0,\!594051$	$-1,\!45915$	-5000	$-2,\!11699$	$0,\!346251$
-1,00001	4,25873	$-1,\!432090$	-2,29	0,512996	-1,36825	-10000	-2,33766	0,530458
-1,0001	3,52579	-1,979000	-2,5	$0,\!464988$	$-1,\!31685$	-50000	$-2,\!84998$	0,978925
-1,0005	3,01349	-2,280780	-4	$0,\!244352$	$-1,\!11155$	-100000	-3,07062	$1,\!179050$
-1,001	2,79286	-2,381200	-6	0,081751	-0,99513	-500000	$-3,\!58293$	$1,\!655440$
-1,002	2,57222	$-2,\!458940$	-10	-0,105350	-0,89017	-1000000	-3,80356	$1,\!864530$
-1,005	2,280 56	-2,519640	-20	-0,343190	-0,77964	-3000000	$-4,\!15326$	$2,\!199590$
-1,01	2,05992	-2,527320	-50	$-0,\!644750$	$-0,\!64137$	-10000000	-4,53650	2,570790
-1,02	1,83929	$-2,\!495780$	-100	-0,868620	-0,52640	-50000000	-5,04880	3,071730
-1,05	1,54762	-2,383770	-500	-1,383480	-0,20940	-100000000	-5,26943	3,288710
$^{-1,1}$	1,32699	-2,239500	-1000	$-1,\!604440$	-0,05295	-1000000000	-6,00237	4,013210

Рис. 7. Эквипотенциальная линия в окрестности катодов-пластин в случае их симметричного расположения ($\psi = 0.95, x_d = 3.978\,37, y_d = 0.000\,021, \pi\alpha = 45^\circ$, $\pi\beta = 45^{\circ}, f = 450, 5, \delta = -0,9911, \mu_1 = -15,9674, \mu_2 = -1,26725):$ 1 — эквипотенциальная линия; 2 — анод

где

$$C_{1} = \frac{e^{-i\pi\alpha}}{\cos(\pi\alpha) I_{1}}, \qquad I_{1} = \int_{f}^{\infty} \frac{(s-\mu_{1})(s-\mu_{2})}{(s+1)^{1/2+\beta}(s-1)^{3-\alpha-\beta}} \, ds,$$
$$t_{1} = \frac{f+\delta}{2}, \quad \rho = \frac{f-\delta}{2}, \quad s(\theta) = t_{1} + \rho e^{i\theta}, \quad \tau = \theta \frac{\lambda}{\pi}.$$

Задача содержит параметры δ и f, для определения которых используется система нелинейных уравнений

$$\operatorname{Re} \tilde{Z} = x_d, \qquad \operatorname{Im} \tilde{Z} = y_d.$$

В несимметричном случае для получения решения задачи необходимо решать систему четырех нелинейных уравнений для нахождения параметров δ , f, μ_1 , μ_2 . Два из этих параметров δ и f задавались, а параметры μ_1 и μ_2 вычислялись методом Ньютона. Отметим, что параметр d, равный расстоянию между кромками катодов, зависит главным образом от значения δ . Окончательные значения параметров δ и f определялись методом пристрелки в соответствии с заданными координатами кромки D правого электрода. При этом подбор параметра δ осуществлялся с точностью до 10^{-3} .

При определении координат точек анодной границы T_N значения t_N задаются существенно неравномерно. Результаты расчетов представлены на рис. 5, 6 и в таблице.

Частный случай данной задачи — симметричное расположение электродов (рис. 7) был рассмотрен в работе [8]. Сравнение решений, полученных в данной работе и в [8], показало, что анодные границы совпадают.

Разработанный алгоритм расчета позволяет получать параметрические уравнения всех эквипотенциальных линий в межэлектродном зазоре. Эти линии могут рассматриваться в качестве границы катода-инструмента сложной конфигурации. На рис. 7 приведены результаты расчета формы симметричного скругленного инструмента, на границе которого $\psi = 0.95$.

Заключение. Представленный в работе алгоритм показывает возможность расчета анодной границы в задачах с многолистной областью годографа скорости, что существенно расширяет область применения метода годографа. Это актуально при изготовлении

острых кромок турбинных лопаток, особенностью которых является несимметричное расположение границ относительно хорды [10].

ЛИТЕРАТУРА

- 1. **Артамонов Б. А.** Размерная электрохимическая обработка металлов / Б. А. Артамонов, А. Л. Вишницкий, Ю. С. Волков, А. В. Глазков. М.: Высш. шк., 1978.
- Артамонов Б. А. Электрофизические и электрохимические методы обработки металлов: В 2 т. / Б. А. Артамонов, Ю. С. Волков, В. И. Дрожалова, Ф. В. Седыкин, В. П. Смоленцев, В. М. Ямпольский. М.: Высш. шк., 1983.
- Давыдов А. Д. Высокоскоростное электрохимическое формообразование / А. Д. Давыдов, Е. Козак. М.: Наука, 1990.
- Каримов А. Х. Методы расчета электрохимического формообразования / А. Х. Каримов, В. В. Клоков, Е. И. Филатов. Казань: Изд-во Казан. ун-та, 1990.
- 5. Житников В. П. Математическое моделирование электрохимической размерной обработки / В. П. Житников, А. Н. Зайцев. Уфа: Уфим. гос. авиац. техн. ун-т, 1996.
- Котляр Л. М. Моделирование процесса электрохимической обработки металла для технологической подготовки производства на станках с ЧПУ / Л. М. Котляр, Н. М. Миназетдинов. М.: Academia, 2005.
- Klokov V. V., Filatov E. I., Timbakova K. S., et al. Mathematical simulation of the steady electrochemical shaping and the hydrodynamics of electrolyte in a working gap // Proc. of the conf. "Advances in production engineering APE-2007". Warsaw: S. n., 2007. P. 532–540.
- Клоков В. В., Сергеев Д. Е. Расчет стационарного анодного формообразования вогнутой и выпуклой кромки // Современная электротехнология в промышленности центра России: Материалы 9-й Регион. науч.-техн. конф., Тула, 15 мая 2008 г. Тула: Тул. гос. ун-т, 2008. С. 8–16.
- 9. Смирнов В. И. Курс высшей математики. СПб.: БХВ, 2010. Т. 3, ч. 1.
- Клоков В. В., Сергеев Д. Е. Стационарная ЭХО системой катодов-инструментов // Сб. тр. 7-й Междунар. науч.-практ. конф. "Исследование, разработка и применение высоких технологий в промышленности", Санкт-Петербург, 28–30 апр. 2009 г. СПб.: Изд-во С.-Петерб. политехн. ун-та, 2009. Т. 2. С. 187–189.

Поступила в редакцию 3/II 2012 г., в окончательном варианте — 4/IV 2012 г.