УДК 537.523.5

К ОПТИМИЗАЦИИ ТЕПЛОВЫХ РЕЖИМОВ СИЛЬНОТОЧНЫХ ТЕРМОЭМИССИОННЫХ КАТОДОВ

Б.Д. ЦЫДЫПОВ

Отдел физических проблем Бурятского научного центра СО РАН, Улан-Удэ

Получены критерии оценки вклада основных источников и стоков энергии в сложном теплообмене стержневых термокатодов при квазиодномерной постановке тепловой задачи. Критериальные соотношения позволяют определить температурные режимы работы сильноточных длинных катодов. Развит метод оптимизации теплового состояния электродов. Расчеты по критериальному методу согласуются с экспериментальными результатами.

Тепловое состояние термоэмиссионных катодов плазменных устройств определяет работоспособность и ресурс их работы [1, 2]. Поэтому проблема увеличения ресурса таких катодов, повышения надежности и стабильности функционирования устройств в целом состоит в нахождении их оптимальных тепловых режимов. Решение поставленной задачи связано с многопараметрической оптимизацией токовой нагрузки, выбором материала, геометрией и эффективным охлаждением не только самого электрода, но и электродного узла [3, 4].

Катодный узел электродуговых плазменных устройств представляет собой сложную конструкцию в тепловом поле большой интенсивности в $10^3 - 10^4$ Bt/cm² [5]. Уровень температур и характер теплоотвода зависят от конструктивных особенностей электродного узла. Разработка узлов и оптимизация их теплового режима на основе экспериментальных исследований встречают значительные трудности, связанные с обеспечением требуемого термического контакта в местах соединений разных металлов, различием их теплоэлектрофизических и прочностных свойств, выбором геометрии и эффективного теплообмена конструкции.

Теоретический подход к оптимизационной задаче основан на решении уравнения нестационарной теплопроводности

$$c\rho \frac{\partial T}{\partial t} = \operatorname{div}(\lambda \operatorname{grad} T) + q_v$$
 (1)

с учетом всех видов теплообмена электродного узла с внешней средой. Здесь T — температура, c — удельная теплоемкость, ρ — плотность материала, λ — коэффициент теплопроводности, q_v — объемная плотность внутренних источников и стоков, обусловленных различного рода физико-химическими процессами выделения и поглощения энергии.

На рис. 1 показана типичная схема катодного узла плазменных устройств. Для сильноточных электродуговых систем наиболее работоспособными являются конструкции, состоящие из стержневого электрода — вставки I из активированного

© Цыдыпов Б.Д., 2007

Рис. 1. Расчетная модель типичного катодного узла. I— катод (вставка), II— держатель (обойма).

вольфрама, запрессованного в медный цилиндрический держатель — обойму II [5, 6]. Длина вылета катода варьируется от $L_c = 0$ (заделка заподлицо) до $L_c/d_1 >> 1$ (длинный катод). В [7] показано, что для таких электродных узлов при решении тепловой задачи в источниковом составляющем q_v уравнения (1) определяющим является вклад джоулевой диссипации энергии. Поэтому температурное поле в осесимметричном катодном узле находится совместным решением уравнения (1), в виде

$$c_k \rho_k \frac{\partial T_k}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left[r \lambda_k(T) \frac{\partial T_k}{\partial r} \right] + \frac{\partial}{\partial z} \left[\lambda_k(T) \frac{\partial T_k}{\partial z} \right] + j_k^2 / \sigma_k(T),$$
(2)

и уравнения непрерывности тока

$$\frac{1}{r}\frac{\partial}{\partial r}\left[r\sigma_{k}(T)\frac{\partial U_{k}}{\partial r}\right] + \frac{\partial}{\partial z}\left[\sigma_{k}(T)\frac{\partial U_{k}}{\partial z}\right] = 0$$
(3)

для вставки I (k = 1) и обоймы II (k = 2), где $j_k = (j_r^2 + j_z^2)^{1/2}$, $j_r = -\sigma_k(T)\partial U_k / \partial r$, $j_z = -\sigma_k(T)\partial U_k / \partial z$ — плотность тока и ее компоненты по цилиндрическим координатам r и z соответственно, U_k — потенциал электрического поля, $\sigma_k(T)$ удельная электрическая проводимость.

Решение уравнения (3) позволяет найти локальное значение $j_k(r, z)$ и корректно учесть мощность джоулева тепловыделения в объеме катодного узла. Система уравнений нелинейна, так как теплоэлектрофизические коэффициенты $\lambda_k(T)$ и $\sigma_k(T)$ зависят от температуры. Поскольку зависимость $\lambda_1(T)$ для вольфрама слабая, в практических расчетах ею можно пренебречь. Здесь важен учет $\sigma_1(T)$. В конструкции из элементов W–Cu в силу соотношений $\sigma_2 >> \sigma_1$ и $j_1 >> j_2$ уравнение непрерывности тока можно решать только для вольфрамовой вставки. В постановке задачи предполагается, что на рабочий торец катода z = 0 в пределах пятна радиуса r_0 поступает тепловой поток, моделирующий термическое воздействие плазмы разряда $q_0 = f(r)$, где f(r) — в общем случае известная функция. За катодным пятном и на цилиндрических поверхностях электрода и обоймы выполняются условия конвективного и лучистого теплообмена по закону Стефана–Больцмана, на холодном торце обоймы и поверхностях сопряжения двух металлов ставятся граничные условия соответственно III и IV родов [7]. Значения параметров q_0 и r_0 определяются из эксперимента [5] или же из совместного решения замкнутой системы уравнений, описывающих процессы в твердом теле, прикатодной области и в канале дугового разряда [4, 8].

На рис. 2 представлены результаты расчетов температурных полей катода T(z), полученных решением тепловой задачи для катодного узла в двумерном приближении методом конечных разностей с локально-одномерной схемой прогонки с экспериментальными данными q_0 и r_0 из [9]. Геометрические размеры и теплоэлектрофизические свойства элементов катодного узла из лантанированного вольфрама и меди следующие:

$$L_1 = 3$$
см, $L_h = 1$ см, $L_c = 2$ см, $r_1 = 0,25$ см, $L_2 = 1,5$ см, $r_2 = 1,5$ см, $c_1 = 0,13$ Дж/(г·К), $c_2 = 0,38$ Дж/(г·К), $\rho_1 = 19,0$ г /см³, $\rho_2 = 8,93$ г/см³.

Данные остальных параметров в численных расчетах учитывались в виде их температурных зависимостей [4]. Дуговой разряд горит в атмосфере аргона при $p = 10^5$ Па и токовой нагрузке I = 300 А, значение интегрального теплового потока Q = 340 Вт [9].

Графики рис. 2 иллюстрируют роль объемного источника и нелинейных граничных условий на цилиндрической и рабочей поверхностях электрода в тепловой задаче. Осевые распределения температуры позволяют выявить вклад этих составляющих при различном их сочетании в энергообмене термоэмиссионного катода. Они получены варьированием теплоэлектрофизических коэффициентов в уравнениях и граничных условиях задачи. Температурное поле, рассчитанное с учетом конвективного и лучистого теплообменов и джоулева эффекта (кривая 1), имеет хорошее согласование с экспериментальными данными из [8, 9], что свидетельствует о правильной постановке задачи. В обратной ситуации при пренебрежении всеми перечисленными составляющими энергобаланса появляются значительные погрешности в вычислении поля температур катода (кривая 2). Температуры горячего торца в этих вариантах различаются на 716 К. Однако учет по отдельности объемного источника тепла (кривая 3) или же конвективного и радиационного теплообменов с поверхности электрода (кривая 4) приводит к еще большим ошибкам в расчете температурного поля. Например, разность температур между распределениями 1 и 3 достигает 1704 К. Графики 3 и 4 (см. рис. 2) наглядно показывают существенное влияние джоулева нагрева в объеме и сложного теплообмена с поверхностей на тепловое состояние сильноточного катода. При этом их вклад в энергобаланс зависит от геометрии электрода и величины разрядного тока. В данном случае при токовой нагрузке $I \le 300$ А и плотности тока $j \le 2 \cdot 10^3$ А/см² влияние теплообмена на границах заметно больше вклада, вносимого эффектом Джоуля. С увеличением тока доля последнего фактора в энергобалансе катода повышается, и при $I \ge 500$ A объемный источник тепла преобладает над энергией, уносимой конвективным и лучистым T. 10³ K составляющими.

При расчете термического состояния стержневых длинных катодов $(L_c/d_1 >> 1)$ используется квазиодномерный метод решения тепловой задачи, в котором сложный теплообмен через боковые поверхности электрода учитывается введением в одномерное

Рис. 2. Осевые распределения температур катода.

уравнение теплопроводности так называемых эффективных объемных источников и стоков энергии [1, 9–11]. Метод применим для катодов с диффузной привязкой разрядов, когда площадь контакта близка к поперечному сечению электрода $(r_0 \approx r_1)$ и изменением температуры по радиусу можно пренебречь.

Уравнение (1) для цилиндрической вставки I записывается в виде

$$c_1 \rho_1 \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left[\lambda_1(T) \frac{\partial T}{\partial z} \right] - \frac{2\alpha(T)}{r_1} (T - T_g) - \frac{2\varepsilon(T)\sigma_B}{r_1} (T^4 - T_m^4) + j_1^2 / \sigma_1(T), \quad (4)$$

где $\alpha(T)$ — коэффициент конвективной теплоотдачи, $\varepsilon(T)$ — интегральная излучательная способность, σ_B — постоянная Стефана–Больцмана, T_g и T_m — температуры рабочего газа и окружающей среды. Здесь для установившихся тепловых режимов численно решается стационарное уравнение теплопроводности итерационным методом Рунге–Кутта с учетом известного из эксперимента распределения температуры вдоль катода T(z).

Квазиодномерный подход позволяет оптимизировать температурный режим катода и выявить вклад каждой из составляющих уравнения (4) в его энергобаланс [11]. Однако подобная оптимизация требует совместной постановки теоретического расчета и экспериментальных измерений температурного поля и тепловых потоков на электроде. Рациональнее найти оптимальный тепловой режим термоэмиссионного катода, а провести оценку энергобаланса можно критериальным методом [12, 13].

Опуская нижние индексы в переменных уравнения [4], приведем его к безразмерному виду

$$\frac{\partial \tilde{T}}{\partial \tau} = \operatorname{Fo} \frac{\partial^2 \tilde{T}}{\partial \tilde{z}^2} - B(\tilde{T}-1) - D(\tilde{T}^4-1) + G\tilde{j}^2.$$
(5)

Здесь Fo = $\frac{\lambda \tau_0}{c \rho l^2}$ — число Фурье, $B = \frac{2 \alpha \tau_0}{c \rho r}$, $D = \frac{2 \varepsilon \sigma_B \tau_0 T_c^3}{c \rho r}$, $G = \frac{j_0^2 \tau_0}{c \rho \sigma T_c}$, $\tilde{T} = T/T_c$, $\tilde{j} = j/j_0$ — относительные температура и плотность тока, $\tau = t/\tau_0$, $\tilde{z} = z/l$ — безразмерные координаты, τ_0 , l — масштабы координат, $T_c = T_g = T_m$ — определяющая температура системы электрод-плазмообразующий газ-окружающая среда, j_0 — характерная плотность тока в катоде.

В критериальном подходе количественный вклад составляющих энергобаланса на катоде оценивается сравнением безразмерных параметров Fo, *B*, *D* и *G* при слагаемых уравнения (5). В работе [12] получен критерий $\theta = \frac{\lambda T_c / l}{j_0^2 l / \sigma}$, показывающий долю отводимой теплопроводностью энергии относительно джоулева нагрева электрода. Это соотношение и критерии $\eta = \frac{2\alpha T_c}{j_0^2 r / \sigma}$, $\chi = \frac{2\varepsilon \sigma_B T_c^4}{j_0^2 r / \sigma}$, отражающие эффективности конвективных и лучистых потоков тепла в энергобалансе катода

эффективности конвективных и лучистых потоков тепла в энергооалансе катода [13], позволяют анализировать его тепловое состояние.

Энергобаланс термокатода с учетом основных составляющих теплообмена записывается в следующем виде [1, 14]:

$$Q_p + Q_J = Q_h + Q_r + Q_m, (6)$$

где Q_p — результирующий тепловой поток на границе плазма-твердое тело, состоящий из притока энергии на поверхность в виде бомбардировки и нейтрали-

зации ионов, кондуктивных и лучистых компонент воздействия разряда, а также из уноса энергии электронами эмиссии, испаряющимися атомами металла и радиационным теплообменом, Q_J — мощность джоулева тепловыделения в объеме электрода, Q_r , Q_m — радиационная и конвективная составляющие теплообмена катода с окружающей средой и газом.

В [13] показано, что оптимальный температурный режим термокатода реализуется при соотношениях

$$Q_J = Q_h + Q_r + Q_m, \quad \xi = \theta + \chi + \eta = 1.$$
 (7)

Кроме того, вблизи горячего торца электрода должно выполняться условие $dT/dz = \min$, обеспечивающее равномерный прогрев активной зоны с эффективной подпиткой эмитирующей поверхности легирующей присадкой из глубинных слоев.

Рассмотрим подробнее методику расчета данного режима. В ней основную трудность составляет правильное определение характерных параметров задачи j_0 и T_c . Выбор характерной плотности тока, равной $j_0 = I/(\pi r_1^2)$, для длинного цилиндрического катода достаточно обоснован и не требует дополнительных пояснений. Использование в расчетах средней температуры катода T_c в качестве определяющей температуры системы нагретое твердое тело–охлаждающий газ–окружающая среда при сложном теплообмене также является оптимальным [15]. Однако в общем случае для расчета $T_c = \frac{1}{F} \int_F T dF$ необходимо знание распределения температуры по поверхности F, т. е. постановка экспериментальных измерений T(z), что значительно усложняет задачу. Между тем известно, что при оптимальных токовых ре-

тельно усложняет задачу. Между тем известно, что при оптимальных токовых режимах профили T(z) стержневых длинных катодов "выпрямляются" [4, 5, 9] и с достаточной точностью аппроксимируются линейной функцией [8]. В данном случае, найдя температуры холодного T_0 и горячего T_1 торцов электрода, легко вычислить среднюю температуру катода. Температура охлаждаемого торца принимается равной $T_0 = 300$ K, а T_1 определяется следующим образом. Сначала по формуле [9]

$$I_{\rm opt} = 12 d^2 \tag{8}$$

находится оптимальный рабочий ток катода (*d* — диаметр электрода в мм). Ему соответствует характерная плотность тока

$$j_0 = 4I_{\rm opt} / (\pi d^2).$$
 (9)

Считая, что в термоэмиссионном режиме ток на катоде полностью обусловлен механизмом термоэмиссии, температура T_1 вычисляется из формулы Ричардсона– Дешмана

$$j_{\rm em} = AT_1^2 \exp\left[-e\varphi/(kT_1)\right].$$
 (10)

Здесь j_{em} — плотность тока термоэмиссии, A — постоянная Ричардсона, $e\phi$ — работа выхода, k — постоянная Больцмана.

В общем случае плотность тока на катоде определяется выражением

$$j_0 = j_{\rm em} + j_i - j_p,$$
 (11)

где j_i — плотность тока ионов, j_p — плотность тока высокоэнергетичных плазменных, так называемых "обратных" электронов. С учетом того, что эти компоненты плотности тока одного порядка и входят в уравнение (11) с противоположными знаками можно принять $j_0 = j_{em}$ с погрешностью менее 2 % при вычислении T_1 [2].

При известных T_1 и T_0 для линейного графика T(z) по формуле $T_c = (T_1 + T_0)/2$ определяем характерную температуру системы. Подставляя значения j_0 и T_c в сформулированные выше критериальные соотношения, по условию (7) находим оптимальный температурный режим для заданной геометрии катода.

Проиллюстрируем методику на предыдущем примере. Используя формулы (8), (9), для катода с $r_1 = 0.25$ см получаем оптимальный ток $I_{opt} = 300$ A и характерную плотность тока $j_0 = 1.53 \cdot 10^3$ A/cm². Вместо вычисления T_1 по формуле (10) можно воспользоваться номограммами $j_{em}(e\varphi, T)$, приведенными в [2]. Данной плотности тока на катоде из ВЛ–30 ($e\varphi = 3.0$ эВ) соответствует температура эмиссии $T_1 \approx 2900$ К. Следовательно, характерная температура равна $T_c = 1600$ К. Теплоэлектрофизические параметры при такой температуре следующие [4]: $\lambda = 1.09$ Вт/(см·К); $\sigma^{-1} = 42.7$ мкОм·см; $\varepsilon = 0.207$. Коэффициент α сильно зависит от условий работы плазменного устройства, и его значение изменяется в диапазоне $4 \cdot 10^{-5} - 3.7 \cdot 10^{-2}$ Вт/(см²·К). Следует заметить, что в широко используемых плазменных устройствах, например, в сварочных и плавильных плазмотронах коэффициент α мал и конвективной составляющей при определении энергообмена стержневых термоэмиссионных электродов можно пренебречь [9].

На рис. 3 приведены графики критериальных соотношений в зависимости от длины катода L_1 при фиксированном радиусе $r_1 = 0,25$ см. Критерии, связанные с размером радиуса катода, не изменяются и равны $\chi = 0,61$ и $\eta = 0,13$. Большое значение χ свидетельствует о преобладающей роли радиационной составляющей энергообмена в тепловом режиме катода при малых и средних токовых нагрузках, что совпадает с расчетами, приведенными на рис. 2. Известно, что с увеличением длины вылета влияние массивной охлаждаемой обоймы на теплообмен катода ослабевает и кондуктивный поток в конструкцию электродного узла Q_h уменьшается [1, 7]. Из рис. 3 видно, что при увеличении L_1 от 3 до 9 см из-за снижения Q_h критерий θ уменьшается от 1,93 до 0,21. Оптимальный тепловой режим при токовой нагрузке I = 300 A реализуется на катоде с $L_1 = 7 - 9$ см, в зависимости от глубины заделки в обойму длина вылета $L_c \approx 6$ см. Эти данные согласуются с результатами, полученными в [1, 5].

Эксперименты показывают, что при длине вылета электрода $L_c = 2$ см оптимальным является ток I = 350 A [9]. Здесь плотность тока, рассчитанная по формуле (9), получается равной $1,78 \cdot 10^3$ A/cm², а критерии завышенными: $\theta = 1,41, \chi = 0,43$,

 $\eta = 0,08$ и $\xi = 1,92$. Это объясняется тем, что с уменьшением L_c разряд начинает приобретать контрагированную форму привязки и $r_0 < r_1$, поэтому необходимо более точное определение значений r_0 и j_0 . Расчет катода данной геометрии по замкнутой нестационарной модели [8] показывает,

Рис. 3. Зависимости критериальных параметров от длины катода. *I* = 300 A.

что оптимальный тепловой режим получается при I = 350 A, $j_0 = 2,53 \cdot 10^3$ A/cm², $r_0 = 0,21$ см и температуре $T_1 = 2860$ K. Подставляя их в критериальные соотношения имеем: $\theta = 0,71$, $\chi = 0,22$, $\eta = 0,04$, $\xi = 0,97$, подтверждающие оптимальное термическое состояние электрода.

Проверим критериальный метод на другом известном результате, полученном с применением квазиодномерного подхода [14]. В эксперименте дуговой разряд горел в Ar при давлении p = 2,63 кПа на вольфрамовом цилиндрическом катоде с геометрией $L_1 = 2,5$ см, $r_1 = 0,15$ см и температурами $T_1 = 2800$ К, $T_0 = 450$ К. Оптимальный тепловой режим катода достигался при $I \approx 430$ A, когда привязка разряда полностью охватывала полусферический торец с площадью $F = 2\pi r_1$. При этих условиях получаются следующие критериальные коэффициенты: $\theta = 0,72$, $\chi = 0,28$, $\eta = 0,05$ и $\xi = 1,05$, что соответствует оптимальному температурному режиму электрода.

Таким образом, рассмотренные примеры свидетельствуют об эффективности применения критериального метода для оптимизации теплового состояния длинных термоэмиссионных катодов.

СПИСОК ЛИТЕРАТУРЫ

- Жуков М.Ф., Аньшаков А.С., Дандарон Г.-Н.Б. Тепловой режим работы термокатода // Прикатодные процессы и эрозия электродов плазмотронов. — Новосибирск: ИТ СО АН СССР, 1977. — С. 61–84.
- **2. Гордеев В.Ф., Пустогаров А.В.** Термоэмиссионные дуговые катоды. М.: Энергоиздат, 1988. 192 с.
- Дюжев Г.А., Зимин А.М., Хвесюк В.И. Термоэмиссионные катоды // Плазменные ускорители и ионные инжекторы. — М.: Наука, 1984. — С. 200–217.
- **4.** Паневин И.Г., Хвесюк В.И., Назаренко И.П. и др. Теория и расчет приэлектродных процессов. Новосибирск: Наука, 1992. 197 с.
- **5. Жуков М.Ф., Козлов Н.П., Пустогаров А.В. и др.** Приэлектродные процессы в дуговых разрядах. Новосибирск: Наука, 1982. 157 с.
- Дресвин С.В. Генераторы низкотемпературной плазмы // Энциклопедия низкотемпературной плазмы. Вводный том II / Под ред. В.Е. Фортова. М.: Наука, 2000. С. 280–328.
- 7. Зимин А.М., Козлов Н.П., Хвесюк В.И., Цыдыпов Б.Д. Расчет теплового состояния катодного узла // Источники и ускорители плазмы. 1983. № 7. С. 73–85.
- **8. Цыдыпов Б.Д.** Динамика нестационарных процессов в сильноточных плазменных системах. Улан-Удэ: Изд-во БНЦ СО РАН, 2002. 268 с.
- 9. Аньшаков А.С., Урбах Э.К., Цыдыпов Б.Д. Оптимизация теплового состояния и ресурса стержневого термокатода // Теплофизика и аэромеханика. — 1995. — Т. 2, № 2. — С. 167–171.
- Hugel H., Krulle G. Phanomenologie and energiebilanz von lichtbogenkatoden bei niedrigen drucken und hohen stromstarken // Beitr. Plasmaphys. — 1969. — Bd. 9, No. 2. — P. 87–116.
- 11. Пустогаров А.В., Колесниченко А.Н., Гаврюшенко Б.С. и др. Измерение температуры поверхности вольфрамового катода плазмотрона // Теплофизика высоких температур. — 1973. — Т. 11, № 11. — С. 174–179.
- 12. Зимин А.М., Козлов Н.П., Хвесюк В.И. О критерии подобия температурных полей катодов // Известия СО АН СССР. Сер. техн. наук. 1979. Вып.1, № 3. С. 9–11.
- **13.** Цыдыпов Б.Д. О критериях теплового состояния термокатода // Письма в ЖТФ. 2005. Т. 31, Вып. 18. С. 87–94.
- 14. Дороднов А.М., Козлов Н.П., Помелов Я.А. Об эффекте «электронного» охлаждения на термоэмиссионном дуговом катоде // Теплофизика высоких температур. — 1973. — Т. 11, № 4. — С. 724–728.
- 15. Телегин А.С., Швыдкий В.С, Ярошенко Ю.Г. Тепломассоперенос. М.: ИКЦ «Академкнига», 2002. 455 с.
- **16. Жуков М.Ф., Никифоровский В.С.** Особенности теплового и механического состояния составных катодов // Экспериментальные исследования плазмотронов. Новосибирск: Наука, 1977. С. 292–314.

Статья поступила в редакцию 1 ноября 2006 г.