2013. Том 54, № 1

Январь – февраль

*C. 111 – 116* 

УДК 548.737:541.49

# СТРУКТУРА КОМПЛЕКСОВ Mn(II), Co(II), Ni(II) И Cu(II) С ТРИФОРМИЛМЕТАНОМ

# Е.В. Третьяков<sup>1</sup>, С.Е. Толстиков<sup>1</sup>, Г.В. Романенко<sup>1</sup>, А.С. Богомяков<sup>1</sup>, Р.З. Сагдеев<sup>1,2</sup>, В.М. Новоторцев<sup>2</sup>, В.И. Овчаренко<sup>1,2</sup>

<sup>1</sup>Институт "Международный томографический центр" СО РАН, Новосибирск E-mail: tev@tomo.nsc.ru <sup>2</sup>Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва

Статья поступила 30 января 2012 г.

Исследованы методом рентгеноструктурного анализа ранее неизвестные бисхелаты  $[ML_2(H_2O)_n]$ , где М — Mn(II), Co(II), Ni(II) или Cu(II), а L — депротонированный триформилметан. Найдено, что в кристаллах всех соединений присутствуют множественные водородные связи, связывающие бисхелатные молекулы в полимерные слои или единый каркас. Характер температурной зависимости эффективного магнитного момента  $[ML_2(H_2O)_n]$  указывает на слабые внутрикристаллические обменные взаимодействия между неспаренными электронами парамагнитных центров.

Ключевые слова: комплексы марганца(II), комплексы кобальта(II), комплексы никеля(II), комплексы меди(II), 1,3-дикарбонильные соединения, рентгеноструктурный анализ.

Координационные соединения парамагнитных ионов металлов с депротонированными 1,3дикарбонильными лигандами — предмет активного исследования в области молекулярного дизайна магнитно-активных соединений [1, 2]. В зависимости от выбранного способа конструирования гетероспиновой системы используют либо комплексы с фторированными 1,3-ди-, поликетонами и их азопроизводными [3—5], либо комплексы с полифункциональными аналогами дикарбонильных соединений, например, енаминокетоновыми производными 2- и 3-имидазолиновых нитроксилов [6, 7], карбокси-замещенным иминонитроксилом [8] или парамагнитными основаниями Шиффа [9, 10]. Пытаясь расширить круг исследуемых комплексов с 1,3дикарбонильными соединениями, мы синтезировали, изучили структуру и магнитные свойства координационных соединений металлов первого переходного ряда Mn(II), Co(II), Ni(II) и Cu(II) с депротонированным триформилметаном (L). Ранее в литературе была описана только кристаллическая структура соли (NH<sub>4</sub>)MgL<sub>3</sub> [11].



# ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

## Синтез триформилметана и комплексов

Триформилметан (HL) получали по известной методике [12]. [MnL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]. Смесь триформилметана (300 мг, 3 ммоля), [Mn(OAc)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>] (368 мг, 1,5 ммоля) и воды (5 ммоль) выдерживали в ультразвуковой бане в течение 1—2 мин, что при-

<sup>©</sup> Третьяков Е.В., Толстиков С.Е., Романенко Г.В., Богомяков А.С., Сагдеев Р.З., Новоторцев В.М., Овчаренко В.И., 2013

водило к образованию мелкокристаллического осадка желтого цвета. К реакционной смеси прибавляли 0,3 мл  $Et_3N$  и 5 мл MeOH, полученный раствор фильтровали, и фильтрат обдували током аргона до начала процесса кристаллизации. После этого реакционную смесь охлаждали до 5 °C и выдерживали при этой температуре в течение 14 ч. Кристаллы ярко-желтого цвета отфильтровывали и промывали этанолом. Выход 333 мг (77 %). ИК спектр (KBr), v/см<sup>-1</sup>: 505, 731, 923, 1233, 1249, 1353, 1414, 1505, 1527, 1597, 1672, 3397. Найдено, %: С 33,1, Н 3,4. Вычислено для  $C_8H_{10}MnO_8$ , %: С 33,2, Н 3,5.

[CoL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]. Получали по методике, аналогичной синтезу [MnL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]. Кристаллы бордового цвета отфильтровывали, промывали этанолом и сушили на воздухе. Выход 270 мг (67 %). ИК спектр (KBr),  $\nu/cm^{-1}$ : 526, 760, 938, 1236, 1356, 1416, 1514, 1595, 1668, 3406. Найдено, %: С 32,5, Н 3,2. Вычислено для C<sub>8</sub>H<sub>10</sub>CoO<sub>8</sub>, %: С 32,8, Н 3,4.

**\alpha-[NiL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>].** К раствору триформилметана (50 мг, 0,5 ммоля) и [Ni(OAc)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>] (62 мг, 0,25 ммоля) в воде (5 мл) прибавили Et<sub>3</sub>N (50 мкл). Полученный раствор выдерживали при +5 °C в течение 24 ч. Образовавшиеся кристаллы светло-зеленого цвета отфильтровывали и сушили на воздухе. Выход 23 мг (31 %). Найдено, %: С 32,8, Н 3,4. Вычислено для C<sub>8</sub>H<sub>10</sub>NiO<sub>8</sub>, %: С 32,8, Н 3,4.

**β-[NiL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>].** Получали по методике, аналогичной синтезу [MnL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]. Образовавшиеся кристаллы зеленого цвета отфильтровывали и сушили на воздухе. Выход 360 мг (82 %). ИК спектр (KBr),  $\nu$ /см<sup>-1</sup>: 423, 544, 621, 764, 950, 1234, 1351, 1418, 1525, 1609, 1673, 2866, 3450. Найдено, %: С 32,8, Н 3,4. Вычислено для С<sub>8</sub>H<sub>10</sub>NiO<sub>8</sub>, %: С 32,8, Н 3,4.

[CuL<sub>2</sub>(H<sub>2</sub>O)]. К раствору триформилметана (300 мг, 3 ммоля) в 3 мл воды прибавляли при перемешивании раствор [Cu<sub>2</sub>(OAc)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>] (300 мг, 1,5 ммоля) в 5 мл воды. Выделившийся мелкокристаллический осадок бледно-зеленого цвета отфильтровывали и перекристаллизовывали из смеси воды с MeOH. Выход 400 мг (42 %). ИК спектр (KBr),  $v/cm^{-1}$ : 429, 534, 557, 749, 949, 976, 1227, 1341, 1414, 1487, 1612, 1679, 2777, 2839, 3449. Найдено, %: С 34,6, Н 2,7. Вычислено для C<sub>16</sub>H<sub>16</sub>Cu<sub>2</sub>O<sub>14</sub>, %: С 34,4, Н 2,9.

# Физические измерения

Инфракрасные спектры образцов, запрессованных в таблетки с КВг, записывали на спектрометре VECTOR-22 фирмы Bruker. Микроанализы выполняли в Новосибирском Институте органической химии СО РАН им. Н.Н. Ворожцова на CHNS-анализаторе Euro EA3000. Магнитную восприимчивость  $\chi$  измеряли на SQUID-магнетометре MPMS-*XL* фирмы Quantum Design в температурном интервале 2—300 К при напряженности магнитного поля 5 кЭ. При расчете парамагнитной составляющей вносили поправку на диамагнетизм атомов. Эффективный магнитный момент  $\mu_{eff}$  вычисляли по формуле  $\mu_{eff} = [3k\chi T/(N_A\beta^2)]^{1/2} \approx (8\chi T)^{1/2}$ , где  $N_A$ ,  $\beta$  и k — число Авогадро, магнетон Бора и постоянная Больцмана соответственно.

Рентгеноструктурное исследование монокристаллов комплексов проведено на дифрактометре SMART APEX II CCD (Bruker AXS) ( $MoK_{\alpha}$ ,  $\lambda = 0,71073$  Å, поглощение учитывали по программе Bruker SADABS, версия 2.10). Структуры решены прямыми методами и уточнены полноматричным МНК в анизотропном приближении для всех неводородных атомов. Положения атомов H рассчитаны геометрически, их уточнение проводили изотропно в приближении жесткой группы. Все расчеты по решению и уточнению структур проводили по комплексу программ Bruker Shelxtl Version 6.14. Кристаллографические характеристики исследованных соединений и некоторые детали эксперимента приведены в табл. 1. СІГ-файлы, содержащие полную информацию по исследованным структурам, депонированы в Кембриджский банк данных (ССDC 864712-864716) на сайте www.ccdc.cam.ac.uk/data reguest/cif.

#### РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В твердой фазе [CuL<sub>2</sub>(H<sub>2</sub>O)] окружение атома металла представляет собой квадратную пирамиду, основание которой образуют атомы О двух бидентатно координированных L (Cu—O<sub>L</sub> 1,940(2)—1,946(2) Å), а вершину занимает атом О координированной молекулы воды (Cu—O<sub>H<sub>2</sub>O</sub>)

Таблица 1

| Параметр                           | Соединение        |                   |                                                               |                                                              |                 |
|------------------------------------|-------------------|-------------------|---------------------------------------------------------------|--------------------------------------------------------------|-----------------|
| Параметр                           | $[MnL_2(H_2O)_2]$ | $[CoL_2(H_2O)_2]$ | $\alpha$ -[NiL <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> ] | $\beta$ -[NiL <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> ] | $[CuL_2(H_2O)]$ |
| CCDC №                             | 864716            | 864714            | 864712                                                        | 864715                                                       | 864713          |
| Формула                            | $C_8H_{10}MnO_8$  | $C_8H_{10}CoO_8$  | C <sub>8</sub> H <sub>10</sub> NiO <sub>8</sub>               | C <sub>8</sub> H <sub>10</sub> NiO <sub>8</sub>              | $C_8H_8CuO_7$   |
| Мол. масса                         | 289,10            | 293,09            | 292,87                                                        | 292,87                                                       | 279,69          |
| Температура, К                     | 240               | 240               | 240                                                           | 293                                                          | 293             |
| Пр. гр., Z                         | $P2_1/c, 4$       | $P2_1/c, 4$       | <i>P</i> -1, 1                                                | $P2_1/c, 4$                                                  | <i>P</i> -1, 2  |
| <i>a</i> , Å                       | 14,015(8)         | 13,9196(3)        | 5,083(4)                                                      | 9,721(2)                                                     | 6,3548(13)      |
| b, Å                               | 6,344(4)          | 6,3321(1)         | 6,971(5)                                                      | 6,920(1)                                                     | 12,679(3)       |
| <i>c</i> , Å                       | 12,282(7)         | 12,2735(3)        | 8,247(6)                                                      | 8,676(1)                                                     | 6,4136(13)      |
| α, град.                           |                   |                   | 65,126(9)                                                     |                                                              | 101,238(3)      |
| β, град.                           | 102,140(8)        | 102,351(1)        | 79,298(9)                                                     | 116,501(3)                                                   | 102,470(3)      |
| ү, град.                           |                   |                   | 87,740(9)                                                     |                                                              | 94,615(3)       |
| $V, Å^3$                           | 1067,6(10)        | 1056,75(4)        | 260,2(3)                                                      | 522,31(16)                                                   | 490,83(17)      |
| $\rho_{\rm выч},  \Gamma/cm^3$     | 1,799             | 1,842             | 1,869                                                         | 1,862                                                        | 1,892           |
| $\mu({ m Mo}K_lpha),{ m cm}^{-1}$  | 1,266             | 1,653             | 1,894                                                         | 1,887                                                        | 2,243           |
| Обл. сканир. по $\theta$ , град.   | 3,39—26,53        | 1,54—34,32        | 3,22—23,31                                                    | 2,34—26,41                                                   | 1,69—26,29      |
| <i>I<sub>hkl</sub></i> изм./незав. | 9584/2194         | 24655 / 4131      | 1895 / 725                                                    | 4969 / 1073                                                  | 4863 / 1976     |
| R <sub>int</sub>                   | 0,0310            | 0,0643            | 0,0284                                                        | 0,0402                                                       | 0,1284          |
| N                                  | 195               | 195               | 99                                                            | 100                                                          | 177             |
| GOOF                               | 1,218             | 0,758             | 1,041                                                         | 1,056                                                        | 1,067           |
| $R_1$ для $I_{hkl} > 2\sigma_I$    | 0,0280            | 0,0285            | 0,0313                                                        | 0,0332                                                       | 0,0365          |
| $wR_2$                             | 0,0772            | 0,0735            | 0,0778                                                        | 0,0935                                                       | 0,0883          |
| $R_1$ для всех $I_{hkl}$           | 0,0318            | 0,0460            | 0,0331                                                        | 0,0348                                                       | 0,0483          |
| $wR_2$                             | 0,0789            | 0,0817            | 0,0947                                                        | 0,0951                                                       | 0,0921          |

Кристаллографические данные и детали рентгеноструктурного эксперимента

2,269(3) Å) (рис. 1). При этом атом Cu смещен из основания пирамиды к вершине на 0,11 Å. Координированные молекулы воды связаны H-связями с атомами O<sub>L</sub> соседних молекул (O...O 2,733(4) и 2,771(4) Å); за счет этого в структуре [CuL<sub>2</sub>(H<sub>2</sub>O)] образуются цепочки, тянущиеся в направлении [101]. Помимо H-связей существуют короткие межмолекулярные контакты между атомами меди и некоординированными атомами O<sub>L</sub> (Cu...O 2,834(2) Å), которые позволяют считать цепочки объединенными в слои (рис. 2), поскольку эти расстояния короче суммы вандер-ваальсовых радиусов Cu (1,40 Å) и O (1,52 Å).

В кристаллах  $[MnL_2(H_2O)_2]$  и  $[CoL_2(H_2O)_2]$  молекулы воды находятся в *цис*-координации. На рис. 3 в качестве примера показано строение молекулы  $[MnL_2(H_2O)_2]$ . В твердом  $[MnL_2(H_2O)_2]$  расстояния Mn— $O_L$  лежат в интервале 2,113(1)—2,193(1) Å; в  $[CoL_2(H_2O)_2]$ —2,0472(9)—2,1209(9) Å.

Рис. 1. Строение молекулы и нумерация атомов для [CuL<sub>2</sub>(H<sub>2</sub>O)]; эллипсоиды приведены с 35%-й вероятностью





*Рис. 2.* Фрагмент слоя в структуре [CuL<sub>2</sub>(H<sub>2</sub>O)]





*Рис. 3.* Схема нумерации атомов в молекуле [MnL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]. Эллипсоиды приведены с 35%-й вероятностью

*Рис.* 4. Эллипсоиды (35 %) атомных смещений в структуре β-[NiL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]

В отличие от [MnL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] и [CoL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>], в центросимметричных молекулах  $\alpha$ - и  $\beta$ -[NiL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] (рис. 4) окружение атома металла представляет собой искаженный октаэдр, для которого расстояния Ni—O<sub>L</sub> попадают в интервал 1,992(2)—2,023(1) Å.

В молекулах всех комплексов хелатные циклы неплоские; достоверно регистрируется перегиб металлоцикла по линии О...О. При этом углы между плоскостями ОМО и ОСССО оказались заметно разными: 2,93(5) и 13,11(5)° в [MnL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>], 3,79(3) и 12,51(3)° в [CoL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>], 10,0(1) и 16,7(1)° в [CuL<sub>2</sub>(H<sub>2</sub>O)], 9,8(2)° в  $\alpha$ -[NiL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] и 8,7(1)° в  $\beta$ -[NiL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>].

Структуры всех комплексов  $[ML_2(H_2O)_2]$  насыщены водородными связями между координированными молекулами воды и атомами  $O_L$  соседних молекул. При этом каркасное строение  $[MnL_2(H_2O)_2]$  и  $[CoL_2(H_2O)_2]$  возникает за счет образования H-связей между молекулами  $H_2O$ и некоординированными атомами  $O_L$  (рис. 5). Слоистое и каркасное строение  $\alpha$ - и  $\beta$ -модифика-



*Рис. 5.* Фрагмент каркаса в [CoL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]



*Рис. 6.* Фрагмент структуры и схема водородных связей в α-[NiL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] (*a*) и β-[NiL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]; для β-[NiL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] последовательно показано связывание водородными связями молекул в слой (*б*) и слоев в каркас (*в*)



*Рис.* 7. Температурные зависимости эффективного магнитного момента и обратной магнитной восприимчивости для [CuL<sub>2</sub>(H<sub>2</sub>O)] (▲), β-[NiL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] (♦), [CoL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] (■) и [MnL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] (●)

ций комплекса [NiL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] обусловлено H-связями с участием как некоординированных, так и координированных атомов  $O_L$  (рис. 6, *a*—*в*).

Температурные зависимости эффективного магнитного момента  $\mu_{эф\phi}$  и обратной магнитной восприимчивости 1/ $\chi$  для [CuL<sub>2</sub>(H<sub>2</sub>O)], β-[NiL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>], [CoL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] и [MnL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] представлены на рис. 7. Значения  $\mu_{э\phi\phi}$  при 300 K равны 1,89, 3,26, 5,12 и 5,92 В.М. для [CuL<sub>2</sub>(H<sub>2</sub>O)], β-[NiL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>], [CoL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] и [MnL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] соответственно. Для комплексов Cu(II), Ni(II) и Mn(II)  $\mu_{э\phi\phi}$  практически не меняется при понижении температуры до 30 K и только при дальнейшем охлаждении наблюдается небольшое уменьшение до 0,54, 2,39 и 5,42 В.М. при 2 K для комплексов Cu(II), Ni(II) и Mn(II) соответственно. Для комплекса Co(II) значение  $\mu_{э\phi\phi}$  начинает уменьшаться при более высоких температурах — ниже 150 K и достигает 3,72 В.М. при 2 K.

Таблица 2

Значения постоянных Кюри (С) и Вейсса (Θ) для [ML<sub>2</sub>(H<sub>2</sub>O)<sub>n</sub>]

| Комплекс                                                     | C, (K · см <sup>3</sup> )моль | Θ, Κ         |  |
|--------------------------------------------------------------|-------------------------------|--------------|--|
| $[CuL_2(H_2O)]$                                              | 0,46±0,01                     | -9,9±0,3     |  |
| $\beta$ -[NiL <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> ] | 1,33±0,01                     | $-3,2\pm0,5$ |  |
| $[CoL_2(H_2O)_2]$                                            | $3,\!48{\pm}0,\!02$           | $-18\pm1$    |  |
| $[MnL_2(H_2O)_2]$                                            | 4,39±0,01                     | $-0,4\pm0,1$ |  |

Зависимости обратной магнитной восприимчивости для комплексов Cu(II), Ni(II) и Mn(II) в интервале температур 300—30 К подчиняются закону Кюри— Вейсса. Для комплекса Co(II) ниже 150 К наблюдается отклонение от закона Кюри—Вейсса. Оптимальные значения постоянных Кюри и Вейсса приведены в табл. 2. Значения постоянных Кюри и величины µэфф при 300 К хорошо согласуются со значениями, типичными для соединений Cu(II), Ni(II), Co(II) и Mn(II). Постоянство µэфф в широком температурном интервале указывает на изолированность парамагнитных центров. Отрицательные значения постоянной Вейсса и уменьшение  $\mu_{9\phi\phi}$  ниже 30 К указывают на наличие слабых антиферромагнитных обменных взаимодействий между электронными спинами парамагнитных центров. Наблюдаемое для [CoL<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] уменьшение  $\mu_{9\phi\phi}$  ниже 150 К обусловлено спин-орбитальным взаимодействием, типичным для ионов Co(II) в октаэдрическом окружении.

Таким образом, рентгеноструктурное исследование комплексов Mn(II), Co(II), Ni(II) и Cu(II) с триформилметаном показало, что значимую роль в образовании структуры этих соединений играют водородные связи. С результатами структурного исследования соединений полностью коррелируют их магнитные свойства: множественная разделенность парамагнитных центров протяженными системами ковалентных и водородных связей обусловливает крайне слабое обменное взаимодействие между неспаренными электронами ионов металла. Отметим также, что полученная структурная информация может быть полезной при разработке синтеза разнометалльных твердых фаз с тридентатно-мостиковой координацией L.

Авторы благодарят Российский фонд фундаментальных исследований (гранты 11-03-00027, 11-03-12001-офи-м-2011, 12-03-00067), РАН и СО РАН за финансовую поддержку работы.

### СПИСОК ЛИТЕРАТУРЫ

- 1. Овчаренко В.И., Сагдеев Р.З. // Успехи химии. 1999. 68, № 5. С. 381 400.
- Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds / Ed. R.G. Hicks. Chichester, UK: Wiley, 2010.
- 3. Caneschi A., Gatteschi D., Sessoli R., Rey P. // Acc. Chem. Res. 1989. 22. P. 392 398.
- 4. Овчаренко В.И., Фокин С.В., Романенко Г.В., Икорский В.Н., Сагдеев Р.З., Ячевский Д.С., Чижов Д.Л., Чарушин В.Н. // Изв. АН. Сер. хим. 2006. С. 1836 1840.
- 5. Овчаренко В.И., Фокин С.В., Романенко Г.В., Третьяков Е.В., Болтачева Н.С., Филякова В.И., Чарушин В.Н. // Изв. АН. Сер. хим. – 2006. – С. 2043 – 2050.
- 6. Ovcharenko V., Burdukov A., Musin R. // Mol. Cryst. Liq. Cryst. 1995. 273. P. 89 99.
- Петров П.А., Романенко Г.В., Шведенков Ю.Г., Икорский В.Н., Овчаренко В.И., Резников В.А., Сагдеев Р.З. // Изв. АН. Сер. хим. – 2004. – С. 98 – 106.
- 8. Tretyakov E., Fokin S. // Polyhedron. 2005. 24, N 16-17. P. 2176 2184.
- 9. Овчаренко В.И., Фокин С.В., Романенко Г.В., Икорский В.Н., Резников В.А., Подоплелов А.В. // Журн. структур. химии. 1997. **38**, № 4. С. 750 761.
- 10. Tretyakov E.V., Eltsov I.V., Fokin S.V., Shvedenkov Yu.G., Romanenko G.V., Ovcharenko V.I. // Polyhedron. 2003. 22, N 14-17. P. 2499 2514.
- 11. Groth P. // Acta Chem. Scand. 1987. A41. P. 178 182.
- 12. Arnold Z., Budesinsky M. // J. Org. Chem. 1988. 53. P. 5352 5353.